51
|
Predicting the Risk of Recurrent Venous Thromboembolism: Current Challenges and Future Opportunities. J Clin Med 2020; 9:jcm9051582. [PMID: 32456008 PMCID: PMC7290951 DOI: 10.3390/jcm9051582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Acute venous thromboembolism (VTE) is a commonly diagnosed condition and requires treatment with anticoagulation to reduce the risk of embolisation as well as recurrent venous thrombotic events. In many cases, cessation of anticoagulation is associated with an unacceptably high risk of recurrent VTE, precipitating the use of indefinite anticoagulation. In contrast, however, continuing anticoagulation is associated with increased major bleeding events. As a consequence, it is essential to accurately predict the subgroup of patients who have the highest probability of experiencing recurrent VTE, so that treatment can be appropriately tailored to each individual. To this end, the development of clinical prediction models has aided in calculating the risk of recurrent thrombotic events; however, there are several limitations with regards to routine use for all patients with acute VTE. More recently, focus has shifted towards the utility of novel biomarkers in the understanding of disease pathogenesis as well as their application in predicting recurrent VTE. Below, we review the current strategies used to predict the development of recurrent VTE, with emphasis on the application of several promising novel biomarkers in this field.
Collapse
|
52
|
Veen CSB, Huisman EJ, Cnossen MH, Kom‐Gortat R, Rijken DC, Leebeek FWG, Maat MPM, Kruip MJHA. Evaluation of thromboelastometry, thrombin generation and plasma clot lysis time in patients with bleeding of unknown cause: A prospective cohort study. Haemophilia 2020; 26:e106-e115. [DOI: 10.1111/hae.13991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/01/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Caroline S. B. Veen
- Department of Haematology Erasmus University Medical Center Rotterdam Rotterdam The Netherlands
| | - Elise J. Huisman
- Department of Paediatric Haematology Erasmus University Medical Center - Sophia Children's Hospital Rotterdam The Netherlands
| | - Marjon H. Cnossen
- Department of Paediatric Haematology Erasmus University Medical Center - Sophia Children's Hospital Rotterdam The Netherlands
| | - Regina Kom‐Gortat
- Department of Haematology Erasmus University Medical Center Rotterdam Rotterdam The Netherlands
| | - Dingeman C. Rijken
- Department of Haematology Erasmus University Medical Center Rotterdam Rotterdam The Netherlands
| | - Frank W. G. Leebeek
- Department of Haematology Erasmus University Medical Center Rotterdam Rotterdam The Netherlands
| | - Moniek P. M. Maat
- Department of Haematology Erasmus University Medical Center Rotterdam Rotterdam The Netherlands
| | - Marieke J. H. A. Kruip
- Department of Haematology Erasmus University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|
53
|
Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood 2020; 134:2082-2091. [PMID: 31064749 DOI: 10.1182/blood.2018891192] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.
Collapse
|
54
|
Zaninetti C, Greinacher A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J Clin Med 2020; 9:jcm9020539. [PMID: 32079152 PMCID: PMC7074415 DOI: 10.3390/jcm9020539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further. In principle, it is based on visualizing alterations in the distribution of proteins, which result from specific genetic mutations by using monoclonal antibodies. It can be applied to identify deficiencies in membrane proteins, disturbed distribution of cytoskeletal proteins, and alpha as well as delta granules. On the other hand, mutations associated with impaired signal transduction are difficult to identify by immunofluorescence of blood smears. This review summarizes technical aspects and the main diagnostic patterns achievable by this method.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- Correspondence: ; Tel.: +49-3834-865482; Fax: +49-3834-865489
| |
Collapse
|
55
|
MacDonald S, White D, Langdown J, Downes K, Thomas W. Investigation of patients with unclassified bleeding disorder and abnormal thrombin generation for physiological coagulation inhibitors reveals multiple abnormalities and a subset of patients with increased tissue factor pathway inhibitor activity. Int J Lab Hematol 2020; 42:246-255. [PMID: 32003946 DOI: 10.1111/ijlh.13155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/29/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We have routinely used thrombin generation to investigate patients with unclassified bleeding disorder (UBD). AIMS To investigate haemostatic abnormalities in patients with UBD that had abnormal thrombin generation on at least one occasion. METHODS Investigation of 13 known UBD patients with thrombin generation and detailed haemostatic testing was undertaken including TFPI assays but also thrombomodulin and fibrinogen-γ. RESULTS 12 females and 1 male were included. No patient had a platelet function disorder or coagulation factor deficiency that explained the bleeding phenotype, though 2 patients had factor deficiencies; a factor X of 0.41 IU/mL and a factor XI of 0.51 IU/mL. ThromboGenomics revealed variants for these factors but no other abnormalities. Patients were included who previously had either prolonged lag time or decreased endogenous thrombin potential (ETP) via high dose tissue factor (5 pmol/L) or low dose tissue factor (1.5 pmol/L) with corn trypsin inhibitor (CTI). Tissue factor pathway inhibitor (TFPI) activity was significantly increased (P < .001; increased in 8 patients) compared with controls and abnormalities in soluble thrombomodulin (2 patients), fibrinogen-γ (1 patient) and tPA (4 patients for each) were seen. Total and free TFPI levels were not increased. Mixing studies of patient plasma with 50:50 normal plasma for thrombin generation via low dose tissue factor failed to correct the ETP consistent with ongoing inhibition. Addition of an anti-TFPI antibody partially corrected thrombin generation to normal levels. TFPI sequencing was unremarkable. CONCLUSION TFPI activity may be increased in a subset of UBD patients. Further research studies are warranted in UBD patients for coagulation inhibitor abnormalities.
Collapse
Affiliation(s)
- Stephen MacDonald
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Danielle White
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jon Langdown
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge, UK.,NIHR BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,East Midlands and East of England Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Will Thomas
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
56
|
Huizing M, Malicdan MCV, Wang JA, Pri-Chen H, Hess RA, Fischer R, O'Brien KJ, Merideth MA, Gahl WA, Gochuico BR. Hermansky-Pudlak syndrome: Mutation update. Hum Mutat 2020; 41:543-580. [PMID: 31898847 DOI: 10.1002/humu.23968] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - May C V Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer A Wang
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadass Pri-Chen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A Hess
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Roxanne Fischer
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernadette R Gochuico
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
57
|
Abstract
Platelets - blood cells continuously produced from megakaryocytes mainly in the bone marrow - are implicated not only in haemostasis and arterial thrombosis, but also in other physiological and pathophysiological processes. This Review describes current evidence for the heterogeneity in platelet structure, age, and activation properties, with consequences for a diversity of platelet functions. Signalling processes of platelet populations involved in thrombus formation with ongoing coagulation are well understood. Genetic approaches have provided information on multiple genes related to normal haemostasis, such as those encoding receptors and signalling or secretory proteins, that determine platelet count and/or responsiveness. As highly responsive and secretory cells, platelets can alter the environment through the release of growth factors, chemokines, coagulant factors, RNA species, and extracellular vesicles. Conversely, platelets will also adapt to their environment. In disease states, platelets can be positively primed to reach a pre-activated condition. At the inflamed vessel wall, platelets interact with leukocytes and the coagulation system, interactions mediating thromboinflammation. With current antiplatelet therapies invariably causing bleeding as an undesired adverse effect, novel therapies can be more beneficial if directed against specific platelet responses, populations, interactions, or priming conditions. On the basis of these novel concepts and processes, we discuss several initiatives to target platelets therapeutically.
Collapse
|
58
|
Lecchi A, La Marca S, Femia EA, Lenz A, Boeckelmann D, Artoni A, Peyvandi F, Zieger B. Novel variant in HPS3 gene in a patient with Hermansky Pudlak syndrome (HPS) type 3. Platelets 2019; 31:960-963. [DOI: 10.1080/09537104.2019.1704716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anna Lecchi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milano, Italy
| | - Silvia La Marca
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milano, Italy
| | - Eti A Femia
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milano, Italy
| | - Antonia Lenz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center – University of Freiburg, Germany
| | - Doris Boeckelmann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center – University of Freiburg, Germany
| | - Andrea Artoni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milano, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milano, Italy
- Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Università degli Studi di Milano, Milano, Italy
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center – University of Freiburg, Germany
| |
Collapse
|
59
|
The next(gen) step in coagulation testing. Blood 2019; 134:2002-2003. [PMID: 31805193 DOI: 10.1182/blood.2019001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
60
|
Guillet B, Bayart S, Pillois X, Nurden P, Caen JP, Nurden AT. A Glanzmann thrombasthenia family associated with a TUBB1-related macrothrombocytopenia. J Thromb Haemost 2019; 17:2211-2215. [PMID: 31565851 DOI: 10.1111/jth.14622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Macrothrombocytopenia (MTP) is a rare but enigmatic complication of Glanzmann thrombasthenia (GT), an inherited bleeding disorder caused by the absence of platelet aggregation due to deficiencies of the αIIbβ3 integrin. OBJECTIVES We report a family with type I GT and a prolonged bleeding time but unusually associated with congenital mild thrombocytopenia and platelet size heterogeneity with giant forms. METHODS AND RESULTS Sanger sequencing of DNA from the propositus identified 2 heterozygous ITGB3 gene mutations: p.P189S and p.C210S both of which prevent αIIbβ3 expression and are causative of GT but without explaining the presence of enlarged platelets. High-throughput screening led to the detection of a predicted disease-causing heterozygous mutation in the TUBB1 gene: p.G146R, encoding β1-tubulin, a component of the platelet cytoskeleton and a gene where mutations are a known cause of MTP. CONCLUSIONS Family screening confirmed that this rare phenotype results from oligogenic inheritance while suggesting that the GT phenotype dominates clinically.
Collapse
Affiliation(s)
- Benoit Guillet
- Centre de Traitement des Maladies Hémorragiques, CHU de Rennes, Rennes, France
- EHESP, INSERM, Institut de Recherche en Santé, Environnement et Travail-Unité Mixte de Recherche 1085 S, Univ Rennes, CHU de Rennes, Rennes, France
| | - Sophie Bayart
- Centre de Traitement des Maladies Hémorragiques, CHU de Rennes, Rennes, France
| | - Xavier Pillois
- INSERM U1034, Pessac, France
- Institut de Rhythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France
| | | | - Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
61
|
Tan RYY, Traylor M, Megy K, Duarte D, Deevi SVV, Shamardina O, Mapeta RP, Ouwehand WH, Gräf S, Downes K, Markus HS. How common are single gene mutations as a cause for lacunar stroke? A targeted gene panel study. Neurology 2019; 93:e2007-e2020. [PMID: 31719132 PMCID: PMC6913325 DOI: 10.1212/wnl.0000000000008544] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To determine the frequency of rare and pertinent disease-causing variants in small vessel disease (SVD)-associated genes (such as NOTCH3, HTRA1, COL4A1, COL4A2, FOXC1, TREX1, and GLA) in cerebral SVD, we performed targeted gene sequencing in 950 patients with younger-onset apparently sporadic SVD stroke using a targeted sequencing panel. METHODS We designed a high-throughput sequencing panel to identify variants in 15 genes (7 known SVD genes, 8 SVD-related disorder genes). The panel was used to screen a population of 950 patients with younger-onset (≤70 years) MRI-confirmed SVD stroke, recruited from stroke centers across the United Kingdom. Variants were filtered according to their frequency in control databases, predicted effect, presence in curated variant lists, and combined annotation dependent depletion scores. Whole genome sequencing and genotyping were performed on a subset of patients to provide a direct comparison of techniques. The frequency of known disease-causing and pertinent variants of uncertain significance was calculated. RESULTS We identified previously reported variants in 14 patients (8 cysteine-changing NOTCH3 variants in 11 patients, 2 HTRA1 variants in 2 patients, and 1 missense COL4A1 variant in 1 patient). In addition, we identified 29 variants of uncertain significance in 32 patients. CONCLUSION Rare monogenic variants account for about 1.5% of younger onset lacunar stroke. Most are cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy variants, but the second most common gene affected is HTRA1. A high-throughput sequencing technology platform is an efficient, reliable method to screen for such mutations.
Collapse
Affiliation(s)
- Rhea Y Y Tan
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK.
| | - Matthew Traylor
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Karyn Megy
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Daniel Duarte
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Sri V V Deevi
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Olga Shamardina
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Rutendo P Mapeta
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Stefan Gräf
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Kate Downes
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| | - Hugh S Markus
- From the Stroke Research Group, Department of Clinical Neurosciences (R.Y.Y.T., M.T., H.S.M.), Department of Haematology (K.M., D.D., S.V.V.D., O.S., R.P.M., W.H.O., S.G., K.D.), and Division of Respiratory Medicine, Department of Medicine (S.G.), University of Cambridge; and NIHR BioResource: Rare Diseases (K.M., S.V.V.D., O.S., R.P.M., W.H.O., S.G., H.S.M.), Biomedical Campus, Cambridge, UK
| |
Collapse
|
62
|
MacDonald S, Wright A, Beuche F, Downes K, Besser M, Symington E, Kelly A, Thomas W. Characterization of a large cohort of patients with unclassified bleeding disorder; clinical features, management of haemostatic challenges and use of global haemostatic assessment with proposed recommendations for diagnosis and treatment. Int J Lab Hematol 2019; 42:116-125. [DOI: 10.1111/ijlh.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Stephen MacDonald
- Department of Haematology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Alfie Wright
- School of Clinical Medicine University of Cambridge Cambridge UK
| | | | - Kate Downes
- Department of Haematology University of Cambridge Cambridge UK
- NIHR BioResource‐Rare Diseases Cambridge University Hospitals NHS Foundation Trust Cambridge UK
- NHS Blood and Transplant Cambridge Biomedical Campus Cambridge UK
| | - Martin Besser
- Department of Haematology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Emily Symington
- Department of Haematology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Anne Kelly
- Department of Haematology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Will Thomas
- Department of Haematology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| |
Collapse
|
63
|
|
64
|
Bury L, Megy K, Stephens JC, Grassi L, Greene D, Gleadall N, Althaus K, Allsup D, Bariana TK, Bonduel M, Butta NV, Collins P, Curry N, Deevi SVV, Downes K, Duarte D, Elliott K, Falcinelli E, Furie B, Keeling D, Lambert MP, Linger R, Mangles S, Mapeta R, Millar CM, Penkett C, Perry DJ, Stirrups KE, Turro E, Westbury SK, Wu J, BioResource N, Gomez K, Freson K, Ouwehand WH, Gresele P, Simeoni I. Next-generation sequencing for the diagnosis of MYH9-RD: Predicting pathogenic variants. Hum Mutat 2019; 41:277-290. [PMID: 31562665 PMCID: PMC6972977 DOI: 10.1002/humu.23927] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
The heterogeneous manifestations of MYH9‐related disorder (MYH9‐RD), characterized by macrothrombocytopenia, Döhle‐like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE‐BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9‐RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9‐RD should always be considered. A HTS‐based strategy is a reliable method to reach a conclusive diagnosis of MYH9‐RD in clinical practice.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Internal Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Jonathan C Stephens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,Department of Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nick Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Karina Althaus
- Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany.,Transfusion Medicine, Medical Faculty Tübingen, Tübingen, Germany
| | - David Allsup
- Hull York Medical School, University of Hull, York, UK
| | - Tadbir K Bariana
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,The Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| | - Mariana Bonduel
- Hematology/Oncology Department, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Nora V Butta
- Servicio de Hematología y Hemoterapia Hospital, Universitario La Paz-IDIPaz, Madrid, Spain
| | - Peter Collins
- Arthur Bloom Haemophilia Centre, Institute of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Nicola Curry
- Department of Clinical Haematology, Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Daniel Duarte
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Kim Elliott
- Oxford Haemophilia & Thrombosis Centre, Department of Haematology, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford and the NIHR BRC, Blood Theme, Oxford Centre for Haematology, Oxford, UK
| | - Emanuela Falcinelli
- Department of Internal Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Bruce Furie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rachel Linger
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Sarah Mangles
- Basingstoke and Hampshire Hospital, NHS Foundation Trust, UK
| | - Rutendo Mapeta
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Carolyn M Millar
- Hampshire Hospital NHS Foundation Trust, UK.,Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, UK
| | - Christopher Penkett
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - David J Perry
- Department of Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kathleen E Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge Institute of Public Health, Cambridge, UK
| | - Sarah K Westbury
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John Wu
- British Columbia Children's Hospital, Vancouver, Canada
| | - Nihr BioResource
- NIHR BioResource, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Keith Gomez
- Transfusion Medicine, Medical Faculty Tübingen, Tübingen, Germany
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Paolo Gresele
- Department of Internal Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
65
|
Fundamentals for a Systematic Approach to Mild and Moderate Inherited Bleeding Disorders: An EHA Consensus Report. Hemasphere 2019; 3:e286. [PMID: 31942541 PMCID: PMC6919472 DOI: 10.1097/hs9.0000000000000286] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Healthy subjects frequently report minor bleedings that are frequently ‘background noise’ of normality rather than a true disorder. Nevertheless, unexpected or unusual bleeding may be alarming. Thus, the distinction between normal and pathologic bleeding is critical. Understanding the underlying pathologic mechanism in patients with an excessive bleeding is essential for their counseling and treatment. Most of these patients with significant bleeding will result affected by non-severe inherited bleeding disorders (BD), collectively denominated mild or moderate BD for their relatively benign course. Unfortunately, practical recommendations for the management of these disorders are still lacking due to the current state of fragmented knowledge of pathophysiology and lack of a systematic diagnostic approach. To address this gap, an International Working Group (IWG) was established by the European Hematology Association (EHA) to develop consensus-based guidelines on these disorders. The IWG agreed that grouping these disorders by their clinical phenotype under the single category of mild-to-moderate bleeding disorders (MBD) reflects current clinical practice and will facilitate a systematic diagnostic approach. Based on standardized and harmonized definitions a conceptual unified framework is proposed to distinguish normal subjects from affected patients. The IWG proposes a provisional comprehensive patient-centered initial diagnostic approach that will result in classification of MBD into distinct clinical-pathological entities under the overarching principle of clinical utility for the individual patient. While we will present here a general overview of the global management of patients with MBD, this conceptual framework will be adopted and validated in the evidence-based, disease-specific guidelines under development by the IWG.
Collapse
|
66
|
Clinical and laboratory diagnosis of rare coagulation disorders (RCDs). Thromb Res 2019; 196:603-608. [PMID: 31515069 DOI: 10.1016/j.thromres.2019.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
Rare coagulation disorders (RCDs) are a group of diseases due to coagulation factors deficiency leading to life-long bleeding diathesis. The diagnosis of RCDs is challenging due to the limited knowledge of these disorders and the large heterogeneity of their bleeding patterns. The clinical symptoms of RCDs are extremely diverse in terms of bleeding type, site, severity, age at onset, and duration. The strength of the association between clotting factor activity level in plasma and clinical symptoms is also variable within each RCD. The clinical evaluation of RCDs starts with a detailed collection of clinical history and has been facilitated by bleeding assessment tools, however their effectiveness in diagnosing RCDs requires further investigation. The following laboratory diagnosis of RCDs involves coagulation screening tests, including activated partial thromboplastin time, prothrombin time, and thrombin time. After ruling out the presence of an inhibitor by mixing studies, in case of abnormal results, the specific deficiency is identified by performing one-stage clotting assays using the specific factor-depleted plasmas as substrate. In fibrinogen and FXIII deficiencies coagulation screening tests are not informative, therefore additional tests are needed. Global assays have been developed and are thought to aid in patient management, however, they are not well standardized yet. In addition to outlining the principles of clinical and laboratory diagnosis, this review explores molecular basis of RCDs and laboratory techniques for genetic analysis, and discusses the importance and effectiveness of quality control programs to ensure standardized laboratory results.
Collapse
|
67
|
Phenotype description and response to thrombopoietin receptor agonist in DIAPH1-related disorder. Blood Adv 2019; 2:2341-2346. [PMID: 30232087 DOI: 10.1182/bloodadvances.2018020370] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Key Points
DIAPH1-related disorder has a bilineage hematological phenotype of macrothrombocytopenia and neutropenia associated with hearing loss. Eltrombopag increased proplatelet formation from cultured DIAPH1-related disorder megakaryocytes and improved platelet counts in vivo.
Collapse
|
68
|
Megy K, Downes K, Simeoni I, Bury L, Morales J, Mapeta R, Bellissimo DB, Bray PF, Goodeve AC, Gresele P, Lambert M, Reitsma P, Ouwehand WH, Freson K. Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost 2019; 17:1253-1260. [PMID: 31179617 PMCID: PMC6852472 DOI: 10.1111/jth.14479] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/19/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Karyn Megy
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Kate Downes
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Ilenia Simeoni
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Loredana Bury
- Department of MedicineSection of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Joannella Morales
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Rutendo Mapeta
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | | | - Paul F. Bray
- Division of Hematology, and Program in Molecular MedicineUniversity of UtahSalt Lake CityUtah
| | - Anne C. Goodeve
- Haemostasis Research GroupDepartment of Infection, Immunity and Cardiovascular DiseaseFaculty of MedicineDentistry and HealthMedical SchoolUniversity of SheffieldSheffieldUK
| | - Paolo Gresele
- Department of MedicineSection of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Michele Lambert
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
- Division of HematologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Pieter Reitsma
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Willem H. Ouwehand
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | | |
Collapse
|
69
|
Ferraresi P, Balestra D, Guittard C, Buthiau D, Pan-Petesh B, Maestri I, Farah R, Pinotti M, Giansily-Blaizot M. Next-generation sequencing and recombinant expression characterized aberrant splicing mechanisms and provided correction strategies in factor VII deficiency. Haematologica 2019; 105:829-837. [PMID: 31273093 PMCID: PMC7049351 DOI: 10.3324/haematol.2019.217539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Despite the exhaustive screening of F7 gene exons and exon-intron boundaries and promoter region, a significant proportion of mutated alleles remains unidentified in patients with coagulation factor VII deficiency. Here, we applied next-generation sequencing to 13 FVII-deficient patients displaying genotype-phenotype discrepancies upon conventional sequencing, and identified six rare intronic variants. Computational analysis predicted splicing effects for three of them, which would strengthen (c.571+78G>A; c.806-329G>A) or create (c.572-392C>G) intronic 5′ splice sites (5′ss). In F7 minigene assays, the c.806-329G>A was ineffective while the c.571+78G>A change led to usage of the +79 cryptic 5′ss with only trace levels of correct transcripts (3% of wild-type), in accordance with factor VII activity levels in homozygotes (1-3% of normal). The c.572-392C>G change led to pseudo-exonization and frame-shift, but also substantial levels of correct transcripts (approx. 70%). However, this variant was associated with the common F7 polymorphic haplotype, predicted to further decrease factor VII levels; this provided some kind of explanation for the 10% factor VII levels in the homozygous patient. Intriguingly, the effect of the c.571+78G>A and c.572-392C>G changes, and particularly of the former (the most severe and well-represented in our cohort), was counteracted by antisense U7snRNA variants targeting the intronic 5′ss, thus demonstrating their pathogenic role. In conclusion, the combination of next-generation sequencing of the entire F7 gene with the minigene expression studies elucidated the molecular bases of factor VII deficiency in 10 of 13 patients, thus improving diagnosis and genetic counseling. It also provided a potential therapeutic approach based on antisense molecules that has been successfully exploited in other disorders.
Collapse
Affiliation(s)
- Paolo Ferraresi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Caroline Guittard
- Department of Biological Haematology, CHU Montpellier, Université Montpellier, Montpellier, France
| | - Delphine Buthiau
- Department of Biological Haematology, CHU Montpellier, Université Montpellier, Montpellier, France
| | | | - Iva Maestri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Roula Farah
- Department of Pediatrics, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Muriel Giansily-Blaizot
- Department of Biological Haematology, CHU Montpellier, Université Montpellier, Montpellier, France
| |
Collapse
|
70
|
Almazni I, Stapley R, Morgan NV. Inherited Thrombocytopenia: Update on Genes and Genetic Variants Which may be Associated With Bleeding. Front Cardiovasc Med 2019; 6:80. [PMID: 31275945 PMCID: PMC6593073 DOI: 10.3389/fcvm.2019.00080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Inherited thrombocytopenia (IT) is comprised of a group of hereditary disorders characterized by a reduced platelet count as the main feature, and often with abnormal platelet function, which can subsequently lead to impaired haemostasis. Inherited thrombocytopenia results from genetic mutations in genes implicated in megakaryocyte differentiation and/or platelet formation and clearance. The identification of the underlying causative gene of IT is challenging given the high degree of heterogeneity, but important due to the presence of various clinical presentations and prognosis, where some defects can lead to hematological malignancies. Traditional platelet function tests, clinical manifestations, and hematological parameters allow for an initial diagnosis. However, employing Next-Generation Sequencing (NGS), such as Whole Genome and Whole Exome Sequencing (WES) can be an efficient method for discovering causal genetic variants in both known and novel genes not previously implicated in IT. To date, 40 genes and their mutations have been implicated to cause many different forms of inherited thrombocytopenia. Nevertheless, despite this advancement in the diagnosis of IT, the molecular mechanism underlying IT in some patients remains unexplained. In this review, we will discuss the genetics of thrombocytopenia summarizing the recent advancement in investigation and diagnosis of IT using phenotypic approaches, high-throughput sequencing, targeted gene panels, and bioinformatics tools.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
71
|
Gomez K. New information on rare diseases ‐ how important is that for us? Br J Haematol 2019; 185:819-820. [DOI: 10.1111/bjh.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keith Gomez
- Katherine Dormandy Haemophilia Centre and Thrombosis Unit Royal Free London NHS Foundation Trust London UK
| |
Collapse
|
72
|
Nurden AT, Nurden P. High-throughput sequencing for rapid diagnosis of inherited platelet disorders: a case for a European consensus. Haematologica 2019; 103:6-8. [PMID: 29290630 DOI: 10.3324/haematol.2017.182295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alan T Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
73
|
Manderstedt E, Nilsson R, Lind-Halldén C, Ljung R, Astermark J, Halldén C. Targeted re-sequencing of F8, F9 and VWF: Characterization of Ion Torrent data and clinical implications for mutation screening. PLoS One 2019; 14:e0216179. [PMID: 31026269 PMCID: PMC6485758 DOI: 10.1371/journal.pone.0216179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations are not identified in ~5% of hemophilia A and 10–35% of type 1 VWD patients. The bleeding tendency also varies among patients carrying the same causative mutation, potentially indicating variants in additional genes modifying the phenotype that cannot be identified by routine single-gene analysis. The F8, F9 and VWF genes were analyzed in parallel using an AmpliSeq strategy and Ion Torrent sequencing. Targeting all exonic positions showed an average read depth of >2000X and coverage close to 100% in 24 male patients with known disease-causing mutations. Discrimination between reference alleles and alternative/indel alleles was adequate at a 25% frequency threshold. In F8, F9 and VWF there was an absolute majority of all reference alleles at allele frequencies >95% and the average alternative allele and indel frequencies never reached above 10% and 15%, respectively. In VWF, 4–5 regions showed lower reference allele frequencies; in two regions covered by the pseudogene close to the 25% cut-off for reference alleles. All known mutations, including indels, gross deletions and substitutions, were identified. Additional VWF variants were identified in three hemophilia patients. The presence of additional mutations in 2 out of 16 (12%) randomly selected hemophilia patients indicates a potential mutational contribution that may affect the disease phenotype and counseling in these patients. Parallel identification of disease-causing mutations in all three genes not only confirms the deficiency, but differentiates phenotypic overlaps and allows for correct genetic counseling.
Collapse
Affiliation(s)
- Eric Manderstedt
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Rosanna Nilsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
- * E-mail:
| | - Christina Lind-Halldén
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Rolf Ljung
- Department of Clinical Sciences–Pediatrics and Malmö Center for Thrombosis and Hemostasis, Skåne University Hospital, Malmö, Sweden
| | - Jan Astermark
- Department for Hematology Oncology and Radiation Physics, Center for Thrombosis and Hemostasis, Skåne University Hospital, Malmö, Sweden
| | - Christer Halldén
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
74
|
Simplifying the diagnosis of inherited platelet disorders? The new tools do not make it any easier. Blood 2019; 133:2478-2483. [PMID: 30858232 DOI: 10.1182/blood-2019-01-852350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022] Open
Abstract
The molecular causes of many inherited platelet disorders are being unraveled. Next-generation sequencing facilitates diagnosis in 30% to 50% of patients. However, interpretation of genetic variants is challenging and requires careful evaluation in the context of a patient's phenotype. Before detailed testing is initiated, the treating physician and patient should establish an understanding of why testing is being performed and discuss potential consequences, especially before testing for variants in genes associated with an increased risk for hematologic malignancies.
Collapse
|
75
|
Yun JW, Lee KO, Jung CW, Oh SY, Kim SH, Choi CW, Kim HJ. Hereditary platelet function disorder from RASGRP2 gene mutations encoding CalDAG-GEFI identified by whole-exome sequencing in a Korean woman with severe bleeding. Haematologica 2019; 104:e274-e276. [PMID: 30846498 DOI: 10.3324/haematol.2019.218487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jae Won Yun
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Ki-O Lee
- Samsung Biomedical Research Institute, Samsung Medical Center
| | - Chul Won Jung
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Chul Won Choi
- Division of Hematology and Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| |
Collapse
|
76
|
Bastida JM, Morais S, Palma-Barqueros V, Benito R, Bermejo N, Karkucak M, Trapero-Marugan M, Bohdan N, Pereira M, Marin-Quilez A, Oliveira J, Yucel Y, Santos R, Padilla J, Janusz K, Lau C, Martin-Izquierdo M, Couto E, Francisco Ruiz-Pividal J, Vicente V, Hernández-Rivas JM, González-Porras JR, Luisa Lozano M, Lima M, Rivera J. Identification of novel variants in ten patients with Hermansky-Pudlak syndrome by high-throughput sequencing. Ann Med 2019; 51:141-148. [PMID: 30990103 PMCID: PMC7857454 DOI: 10.1080/07853890.2019.1587498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Background: Hermansky-Pudlak syndrome (HPS) is a rare inherited platelet disorder characterized by bleeding diathesis, oculocutaneous albinism (OCA) and a myriad of often-serious clinical complications. Methods: We established the clinical and laboratory phenotype and genotype of six unrelated pedigrees comprising ten patients with clinical suspicion of HPS; including platelet aggregation, flow cytometry, platelet dense granule content, electron microscopy and high-throughput sequencing (HTS). Results: The clinical presentation showed significant heterogeneity and no clear phenotype-genotype correlations. HTS revealed two known and three novel disease-causing variants. The Spanish patients carried a homozygous p.Pro685Leufs17* deletion (n = 2) in HPS4, or the novel p.Arg822* homozygous variant (n = 1) in HPS3. In the case of two Turkish sisters, a novel missense homozygous HPS4 variant (p.Leu91Pro) was found. In two Portuguese families, genetic studies confirmed a previously reported nonsense variant (p.Gln103*) in DTNBP1 in three patients and a novel duplication (p.Leu22Argfs*33) in HPS6 in two unrelated patients. Conclusions: Our findings expand the mutational spectrum of HPS, which may help in investigating phenotype-genotype relationships and assist genetic counselling for affected individuals. This approach is a proof of principle that HTS can be considered and used in the first-line diagnosis of patients with biological and clinical manifestations suggestive of HPS. Key messages We established the relationships between the clinical and laboratory phenotype and genotype of six unrelated pedigrees comprising ten patients with clinical suspicion of HPS. Molecular analysis is useful in confirming the diagnosis and may offer some prognostic information that will aid in optimizing monitoring and surveillance for early detection of end-organ damage. This approach is a proof of principle that HTS can be considered and used in the first-line diagnosis of patients with biological and clinical manifestations suggestive of HPS.
Collapse
Affiliation(s)
- Jose María Bastida
- a Department of Hematology , University Hospital of Salamanca-IBSAL , Salamanca , Spain
| | - Sara Morais
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Veronica Palma-Barqueros
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Rocio Benito
- d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | - Nuria Bermejo
- e Department of Hematology , Hospital of San Pedro de Alcantara , Cáceres , Spain
| | - Mutlu Karkucak
- f Department of Medical Genetics , Sakarya University Training and Research Hospital , Sakarya , Turkey
| | - Maria Trapero-Marugan
- g Department of Hematology , University Hospital of Puerta de Hierro , Majadahonda , Spain
| | - Natalia Bohdan
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Mónica Pereira
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Ana Marin-Quilez
- d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | - Jorge Oliveira
- h Department of Molecular Genetics, Medical Center of Genetics Dr. Jacinto Magalhães, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Yusuf Yucel
- f Department of Medical Genetics , Sakarya University Training and Research Hospital , Sakarya , Turkey
| | - Rosario Santos
- h Department of Molecular Genetics, Medical Center of Genetics Dr. Jacinto Magalhães, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Jose Padilla
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Kamila Janusz
- d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | - Catarina Lau
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | | | - Eduarda Couto
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Juan Francisco Ruiz-Pividal
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Vicente Vicente
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Jesus Maria Hernández-Rivas
- a Department of Hematology , University Hospital of Salamanca-IBSAL , Salamanca , Spain.,d IBSAL, IBMCC, CIC, University of Salamanca-CSIC , Salamanca , Spain
| | | | - Maria Luisa Lozano
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| | - Margarida Lima
- b Department of Hematology, University Hospital of Porto-UMIB/ICBAS/UP , Porto , Portugal
| | - Jose Rivera
- c Department of Hematology and Oncology, University Hospital of Morales Meseguer, Centro Regional de Hemodonación, University of Murcia , Murcia , Spain
| |
Collapse
|
77
|
Gorski MM, Lecchi A, Femia EA, La Marca S, Cairo A, Pappalardo E, Lotta LA, Artoni A, Peyvandi F. Complications of whole-exome sequencing for causal gene discovery in primary platelet secretion defects. Haematologica 2019; 104:2084-2090. [PMID: 30819905 PMCID: PMC6886420 DOI: 10.3324/haematol.2018.204990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/22/2019] [Indexed: 01/24/2023] Open
Abstract
Primary platelet secretion defects constitute a heterogeneous group of functional defects characterized by reduced platelet granule secretion upon stimulation by different agonists. The clinical and laboratory heterogeneity of primary platelet secretion defects warrants a tailored approach. We performed a pilot study in order to develop DNA sequence analysis pipelines for gene discovery and to create a list of candidate causal genes for platelet secretion defects. Whole-exome sequencing analysis of 14 unrelated Italian patients with primary secretion defects and 16 controls was performed on Illumina HiSeq. Variant prioritization was carried out using two filtering approaches: identification of rare, potentially damaging variants in platelet candidate genes or by selecting singletons. To corroborate the results, exome sequencing was applied in a family in which platelet secretion defects and a bleeding diathesis were present. Platelet candidate gene analysis revealed gene defects in 10/14 patients, which included ADRA2A, ARHGAP1, DIAPH1, EXOC1, FCGR2A, ITPR1, LTBP1, PTPN7, PTPN12, PRKACG, PRKCD, RAP1GAP, STXBP5L, and VWF. The analysis of singletons identified additional gene defects in PLG and PHACTR2 in two other patients. The family analysis confirmed a missense variant p.D1144N in the STXBP5L gene and p.P83H in the KCNMB3 gene as potentially causal. In summary, exome sequencing revealed potential causal variants in 12 of 14 patients with primary platelet secretion defects, highlighting the limitations of the genomic approaches for causal gene identification in this heterogeneous clinical and laboratory phenotype.
Collapse
Affiliation(s)
- Marcin M Gorski
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan.,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| | - Anna Lecchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Eti A Femia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Silvia La Marca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Andrea Cairo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Emanuela Pappalardo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan.,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| | - Luca A Lotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Andrea Artoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan .,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| |
Collapse
|
78
|
Ghosh K, Patel P, Mishra K, Ghosh K. Inherited Thrombocytopenias: Combining High-Throughput Sequencing With Other Relevant Data. Clin Appl Thromb Hemost 2019; 25:1076029618820164. [PMID: 30808217 PMCID: PMC6714956 DOI: 10.1177/1076029618820164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kanjaksha Ghosh
- 1 Surat Raktadan Kendra & Research Centre, Surat, Gujarat, India
| | - Parizad Patel
- 1 Surat Raktadan Kendra & Research Centre, Surat, Gujarat, India
| | - Kanchan Mishra
- 1 Surat Raktadan Kendra & Research Centre, Surat, Gujarat, India
| | - Kinjalka Ghosh
- 2 Department of Clinical Biochemistry, Tata Cancer Hospital, Parel, Mumbai, India
| |
Collapse
|
79
|
Owaidah T, Saleh M, Baz B, Abdulaziz B, Alzahrani H, Tarawah A, Almusa A, AlNounou R, AbaAlkhail H, Al-Numair N, Altahan R, Abouelhoda M, Alamoudi T, Monies D, Jabaan A, Al Tassan N. Molecular yield of targeted sequencing for Glanzmann thrombasthenia patients. NPJ Genom Med 2019; 4:4. [PMID: 30792900 PMCID: PMC6375963 DOI: 10.1038/s41525-019-0079-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glanzmann thrombasthenia (GT) is a rare autosomal recessive bleeding disorder. Around 490 mutations in ITGA2B and ITGB3 genes were reported. We aimed to use targeted next-generation sequencing (NGS) to identify variants in patients with GT. We screened 72 individuals (including unaffected family members) using a panel of 393 genes (SHGP heme panel). Validation was done by Sanger sequencing and pathogenicity was predicted using multiple tools. In 83.5% of our cohort, 17 mutations were identified in ITGA2B and ITGB3 (including 6 that were not previously reported). In addition to variants in the two known genes, we found variants in ITGA2, VWF and F8. The SHGP heme panel can be used as a high-throughput molecular diagnostic assay to screen for mutations and variants in GT cases and carriers. Our findings expand the molecular landscape of GT and emphasize the robustness and usefulness of this panel.
Collapse
Affiliation(s)
- Tarek Owaidah
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mahasen Saleh
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Batoul Baz
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Basma Abdulaziz
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hazza Alzahrani
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Tarawah
- Medina Maternity and Children Hospital, Medina, Saudi Arabia
| | - Abdulrahman Almusa
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Randa AlNounou
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hala AbaAlkhail
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nouf Al-Numair
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Rahaf Altahan
- 1Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Abouelhoda
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Thamer Alamoudi
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Amjad Jabaan
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- 2Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,3Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
80
|
Gresele P, Bury L, Mezzasoma AM, Falcinelli E. Platelet function assays in diagnosis: an update. Expert Rev Hematol 2019; 12:29-46. [DOI: 10.1080/17474086.2019.1562333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Anna Maria Mezzasoma
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
81
|
Lordkipanidzé M, Hvas AM, Harrison P. Clinical Tests of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
82
|
Cattaneo M. Inherited Disorders of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
83
|
Andres O, König EM, Althaus K, Bakchoul T, Bugert P, Eber S, Knöfler R, Kunstmann E, Manukjan G, Meyer O, Strauß G, Streif W, Thiele T, Wiegering V, Klopocki E, Schulze H. Use of Targeted High-Throughput Sequencing for Genetic Classification of Patients with Bleeding Diathesis and Suspected Platelet Disorder. TH OPEN 2018; 2:e445-e454. [PMID: 31249973 PMCID: PMC6524924 DOI: 10.1055/s-0038-1676813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Inherited platelet disorders (IPD) form a rare and heterogeneous disease entity that is present in about 8% of patients with non-acquired bleeding diathesis. Identification of the defective cellular pathway is an important criterion for stratifying the patient's individual risk profile and for choosing personalized therapeutic options. While costs of high-throughput sequencing technologies have rapidly declined over the last decade, molecular genetic diagnosis of bleeding and platelet disorders is getting more and more suitable within the diagnostic algorithms. In this study, we developed, verified, and evaluated a targeted, panel-based next-generation sequencing approach comprising 59 genes associated with IPD for a cohort of 38 patients with a history of recurrent bleeding episodes and functionally suspected, but so far genetically undefined IPD. DNA samples from five patients with genetically defined IPD with disease-causing variants in
WAS
,
RBM8A
,
FERMT3
,
P2YR12
, and
MYH9
served as controls during the validation process. In 40% of 35 patients analyzed, we were able to finally detect 15 variants, eight of which were novel, in 11 genes,
ACTN1
,
AP3B1
,
GFI1B
,
HPS1
,
HPS4
,
HPS6
,
MPL
,
MYH9
,
TBXA2R
,
TPM4
, and
TUBB1
, and classified them according to current guidelines. Apart from seven variants of uncertain significance in 11% of patients, nine variants were classified as likely pathogenic or pathogenic providing a molecular diagnosis for 26% of patients. This report also emphasizes on potentials and pitfalls of this tool and prospectively proposes its rational implementation within the diagnostic algorithms of IPD.
Collapse
Affiliation(s)
- Oliver Andres
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Eva-Maria König
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Peter Bugert
- DRK-Blutspendedienst Baden-Württemberg-Hessen, Institute for Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Stefan Eber
- University Children's Hospital, Technical University Munich, Munich, Germany
| | - Ralf Knöfler
- Department of Pediatrics, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Meyer
- Institute for Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Strauß
- Department for Pediatric Oncology and Hematology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Werner Streif
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Thiele
- Institute for Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Verena Wiegering
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
84
|
van Dievoet MA, Jacquemin M, Van Calsteren K, Peerlinck K. A rare presentation of homozygous factor X deficiency in a pregnant patient: A case report and review of the literature. Haemophilia 2018; 25:e57-e59. [PMID: 30507056 DOI: 10.1111/hae.13654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 11/30/2022]
|
85
|
de Haan HG, van Hylckama Vlieg A, Lotta LA, Gorski MM, Bucciarelli P, Martinelli I, Baglin TP, Peyvandi F, Rosendaal FR. Targeted sequencing to identify novel genetic risk factors for deep vein thrombosis: a study of 734 genes. J Thromb Haemost 2018; 16:2432-2441. [PMID: 30168256 PMCID: PMC6467059 DOI: 10.1111/jth.14279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Indexed: 12/13/2022]
Abstract
Essentials Deep vein thrombosis (DVT) has a large unknown genetic component. We sequenced coding areas of 734 hemostasis-related genes in 899 DVT patients and 599 controls. Variants in F5, FGA-FGG, CYP4V2-KLKB1-F11, and ABO were associated with DVT risk. Associations in KLKB1 and F5 suggest a more complex genetic architecture than previously thought. SUMMARY: Background Although several genetic risk factors for deep vein thrombosis (DVT) are known, almost all related to hemostasis, a large genetic component remains unexplained. Objectives To identify novel genetic determinants by using targeted DNA sequencing. Patients/Methods We included 899 DVT patients and 599 controls from three case-control studies (DVT-Milan, Multiple Environmental and Genetic Assessment of risk factors for venous thrombosis [MEGA], and the Thrombophilia, Hypercoagulability and Environmental Risks in Venous Thromboembolism [THE-VTE] study) for sequencing of the coding regions of 734 genes involved in hemostasis or related pathways. We performed single-variant association tests for common variants (minor allele frequency [MAF] ≥ 1%) and gene-based tests for rare variants (MAF ≤ 1%), accounting for multiple testing by use of the false discovery rate (FDR). Results Sixty-two of 3617 common variants were associated with DVT risk (FDR < 0.10). Most of these mapped to F5,ABO,FGA-FGG, and CYP4V2-KLKB1-F11. The lead variant at F5 was rs6672595 (odds ratio [OR] 1.58, 95% confidence interval [CI] 1.29-1.92), in moderate linkage with the known variant rs4524. Reciprocal conditional analyses suggested that intronic variation might drive this association. We also observed a secondary association at the F11 region: missense KLKB1 variant rs3733402 remained associated conditional on known variants rs2039614 and rs2289252 (OR 1.36, 95% CI 1.10-1.69). Two novel variant associations were observed, in CBS and MASP1, but these were not replicated in the meta-analysis data from the International Network against Thrombosis (INVENT) consortium. There was no support for a burden of rare variants contributing to DVT risk (FDR > 0.2). Conclusions We confirmed associations between DVT and common variants in F5,ABO,FGA-FGG, and CYP4V2-KLKB1-F11, and observed secondary signals in F5 and CYP4V2-KLKB1-F11 that warrant replication and fine-mapping in larger studies.
Collapse
Affiliation(s)
- H G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - A van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - L A Lotta
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano and Fondazione Luigi Villa, Milan, Italy
| | - M M Gorski
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano and Fondazione Luigi Villa, Milan, Italy
| | - P Bucciarelli
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano and Fondazione Luigi Villa, Milan, Italy
| | - I Martinelli
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano and Fondazione Luigi Villa, Milan, Italy
| | - T P Baglin
- Cambridge Haemophilia and Thrombophilia Centre, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - F Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università degli Studi di Milano and Fondazione Luigi Villa, Milan, Italy
| | - F R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
86
|
Saes JL, Simons A, de Munnik SA, Nijziel MR, Blijlevens NMA, Jongmans MC, van der Reijden BA, Smit Y, Brons PP, van Heerde WL, Schols SEM. Whole exome sequencing in the diagnostic workup of patients with a bleeding diathesis. Haemophilia 2018; 25:127-135. [PMID: 30431218 DOI: 10.1111/hae.13638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Bleeding assessment tools and laboratory phenotyping often remain inconclusive in patients with a haemorrhagic diathesis. AIM To describe the phenotype and genetic profile of patients with a bleeding tendency. METHODS Whole exome sequencing (WES) was incorporated in the routine diagnostic pathway of patients with thrombocytopenia (n = 17), platelet function disorders (n = 19) and an unexplained bleeding tendency (n = 51). The analysis of a panel of 126 OMIM (Online Mendelian Inheritance in Man) genes involved in thrombosis and haemostasis was conducted, and if negative, further exome-wide analysis was performed if informed consent given. RESULTS Eighteen variants were detected in 15 patients from a total of 87 patients (17%). Causative variants were observed in MYH9 (two cases), SLFN14, P2RY12 and GP9. In addition, one case was considered solved due to combined carriership of F7 and F13A1 variants and one with combined carriership of F2, F8 and VWF, all variants related to secondary haemostasis protein aberrations. Two variants of uncertain significance (VUS) were found in two primary haemostasis genes: GFI1B and VWF. Eight patients were carriers of autosomal recessive disorders. Exome-wide analysis was performed in 54 cases and identified three variants in candidate genes. CONCLUSION Based on our findings, we conclude that performing WES at the end of the diagnostic trajectory can be of additive value to explain the complete bleeding phenotype in patients without a definite diagnosis after conventional laboratory tests. Discovery of combinations of (novel) genes that predispose to bleeding will increase the diagnostic yield in patients with an unexplained bleeding diathesis.
Collapse
Affiliation(s)
- Joline L Saes
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Hemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sonja A de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marten R Nijziel
- Department of Hematology, Catharina Hospital, Eindhoven, The Netherlands
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn C Jongmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Haematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Yolba Smit
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul P Brons
- Hemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands.,Department of Pediatric Hemato-Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Waander L van Heerde
- Hemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
| | - Saskia E M Schols
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Hemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
| |
Collapse
|
87
|
Heremans J, Freson K. High-throughput sequencing for diagnosing platelet disorders: lessons learned from exploring the causes of bleeding disorders. Int J Lab Hematol 2018; 40 Suppl 1:89-96. [PMID: 29741246 DOI: 10.1111/ijlh.12812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of disorders caused by multiple genetic defects. Obtaining a molecular diagnosis for IPD patients using a phenotype- and laboratory-based approach is complex, expensive, time-consuming, and not always successful. High-throughput sequencing (HTS) methods offer a genotype-based approach to facilitate molecular diagnostics. Such approaches are expected to decrease time to diagnosis, increase the diagnostic rate, and they have provided novel insights into the genotype-phenotype correlation of IPDs. Some of these approaches have also focused on the discovery of novel genes and unexpected molecular pathways which modulate megakaryocyte and platelet biology were discovered. A growing number of genetic defects underlying IPDs have been identified and we will here provide an overview of the diverse molecular players. Screening of these genes will deliver a genetic diagnosis for about 40%-50% of the IPDs patients and we will compare different HTS applications that have been developed. A brief focus on gene variant interpretation and classification in a diagnostic setting will be given. Although it is true that successes in diagnostics and gene discovery have been reached, a large fraction of patients still remains without a conclusive diagnosis. In these patients, the sum of non-diagnostic variants in known genes or in potential novel genes might only be proven informative in future studies with larger patient cohorts and by data sharing among the diverse genome medicine initiatives. Finally, we still do not understand the role of the non-coding genome space for IPDs.
Collapse
Affiliation(s)
- J Heremans
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - K Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
88
|
Johnson B, Doak R, Allsup D, Astwood E, Evans G, Grimley C, James B, Myers B, Stokley S, Thachil J, Wilde J, Williams M, Makris M, Lowe GC, Wallis Y, Daly ME, Morgan NV. A comprehensive targeted next-generation sequencing panel for genetic diagnosis of patients with suspected inherited thrombocytopenia. Res Pract Thromb Haemost 2018; 2:640-652. [PMID: 30349881 PMCID: PMC6178765 DOI: 10.1002/rth2.12151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet counts and often disproportionate bleeding with over 30 genes currently implicated. Previously the UK-GAPP study using whole exome sequencing (WES) identified a pathogenic variant in 19 of 47 (40%) patients of which 71% had variants in genes known to cause IT. AIMS To employ a targeted next-generation sequencing platform to improve efficiency of diagnostic testing and reduce overall costs. METHODS We have developed an IT-specific gene panel as a pre-screen for patients prior to WES using the Agilent SureSelectQXT transposon-based enrichment system. RESULTS Thirty-one patients were analyzed using the panel-based sequencing, of which; 10% (3/31) were identified with a classified pathogenic variant, 16% (5/31) were identified with a likely pathogenic variant, 51% (16/31) were identified with variants of unknown significance, and 23% (7/31) were identified with either no variant or a benign variant. DISCUSSION AND CONCLUSION Although requiring further clarification of the impact of the genetic variations, the application of an IT-specific next generation sequencing panel is an viable method of pre-screening patients for variants in known IT-causing genes prior to WES. With an added benefit of distinguishing IT from idiopathic thrombocytopenic purpura (ITP) and the potential to identify variants in genes known to have a predisposition to hematological malignancies, it could become a critical step in improving patient clinical management.
Collapse
Affiliation(s)
- Ben Johnson
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Rachel Doak
- West Midlands Regional Genetics LaboratoryBirmingham Women's HospitalBirminghamUK
| | - David Allsup
- Hull York Medical SchoolUniversity of HullHullUK
| | - Emma Astwood
- Nottingham Haemophilia CentreNottingham University HospitalNottinghamUK
| | - Gillian Evans
- Kent Haemophilia CentreKent & Canterbury HospitalCanterburyUK
| | - Charlotte Grimley
- Nottingham Haemophilia CentreNottingham University HospitalNottinghamUK
| | - Beki James
- Regional Centre for Paediatric HaematologyLeeds Children's HospitalLeedsUK
| | - Bethan Myers
- Department of HaematologyLincoln County HospitalLincolnUK
| | - Simone Stokley
- Nottingham Haemophilia CentreNottingham University HospitalNottinghamUK
| | - Jecko Thachil
- Department of HaematologyManchester Royal InfirmaryManchesterUK
| | - Jonathan Wilde
- Comprehensive Care Haemophilia CentreUniversity Hospitals NHS Foundation TrustBirminghamUK
| | - Mike Williams
- Department of HaematologyBirmingham Children's HospitalBirminghamUK
| | - Mike Makris
- Department of Infection, Immunity and Cardiovascular ScienceUniversity of Sheffield Medical SchoolUniversity of SheffieldSheffieldUK
| | - Gillian C. Lowe
- Comprehensive Care Haemophilia CentreUniversity Hospitals NHS Foundation TrustBirminghamUK
| | - Yvonne Wallis
- West Midlands Regional Genetics LaboratoryBirmingham Women's HospitalBirminghamUK
| | - Martina E. Daly
- Department of Infection, Immunity and Cardiovascular ScienceUniversity of Sheffield Medical SchoolUniversity of SheffieldSheffieldUK
| | - Neil V. Morgan
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
89
|
Wang Q, Cao L, Sheng G, Shen H, Ling J, Xie J, Ma Z, Yin J, Wang Z, Yu Z, Chen S, Zhao Y, Ruan C, Xia L, Jiang M. Application of High-Throughput Sequencing in the Diagnosis of Inherited Thrombocytopenia. Clin Appl Thromb Hemost 2018; 24:94S-103S. [PMID: 30103613 PMCID: PMC6714838 DOI: 10.1177/1076029618790696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inherited thrombocytopenia is a group of hereditary diseases with a reduction in platelet
count as the main clinical manifestation. Clinically, there is an urgent need for a
convenient and rapid diagnosis method. We introduced a high-throughput, next-generation
sequencing (NGS) platform into the routine diagnosis of patients with unexplained
thrombocytopenia and analyzed the gene sequencing results to evaluate the value of NGS
technology in the screening and diagnosis of inherited thrombocytopenia. From a cohort of
112 patients with thrombocytopenia, we screened 43 patients with hereditary features. For
the blood samples of these 43 patients, a gene sequencing platform for hemorrhagic and
thrombotic diseases comprising 89 genes was used to perform gene detection using NGS
technology. When we combined the screening results with clinical features and other
findings, 15 (34.9%) of 43patients were diagnosed with inherited thrombocytopenia. In
addition, 19 pathogenic variants, including 8 previously unreported variants, were
identified in these patients. Through the use of this detection platform, we expect to
establish a more effective diagnostic approach to such disorders.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Guangying Sheng
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hongjie Shen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jundan Xie
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jie Yin
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhaoyue Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziqiang Yu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Miao Jiang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
90
|
Balduini CL, Melazzini F. Research at the heart of hematology: thrombocytopenias and platelet function disorders. Haematologica 2018; 102:203-205. [PMID: 28143952 DOI: 10.3324/haematol.2016.158055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Carlo L Balduini
- Department of Medicine, Università of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Melazzini
- Department of Medicine, Università of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
91
|
Lee A, Poon MC. Inherited platelet functional disorders: General principles and practical aspects of management. Transfus Apher Sci 2018; 57:494-501. [PMID: 30031712 DOI: 10.1016/j.transci.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelets are a critical component for effecting hemostasis and wound healing. Disorders affecting any platelet pathway mediating adhesion, activation, aggregation and procoagulant surface exposure can result in a bleeding diathesis. Specific diagnosis even with advanced techniques which are unavailable to most centers is often difficult. Inherited platelet function disorders therefore represent a heterogeneous and complex collection of disorders with a spectrum of bleeding severity, from relatively mild (and easily missed or misdiagnosed) to severe bleeding phenotype with salient diagnostic features. We advocate the use of bleeding assessment tools to help identification of patients and more importantly for assessment of individual patient bleeding phenotype to guide management decisions for treating and preventing bleeding. The complex management of these patients is best coordinated in a multidisciplinary comprehensive care clinic setting expert in managing bleeding disorders and associated complications, with particular attention to the physical and psychosocial health of patients and their families. Depending on the bleeding phenotype, the location and severity of bleeding, and the nature of an invasive procedure, available treatment modalities range from conservative measures using local pressure, topical thrombin, fibrin sealant, antifibrinolytics etc. to the use of systemic haemostatics such as desmopressin (DDAVP), platelets and recombinant human activated factor VII (rFVIIa). This review will provide opinions on the practical aspects and general management of inherited platelet function disorders, with discussion on the mechanism of action, and the pros and cons of various hemostatic agents. Finally, the prospect of curative treatment for patients with severe bleeding phenotype refractory to available treatments and with poor quality of life will be briefly discussed.
Collapse
Affiliation(s)
- Adrienne Lee
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada; Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada.
| | - Man-Chiu Poon
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Pediatric, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada.
| |
Collapse
|
92
|
He X, Xiong Z, Shen N, Lu Y, Wang X. Performance of next-generation sequencing in the detection of large exon deletion in patients of haemophilia A. Haemophilia 2018; 24:e296-e300. [PMID: 30004153 DOI: 10.1111/hae.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Affiliation(s)
- X. He
- Department of Laboratory Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Z. Xiong
- Department of Laboratory Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - N. Shen
- Department of Laboratory Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Y. Lu
- Department of Laboratory Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - X. Wang
- Department of Laboratory Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| |
Collapse
|
93
|
Gresele P, Falcinelli E, Bury L. Laboratory diagnosis of clinically relevant platelet function disorders. Int J Lab Hematol 2018; 40 Suppl 1:34-45. [DOI: 10.1111/ijlh.12814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 10/25/2022]
Affiliation(s)
- P. Gresele
- Section of Internal and Cardiovascular Medicine; Department of Medicine; University of Perugia; Perugia Italy
| | - E. Falcinelli
- Section of Internal and Cardiovascular Medicine; Department of Medicine; University of Perugia; Perugia Italy
| | - L. Bury
- Section of Internal and Cardiovascular Medicine; Department of Medicine; University of Perugia; Perugia Italy
| |
Collapse
|
94
|
Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol 2018; 9:880. [PMID: 29760702 PMCID: PMC5937051 DOI: 10.3389/fimmu.2018.00880] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease defined by low platelet counts which presents with an increased bleeding risk. Several genetic risk factors (e.g., polymorphisms in immunity-related genes) predispose to ITP. Autoantibodies and cytotoxic CD8+ T cells (Tc) mediate the anti-platelet response leading to thrombocytopenia. Both effector arms enhance platelet clearance through phagocytosis by splenic macrophages or dendritic cells and by induction of apoptosis. Meanwhile, platelet production is inhibited by CD8+ Tc targeting megakaryocytes in the bone marrow. CD4+ T helper cells are important for B cell differentiation into autoantibody secreting plasma cells. Regulatory Tc are essential to secure immune tolerance, and reduced levels have been implicated in the development of ITP. Both Fcγ-receptor-dependent and -independent pathways are involved in the etiology of ITP. In this review, we present a simplified model for the pathogenesis of ITP, in which exposure of platelet surface antigens and a loss of tolerance are required for development of chronic anti-platelet responses. We also suggest that infections may comprise an important trigger for the development of auto-immunity against platelets in ITP. Post-translational modification of autoantigens has been firmly implicated in the development of autoimmune disorders like rheumatoid arthritis and type 1 diabetes. Based on these findings, we propose that post-translational modifications of platelet antigens may also contribute to the pathogenesis of ITP.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Maaike Rijkers
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - A J Gerard Jansen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
95
|
Incidence and risk factors for venous thromboembolism in patients with pretreated advanced pancreatic carcinoma. Oncotarget 2018; 9:16883-16890. [PMID: 29682191 PMCID: PMC5908292 DOI: 10.18632/oncotarget.24721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/28/2018] [Indexed: 01/05/2023] Open
Abstract
Patients with pancreatic carcinoma are at an increased risk of venous thromboembolism (VTE), which is a major cause of morbidity and mortality in various types of cancer. The aim of this study was to determine the incidence and clinical significance of VTE in patients with pancreatic carcinoma, and to identify biomarkers for the detection of VTE in these patients. The eligibility criteria were chemo-naïve patients with primary pancreatic carcinoma, an Eastern Cooperative Oncology Group performance status of 0–2, and adequate organ function. All patients were screened for VTE using compression ultrasonography and dynamic computed tomography. The primary endpoint was the incidence of VTE, which we hypothesized would be between 10.0–20.0% for symptomatic and asymptomatic patients combined. Associations between clinical presentation and VTE were evaluated. VTE-associated markers were also investigated for their role in predicting prognosis. In total, 103 patients met the eligibility criteria. The overall cumulative incidence rate of VTE in patients with previously untreated pancreatic carcinoma was 16.5%. VTE occurrence was strongly associated with elevated serum D-dimer, fibrin degradation product, thrombin/antithrombin III complex, and prothrombin fragment 1 + 2 levels. The median overall survival time of VTE-positive and VTE-negative patients was 427 and 515 days, respectively. Approximately one-sixth of patients with advanced pancreatic carcinoma experienced VTE, although most were asymptomatic. Measurement of serum D-dimer, fibrin degradation product, thrombin/antithrombin III complex, and prothrombin fragment 1 + 2 levels may be useful for the early detection of VTE in patients with advanced pancreatic carcinoma.
Collapse
|
96
|
Dunkley S, Lam JCM, John MJ, Wong RSM, Tran H, Yang R, Nair SC, Shima M, Street A, Srivastava A. Principles of haemophilia care: The Asia-Pacific perspective. Haemophilia 2018; 24:366-375. [DOI: 10.1111/hae.13425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2017] [Indexed: 01/08/2023]
Affiliation(s)
- S. Dunkley
- Haemophilia Treatment Centre; Royal Prince Alfred Hospital; Sydney NSW Australia
| | - J. C. M. Lam
- Department of Paediatric Subspecialties; KK Women's and Children's Hospital; Singapore Singapore
| | - M. J. John
- Department of Clinical Haematology; Christian Medical College; Ludhiana Punjab India
| | - R. S. M. Wong
- Department of Medicine & Therapeutics; Sir Y.K. Pao Centre for Cancer; Prince of Wales Hospital; The Chinese University of Hong Kong; Hong Kong Hong Kong
| | - H. Tran
- Ronald Sawers Haemophilia Centre; The Alfred Hospital Melbourne; Melbourne Vic Australia
| | - R. Yang
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Hospital of Blood Disease; Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin China
| | - S. C. Nair
- Department of Immunohematology & Transfusion Medicine; Christian Medical College; Vellore Tamil Nadu India
| | - M. Shima
- Department of Paediatrics; Nara Medical University; Kashihara Japan
| | - A. Street
- Department of Immunology and Pathology; Monash University; Melbourne Vic Australia
| | - A. Srivastava
- Department of Hematology; Christian Medical College; Vellore Tamil Nadu India
| | | |
Collapse
|
97
|
Fernández-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment. Curr Med Chem 2018; 25:404-432. [PMID: 28721829 PMCID: PMC5815091 DOI: 10.2174/0929867324666170718101946] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023]
Abstract
Approximately 25-50 million Americans, 30 million Europeans, and 8% of the Australian population have a rare disease. Rare diseases are thus a common problem for clinicians and account for enormous healthcare costs worldwide due to the difficulty of establishing a specific diagnosis. In this article, we review the milestones achieved in our understanding of rare diseases since the emergence of next-generation sequencing (NGS) technologies and analyze how these advances have influenced research and diagnosis. The first half of this review describes how NGS has changed diagnostic workflows and provided an unprecedented, simple way of discovering novel disease-associated genes. We focus particularly on metabolic and neurodevelopmental disorders. NGS has enabled cheap and rapid genetic diagnosis, highlighted the relevance of mosaic and de novo mutations, brought to light the wide phenotypic spectrum of most genes, detected digenic inheritance or the presence of more than one rare disease in the same patient, and paved the way for promising new therapies. In the second part of the review, we look at the limitations and challenges of NGS, including determination of variant causality, the loss of variants in coding and non-coding regions, and the detection of somatic mosaicism variants and epigenetic mutations, and discuss how these can be overcome in the near future.
Collapse
Affiliation(s)
- Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
98
|
Bermejo E, Alberto MF, Paul DS, Cook AA, Nurden P, Luceros AS, Nurden A, Bergmeier W. Marked bleeding diathesis in patients with platelet dysfunction due to a novel mutation in RASGRP2, encoding CalDAG-GEFI (p.Gly305Asp). Platelets 2018; 29:84-86. [PMID: 28726538 PMCID: PMC6492242 DOI: 10.1080/09537104.2017.1332759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
Congenital platelet function disorders are often the result of defects in critical signal transduction pathways required for platelet adhesion and clot formation. Mutations affecting RASGRP2, the gene encoding the Rap GTPase activator, CalDAG-GEFI, give rise to a novel, and rare, group of platelet signal transduction abnormalities. We here report platelet function studies for two brothers (P1 and P2) expressing a novel variant of RASGRP2, CalDAG-GEFI(p.Gly305Asp). P1 and P2 have a lifelong history of bleeding with severe epistaxis successfully treated with platelet transfusions or rFVIIa. Other bleedings include extended hemorrhage from minor wounds. Platelet counts and plasma coagulation were normal, as was αIIbβ3 and GPIb expression on the platelet surface. Aggregation of patients' platelets was significantly impaired in response to select agonists including ADP, epinephrine, collagen, and calcium ionophore A23187. Integrin αIIbβ3 activation and granule release were also impaired. CalDAG-GEFI protein expression was markedly reduced but not absent. Homology modeling places the Gly305Asp substitution at the GEF-Rap1 interface, suggesting that the mutant protein has very limited catalytic activity. In summary, we here describe a novel mutation in RASGRP2 that affects both expression and function of CalDAG-GEFI and that causes impaired platelet adhesive function and significant bleeding in humans.
Collapse
Affiliation(s)
- Emilse Bermejo
- Hematological Research Institute of the National Academy of Medicine of Buenos Aires, Hemostasis and Thrombosis Department, Buenos Aires, Argentina
| | - Maria F Alberto
- Hematological Research Institute of the National Academy of Medicine of Buenos Aires, Hemostasis and Thrombosis Department, Buenos Aires, Argentina
| | - David S Paul
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Aaron A Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Paquita Nurden
- Institut Hospitalo-Universitaire (IHU) LIRYC PTIB Hôpital Xavier Arnozan, Pessac, France
| | - Analia Sanchez Luceros
- Hematological Research Institute of the National Academy of Medicine of Buenos Aires, Hemostasis and Thrombosis Department, Buenos Aires, Argentina
| | - Alan Nurden
- Institut Hospitalo-Universitaire (IHU) LIRYC PTIB Hôpital Xavier Arnozan, Pessac, France
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
99
|
Romasko EJ, Devkota B, Biswas S, Jayaraman V, Rajagopalan R, Dulik MC, Thom CS, Choi J, Jairam S, Scarano MI, Krantz ID, Spinner NB, Conlin LK, Lambert MP. Utility and limitations of exome sequencing in the molecular diagnosis of pediatric inherited platelet disorders. Am J Hematol 2018; 93:8-16. [PMID: 28960434 DOI: 10.1002/ajh.24917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022]
Abstract
Inherited platelet disorders (IPD) are a heterogeneous group of rare disorders that affect platelet number and function and often predispose to other significant medical complications. In spite of the identification of over 50 IPD disease-associated genes, a molecular diagnosis is only identified in a minority (10%) of affected patients without a clinically suspected etiology. We studied a cohort of 21 pediatric patients with suspected IPDs by exome sequencing (ES) to: (1) examine the performance of the exome test for IPD genes, (2) determine if this exome-wide diagnostic test provided a higher diagnostic yield than has been previously reported, (3) to evaluate the frequency of variants of uncertain significance identified, and (4) to identify candidate variants for functional evaluation in patients with an uncertain or negative diagnosis. We established a high priority gene list of 53 genes, evaluated exome capture kit performance, and determined the coverage for these genes and disease-related variants. We identified likely disease causing variants in 5 of the 21 probands (23.8%) and variants of uncertain significance in 52% of patients studied. In conclusion, ES has the potential to molecularly diagnose causes of IPD, and to identify candidate genes for functional evaluation. Robust exome sequencing also requires that coverage of genes known to be associated with clinical findings of interest need to be carefully examined and supplemented if necessary. Clinicians who undertake ES should understand the limitations of the test and the full significance of results that may be returned.
Collapse
Affiliation(s)
- Edward J. Romasko
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Batsal Devkota
- Department of Biomedical and Health Informatics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Sawona Biswas
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Vijayakumar Jayaraman
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Ramakrishnan Rajagopalan
- Department of Biomedical and Health Informatics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Matthew C. Dulik
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Christopher S. Thom
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
| | - Jiwon Choi
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Sowmya Jairam
- Department of Pathology; Memorial Sloan Kettering Cancer Center; New York New York
| | | | - Ian D. Krantz
- Division of Human Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
| | - Nancy B. Spinner
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia Pennsylvania
| | - Laura K. Conlin
- Division of Genomic Diagnostics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia Pennsylvania
| | - Michele P. Lambert
- Department of Pediatrics; University of Pennsylvania School of Medicine, Philadelphia; Philadelphia Pennsylvania
- Division of Hematology; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
100
|
Kim S, Alsrhani A, Zafreen L, Khandekar G, Marlow FL, Abrams EW, Mullins MC, Jagadeeswaran P. G protein-coupled receptor gpr34l mutation affects thrombocyte function in zebrafish. Br J Haematol 2017; 180:412-419. [PMID: 29270984 DOI: 10.1111/bjh.15046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022]
Abstract
Haemostasis is a defence mechanism that has evolved to protect organisms from losing their circulating fluid. We have previously introduced zebrafish as a model to study the genetics of haemostasis to identify novel genes that play a role in haemostasis. Here, we identify a zebrafish mutant that showed prolonged time to occlusion (TTO) in the laser injury venous thrombosis assay. By linkage analysis and fine mapping, we found a mutation in the orphan G protein-coupled receptor 34 like gene (gpr34l) causing a change of Val to Glu in the third external loop of Gpr34l. We have shown that injection of zebrafish gpr34l RNA rescues the prolonged TTO defect. The thrombocytes from the mutant showed elevated levels of cAMP that supports the defective thrombocyte function. We also have demonstrated that knockdown of this gene by intravenous Vivo-Morpholino injections yielded a phenotype similar to the gpr34l mutation. These results suggest that the lack of functional Gpr34l leads to increased cAMP levels that result in defective thrombocyte aggregation.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Abdullah Alsrhani
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Lala Zafreen
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Gauri Khandekar
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Florence L Marlow
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliott W Abrams
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|