51
|
Overexpression of Hmga2 activates Igf2bp2 and remodels transcriptional program of Tet2-deficient stem cells in myeloid transformation. Oncogene 2021; 40:1531-1541. [PMID: 33452460 DOI: 10.1038/s41388-020-01629-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
High Mobility Group AT-hook 2 (HMGA2) is a chromatin modifier and its overexpression has been found in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Level of Hmga2 expression is fine-tuned by Lin28b-Let-7 axis and Polycomb Repressive Complex 2, in which deletion of Ezh2 leads to activation of Hmga2 expression in hematopoietic stem cells. To elucidate the mechanisms by which the overexpression of HMGA2 helps transformation of stem cells harboring a driver mutation of TET2, we generated an Hmga2-expressing Tet2-deficient mouse model showing the progressive phenotypes of MDS and AML. The overexpression of Hmga2 remodeled the transcriptional program of Tet2-deficient stem and progenitor cells, leading to the impaired differentiation of myeloid cells. Furthermore, Hmga2 was bound to a proximal region of Igf2bp2 oncogene, and activated its transcription, leading to enhancing self-renewal of Tet2-deficient stem cells that was suppressed by inhibition of the DNA binding of Hmga2. These combinatory effects on the transcriptional program and cellular function were not redundant to those in Tet2-deficient cells. The present results elucidate that Hmga2 targets key oncogenic pathways during the transformation and highlight the Hmga2-Igf2bp2 axis as a potential target for therapeutic intervention.
Collapse
|
52
|
Bandara M, Goonasekera H, Dissanayake V. Identification of Novel Insertions and Deletions in Haematopoietic Stem/Progenitor Cells in de novo Myelodysplastic Syndromes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:228-233. [PMID: 35178361 PMCID: PMC8800462 DOI: 10.22088/ijmcm.bums.10.3.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/11/2021] [Indexed: 11/03/2022]
Abstract
Myelodysplastic Syndromes (MDS) are clonal haematological stem cell disorders. The molecular basis of MDS is heterogeneous and the molecular mechanisms underlying biology of this complex disorder are not fully understood. Genetic variations (GVs) occur in about 90% of patients with MDS. It has been shown that in addition to the single nucleotide variations, insertions and deletions (indels) in the key genes that are known to drive MDS, could also play a role in pathogenesis of MDS. However, only a few genetic studies have analyzed indels in MDS. The present study reports indels of bone marrow (BM) derived CD34+ haematopoietic stem/progenitor cells of 20 newly diagnosed de novo MDS patients using next generation sequencing.A total of 88 indels (9 insertions and 79 deletions) across 28 genes were observed. The genes that showed more than five indels are BCOR (N=6), RAD21 (N=6), TP53 (N=8), ASXL1 (N=9), TET2 (N=9) and BCORL1 (N=10). Deletion in the BCORL1 gene (c.3957_3959delGGA, TGAG>TGAG/T) was the most recurrent deletion and was observed in 4/20 patients. The other recurrent deletions reported were EZH2 (W15X, N=2) and RAD21 (G274X, N=3). The recurrent insertions were detected in the FLT3 (E598DYVDFREYE, N=3) and in the NPM1 (L287LCX, N=3) genes. The findings of this study may have a diagnostic, prognostic and a therapeutic value for MDS after validation using a larger cohort.
Collapse
Affiliation(s)
- Manoj Bandara
- Department of Pre-Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka.
| | - Hemali Goonasekera
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
| | - Vajira Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.,Corresponding author: Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
| |
Collapse
|
53
|
Gonzalez-Lugo JD, Chakraborty S, Verma A, Shastri A. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2020; 58:56-65. [PMID: 33509444 DOI: 10.1053/j.seminhematol.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
Mutations in the group of epigenetic modifiers are the largest group of mutated genes in Myelodysplastic Syndromes (MDS) and are very frequently found in Acute Myeloid Leukemia (AML). Our advancements in the understanding of epigenetics in these diseases have helped develop groundbreaking therapeutics that have changed the treatment landscape of MDS and AML, significantly improving outcomes. In this review we describe the most common epigenetic aberrations in MDS and AML, and current treatments that target mutations in epigenetic modifiers, as well as novel treatment combinations, from standard therapies to investigational treatments.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Samarpana Chakraborty
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
54
|
Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev 2020; 48:100791. [PMID: 33423844 DOI: 10.1016/j.blre.2020.100791] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis with varying degrees of dysplasia and peripheral cytopenias. MDS are driven by structural chromosomal alterations and somatic mutations in neoplastic myeloid cells, which are supported by a tumorigenic and a proinflammatory marrow microenvironment. Current treatment strategies for lower-risk MDS focus on improving quality of life and cytopenias, while prolonging survival and delaying disease progression is the focus for higher-risk MDS. Several promising drugs are in the horizon, including the hypoxia-inducible factor stabilizer roxadustat, telomerase inhibitor imetelstat, oral hypomethylating agents (CC-486), TP53 modulators (APR-246 and ALRN-6924), and the anti-CD47 antibody magrolimab. Targeted therapies approved for acute myeloid leukemia treatment, such as isocitrate dehdyrogenase inhibitors and venetoclax, are also being studied for use in MDS. In this review, we provide a brief overview of pathogenesis and current treatment strategies in MDS followed by a discussion of newer agents that are under clinical investigation.
Collapse
|
55
|
IL3RA-Targeting Antibody-Drug Conjugate BAY-943 with a Kinesin Spindle Protein Inhibitor Payload Shows Efficacy in Preclinical Models of Hematologic Malignancies. Cancers (Basel) 2020; 12:cancers12113464. [PMID: 33233768 PMCID: PMC7709048 DOI: 10.3390/cancers12113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
IL3RA (CD123) is the alpha subunit of the interleukin 3 (IL-3) receptor, which regulates the proliferation, survival, and differentiation of hematopoietic cells. IL3RA is frequently expressed in acute myeloid leukemia (AML) and classical Hodgkin lymphoma (HL), presenting an opportunity to treat AML and HL with an IL3RA-directed antibody-drug conjugate (ADC). Here, we describe BAY-943 (IL3RA-ADC), a novel IL3RA-targeting ADC consisting of a humanized anti-IL3RA antibody conjugated to a potent proprietary kinesin spindle protein inhibitor (KSPi). In vitro, IL3RA-ADC showed potent and selective antiproliferative efficacy in a panel of IL3RA-expressing AML and HL cell lines. In vivo, IL3RA-ADC improved survival and reduced tumor burden in IL3RA-positive human AML cell line-derived (MOLM-13 and MV-4-11) as well as in patient-derived xenograft (PDX) models (AM7577 and AML11655) in mice. Furthermore, IL3RA-ADC induced complete tumor remission in 12 out of 13 mice in an IL3RA-positive HL cell line-derived xenograft model (HDLM-2). IL3RA-ADC was well-tolerated and showed no signs of thrombocytopenia, neutropenia, or liver toxicity in rats, or in cynomolgus monkeys when dosed up to 20 mg/kg. Overall, the preclinical results support the further development of BAY-943 as an innovative approach for the treatment of IL3RA-positive hematologic malignancies.
Collapse
|
56
|
Bauer M, Vaxevanis C, Heimer N, Al-Ali HK, Jaekel N, Bachmann M, Wickenhauser C, Seliger B. Expression, Regulation and Function of microRNA as Important Players in the Transition of MDS to Secondary AML and Their Cross Talk to RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21197140. [PMID: 32992663 PMCID: PMC7582632 DOI: 10.3390/ijms21197140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS), heterogeneous diseases of hematopoietic stem cells, exhibit a significant risk of progression to secondary acute myeloid leukemia (sAML) that are typically accompanied by MDS-related changes and therefore significantly differ to de novo acute myeloid leukemia (AML). Within these disorders, the spectrum of cytogenetic alterations and oncogenic mutations, the extent of a predisposing defective osteohematopoietic niche, and the irregularity of the tumor microenvironment is highly diverse. However, the exact underlying pathophysiological mechanisms resulting in hematopoietic failure in patients with MDS and sAML remain elusive. There is recent evidence that the post-transcriptional control of gene expression mediated by microRNAs (miRNAs), long noncoding RNAs, and/or RNA-binding proteins (RBPs) are key components in the pathogenic events of both diseases. In addition, an interplay between RBPs and miRNAs has been postulated in MDS and sAML. Although a plethora of miRNAs is aberrantly expressed in MDS and sAML, their expression pattern significantly depends on the cell type and on the molecular make-up of the sample, including chromosomal alterations and single nucleotide polymorphisms, which also reflects their role in disease progression and prediction. Decreased expression levels of miRNAs or RBPs preventing the maturation or inhibiting translation of genes involved in pathogenesis of both diseases were found. Therefore, this review will summarize the current knowledge regarding the heterogeneity of expression, function, and clinical relevance of miRNAs, its link to molecular abnormalities in MDS and sAML with specific focus on the interplay with RBPs, and the current treatment options. This information might improve the use of miRNAs and/or RBPs as prognostic markers and therapeutic targets for both malignancies.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Christoforos Vaxevanis
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
| | - Haifa Kathrin Al-Ali
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Nadja Jaekel
- Department of Hematology/Oncology, University Hospital Halle, 06112 Halle, Germany; (H.K.A.-A.); (N.J.)
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle 06112, Germany; (C.V.); (N.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-345-557-4054
| |
Collapse
|
57
|
Wan C, Wen J, Huang Y, Li H, Wu W, Xie Q, Liang X, Tang Z, Zhao W, Cheng P, Liu Z. Microarray analysis of differentially expressed microRNAs in myelodysplastic syndromes. Medicine (Baltimore) 2020; 99:e20904. [PMID: 32629683 PMCID: PMC7337584 DOI: 10.1097/md.0000000000020904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Our study aimed to analyze differential microRNA expression between myelodysplastic syndromes (MDS) and normal bone marrow, and to identify novel microRNAs relevant to MDS pathogenesis. METHODS MiRNA microarray analysis was used to profile microRNA expression levels in MDS and normal bone marrow. Quantitative real-time polymerase chain reaction was employed to verify differentially expressed microRNAs. RESULTS MiRNA microarray analysis showed 96 significantly upregulated (eg, miR-146a-5p, miR-151a-3p, miR-125b-5p) and 198 significantly downregulated (eg, miR-181a-2-3p, miR-124-3p, miR-550a-3p) microRNAs in MDS compared with normal bone marrow. The quantitative real-time polymerase chain reaction confirmed the microarray analysis: expression of six microRNAs (miR-155-5p, miR-146a-5p, miR-151a-3p, miR-221-3p, miR-125b-5p, and miR-10a-5p) was significantly higher in MDS, while 3 microRNAs (miR-181a-2-3p, miR-124-3p, and miR-550a-3p) were significantly downregulated in MDS. Bioinformatics analysis demonstrated that differentially expressed microRNAs might participate in MDS pathogenesis by regulating hematopoiesis, leukocyte migration, leukocyte apoptotic process, and hematopoietic cell lineage. CONCLUSIONS Our study indicates that differentially expressed microRNAs might play a key role in MDS pathogenesis by regulating potential relevant functional and signaling pathways. Targeting these microRNAs may provide new treatment modalities for MDS.
Collapse
Affiliation(s)
- Chengyao Wan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Jing Wen
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Ying Huang
- Department of Hematology, Hainan General Hospital, Haikou, Hainan
| | - Hongying Li
- Department of Hematology, The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Wenqi Wu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Zhongyuan Tang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Weihua Zhao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Peng Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| |
Collapse
|
58
|
Wang YH, Lin CC, Yao CY, Hsu CL, Hou HA, Tsai CH, Chou WC, Tien HF. A 4-gene leukemic stem cell score can independently predict the prognosis of myelodysplastic syndrome patients. Blood Adv 2020; 4:644-654. [PMID: 32078680 PMCID: PMC7042996 DOI: 10.1182/bloodadvances.2019001185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndrome (MDS) comprised a heterogeneous group of diseases. The prognosis of patients varies even in the same risk groups. Searching for novel prognostic markers is warranted. Leukemic stem cells (LSCs) are responsible for chemoresistance and relapse in leukemia. Recently, expressions of 17 genes related to stemness of LSCs were found to be associated with prognosis in acute myeloid leukemia patients. However, the clinical impact of LSC genes expressions in MDS, a disorder arising from hematopoietic stem cells, remains unclear. We analyzed expression profile of the 17 stemness-related genes in primary MDS patients and identified expression of 4 genes (LAPTM4B, NGFRAP1, EMP1, and CPXM1) were significantly correlated with overall survival (OS). We constructed an LSC4 scoring system based on the weighted sums of the expression of 4 genes and explored its clinical implications in MDS patients. Higher LSC4 scores were associated with higher revised International Prognostic Scoring System (IPSS-R) scores, complex cytogenetics, and mutations in RUNX1, ASXL1, and TP53. High-score patients had significantly shorter OS and leukemia-free survival (LFS), which was also confirmed in 2 independent validation cohorts. Subgroup analysis revealed the prognostic significance of LSC4 scores for OS remained valid across IPSS-R lower- and higher-risk groups. Furthermore, higher LSC4 score was an independent adverse risk factor for OS and LFS in multivariate analysis. In summary, LSC4 score can independently predict prognosis in MDS patients irrespective of IPSS-R risks and may be used to guide the treatment of MDS patients, especially lower-risk group in whom usually only supportive treatment is given.
Collapse
Affiliation(s)
- Yu-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; and
- Division of Hematology, Department of Internal Medicine
| | - Chien-Chin Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; and
- Division of Hematology, Department of Internal Medicine
- Department of Laboratory Medicine, and
| | - Chi-Yuan Yao
- Division of Hematology, Department of Internal Medicine
- Department of Laboratory Medicine, and
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine
| | | | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine
- Department of Laboratory Medicine, and
| | | |
Collapse
|
59
|
Winter S, Shoaie S, Kordasti S, Platzbecker U. Integrating the "Immunome" in the Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design. J Clin Oncol 2020; 38:1723-1735. [PMID: 32058844 DOI: 10.1200/jco.19.01823] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and often include a dysregulation and dysfunction of the immune system. In the context of population aging, MDS incidence is set to increase substantially, with exponential increases in health care costs, given the limited and expensive treatment options for these patients. Treatment selection is mainly based on calculated risk categories according to a Revised International Prognostic Scoring System (IPSS-R). However, although IPSS-R is an excellent predictor of disease progression, it is an ineffective predictor of response to disease-modifying therapies. Redressing these unmet needs, the "immunome" is a key, multifaceted component in the initiation and overall response against malignant cells in MDS, and the current omission of immune status monitoring may in part explain the insufficiencies of current prognostic stratification methods. Nevertheless, integrating these and other recent molecular advances into clinical practice proves difficult. This review highlights the complexity of immune dysregulation in MDS pathophysiology and the fine balance between smoldering inflammation, adaptive immunity, and somatic mutations in promoting or suppressing malignant clones. We review the existing knowledge and discuss how state-of-the-art immune monitoring strategies could potentially permit novel patient substratification, thereby empowering practical predictions of response to treatment in MDS. We propose novel multicenter studies, which are needed to achieve this goal.
Collapse
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom.,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Shahram Kordasti
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.,Haematology Department, Guy's Hospital, London, United Kingdom
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), partner site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.,Haematology Department, Guy's Hospital, London, United Kingdom.,Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University of Leipzig Medical Center, Leipzig, Germany.,German MDS Study Group (G-MDS), Leipzig, Germany
| |
Collapse
|
60
|
Boada M, Echarte L, Guillermo C, Diaz L, Touriño C, Grille S. 5-Azacytidine restores interleukin 6-increased production in mesenchymal stromal cells from myelodysplastic patients. Hematol Transfus Cell Ther 2020; 43:35-42. [PMID: 32008984 PMCID: PMC7910176 DOI: 10.1016/j.htct.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological diseases. In addition to defects in hematologic progenitor and stem cells, dysfunctions in the bone marrow microenvironment (BMM) participate in the MDS pathogenesis. Furthermore, the immune response is deregulated by the pro-inflammatory response prevailing in low-risk MDS, while immunosuppression predominates in high-risk MDS. Mesenchymal stromal cells (MSC), part of the BMM, are characterized by plastic adherent growth and multipotentiality. They exhibit immunomodulatory properties and sustain hematopoiesis. There is conflicting evidence regarding their status in MDS. The aim of this study was to characterize MDS-MSC and evaluate the effect of 5-Azacytidine. METHODS The MSC from MDS patients and controls were cultured and characterized according to the International Society of Cell Therapy recommendations. Immunomodulatory properties were assessed by studying the MSD cytokine production, using the cytometric bead array. We evaluated the effect of 5-Azacytidine on the MSC cytokine production. RESULTS We included 35 MDS patients and 22 controls. The MSC from patients and controls were cultured and characterized. The MSC from patients showed morphological differences, but there were no differences in immunophenotype or multipotentiality. The interleukin 6 (IL-6) was the main MSC secreted cytokine. The MDS-MSC produced higher levels of IL-6, IL-17, interferon gamma, or interferon γ (INF-γ), and tumor necrosis factor alpha (TNF-α). The in vitro 5-Azacytidine treatment induced a significant decrease in the IL-6 production by MDS-MSC. CONCLUSIONS The MDS-MSC show an increased production of pro-inflammatory cytokines. The in vitro treatment with 5-Azacytidine lead to a significant reduction in the IL-6 production by the MDS-MSC, restoring the IL-6 levels to those found in controls. The MSC produced inflammatory cytokines involved in the MDS pathogenesis, representing a potential future therapeutic target. Moreover, 5-Azacytidine may have a stromal effect, modulating the immune response in MDS.
Collapse
Affiliation(s)
- Matilde Boada
- Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Lourdes Echarte
- Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Guillermo
- Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lilián Diaz
- Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cristina Touriño
- Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sofía Grille
- Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
61
|
Mitchell K, Steidl U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036251. [PMID: 31451539 DOI: 10.1101/cshperspect.a036251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapies targeting cell-surface antigens in acute myeloid leukemia (AML) have been tested over the past 20 years with limited improvement in overall survival. Recent advances in the understanding of AML pathogenesis support therapeutic targeting of leukemia stem cells as the most promising avenue toward a cure. In this review, we provide an overview of the evolving leukemia stem cell (LSC) model, including evidence of the cell of origin, cellular and molecular disease architecture, and source of relapse in AML. In addition, we explore limitations of current targeted strategies utilized in AML and describe the various immunophenotypic antigens that have been proposed as LSC-directed therapeutic targets. We draw lessons from current approaches as well as from the (pre)-LSC model to suggest criteria that immunophenotypic targets should meet for more specific and effective elimination of disease-initiating clones, highlighting in detail a few targets that we suggest fit these criteria most completely.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
62
|
Duan S, Jia Y, Xie D, Xiao S, Zhou C, Zeng F. Selection of novel human scFvs against cancer antigen IL1RAP by phage and yeast surface display technology. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1738957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Shixin Duan
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Yanrong Jia
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Shenglin Xiao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| | - Cheng Zhou
- Affiliated Hospital of Hebei University, Baoding, Hebei, P.R. China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, P.R. China
| |
Collapse
|
63
|
Pang Y, Geng S, Zhang H, Lai P, Liao P, Zeng L, Lu Z, Weng J, Du X. Phenotype of mesenchymal stem cells from patients with myelodyplastic syndrome maybe partly modulated by decitabine. Oncol Lett 2019; 18:4457-4466. [PMID: 31611955 PMCID: PMC6781515 DOI: 10.3892/ol.2019.10788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from myelodysplastic syndromes (MDSs) have been demonstrated to accelerate the progression of MDS. However, whether the phenotype of MSCs derived from MDS (MDS-MSCs) may be reversed and serve as a potential target for the treatment of MDS remains unclear. The present study investigated the functional alternations of MDS-MSCs following in vitro decitabine-treatment. Primary MSCs were cultured from the bone marrow aspirates of 28 patients with MDS. The impact on the growth of MDS-MSCs treated with decitabine was analyzed using the MTT assay. Changes in the gene expression levels of runt related transcription factor 2 (RUNX2), Sp7 transcription factor (SP7), cyclin dependent kinase inhibitor 1A (CDKN1A) and CD274 in MDS-MSCs following treatment with decitabine were analyzed by reverse transcription-quantitative polymerase chain reaction. The effects of decitabine on apoptosis and the cell cycle were examined using flow cytometry. The effect of decitabine on the immune regulation of MDS-MSCs was tested by the co-culture of MSCs with activated T cells in vitro. The results revealed that proliferation, apoptosis and the mRNA expression levels of RUNX2 and SP7 in MDS-MSCs did not significantly change following treatment with decitabine compared with control MDS-MSCs. However, treatment with decitabine resulted in a smaller population of cells in the G1 phase and an increase in the number of cells in the G2/M phase compared with control MDS-MSCs. This change was associated with decreased expression of CDKN1A in cells treated with decitabine compared with control cells. Notably, the ability of MDS-MSCs treated with decitabine to induce the differentiation of T cells into regulatory T cells was significantly reduced compared with control MDS-MSCs. This was associated with a decreased expression of CD274 in MDS-MSCs treated with decitabine compared with control MDS-MSCs. In conclusion, the phenotype of MSCs derived from patients with MDS was partially reversed by treatment with decitabine, presenting a potential therapeutic intervention.
Collapse
Affiliation(s)
- Yanbin Pang
- The Second School of Clinical Medical, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Hongyang Zhang
- The Second School of Clinical Medical, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Pengjun Liao
- Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Zesheng Lu
- Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Jianyu Weng
- The Second School of Clinical Medical, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, South China University of Technology School of Medicine, Guangzhou, Guangdong 5100065, P.R. China
| | - Xin Du
- The Second School of Clinical Medical, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Hematology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China.,Department of Hematology, South China University of Technology School of Medicine, Guangzhou, Guangdong 5100065, P.R. China
| |
Collapse
|
64
|
Bereshchenko O, Lo Re O, Nikulenkov F, Flamini S, Kotaskova J, Mazza T, Le Pannérer MM, Buschbeck M, Giallongo C, Palumbo G, Li Volti G, Pazienza V, Cervinek L, Riccardi C, Krejci L, Pospisilova S, Stewart AF, Vinciguerra M. Deficiency and haploinsufficiency of histone macroH2A1.1 in mice recapitulate hematopoietic defects of human myelodysplastic syndrome. Clin Epigenetics 2019; 11:121. [PMID: 31439048 PMCID: PMC6704528 DOI: 10.1186/s13148-019-0724-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Epigenetic regulation is important in hematopoiesis, but the involvement of histone variants is poorly understood. Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis. MacroH2A1.1 is a histone H2A variant that negatively correlates with the self-renewal capacity of embryonic, adult, and cancer stem cells. MacroH2A1.1 is a target of the frequent U2AF1 S34F mutation in MDS. The role of macroH2A1.1 in hematopoiesis is unclear. RESULTS MacroH2A1.1 mRNA levels are significantly decreased in patients with low-risk MDS presenting with chromosomal 5q deletion and myeloid cytopenias and tend to be decreased in MDS patients carrying the U2AF1 S34F mutation. Using an innovative mouse allele lacking the macroH2A1.1 alternatively spliced exon, we investigated whether macroH2A1.1 regulates HSC homeostasis and differentiation. The lack of macroH2A1.1 decreased while macroH2A1.1 haploinsufficiency increased HSC frequency upon irradiation. Moreover, bone marrow transplantation experiments showed that both deficiency and haploinsufficiency of macroH2A1.1 resulted in enhanced HSC differentiation along the myeloid lineage. Finally, RNA-sequencing analysis implicated macroH2A1.1-mediated regulation of ribosomal gene expression in HSC homeostasis. CONCLUSIONS Together, our findings suggest a new epigenetic process contributing to hematopoiesis regulation. By combining clinical data with a discrete mutant mouse model and in vitro studies of human and mouse cells, we identify macroH2A1.1 as a key player in the cellular and molecular features of MDS. These data justify the exploration of macroH2A1.1 and associated proteins as therapeutic targets in hematological malignancies.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Department of Medicine, Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy.
| | - Oriana Lo Re
- International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fedor Nikulenkov
- International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sara Flamini
- Department of Medicine, Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Jana Kotaskova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics unit, San Giovanni Rotondo, Italy
| | - Marguerite-Marie Le Pannérer
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Campus ICO-Germans Trias I Pujol, Badalona, Spain
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukemia Research Institute (IJC), Universitat Autònoma de Barcelona, Campus ICO-Germans Trias I Pujol, Badalona, Spain
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - Cesarina Giallongo
- Division of Hematology, A.O.U. Policlinico-OVE, University of Catania, Catania, Italy
| | - Giuseppe Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valerio Pazienza
- Gastroenterology unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Libor Cervinek
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - Carlo Riccardi
- Department of Medicine, Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Lumir Krejci
- International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czech Republic
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Manlio Vinciguerra
- International Clinical Research Center, St'Anne University Hospital, Brno, Czech Republic.
| |
Collapse
|
65
|
Sundaravel S, Kuo WL, Jeong JJ, Choudhary GS, Gordon-Mitchell S, Liu H, Bhagat TD, McGraw KL, Gurbuxani S, List AF, Verma A, Wickrema A. Loss of Function of DOCK4 in Myelodysplastic Syndromes Stem Cells is Restored by Inhibitors of DOCK4 Signaling Networks. Clin Cancer Res 2019; 25:5638-5649. [PMID: 31308061 DOI: 10.1158/1078-0432.ccr-19-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Myelodysplastic syndromes (MDS) with deletion of chromosome 7q/7 [-7/(del)7q MDS] is associated with worse outcomes and needs novel insights into pathogenesis. Reduced expression of signaling protein dedicator of cytokinesis 4 (DOCK4) in patients with -7/(del)7q MDS leads to a block in hematopoietic stem cell (HSC) differentiation. Identification of targetable signaling networks downstream of DOCK4 will provide means to restore hematopoietic differentiation in MDS.Experimental Design: We utilized phosphoproteomics approaches to identify signaling proteins perturbed as a result of reduced expression of DOCK4 in human HSCs and tested their functional significance in primary model systems. RESULTS We demonstrate that reduced levels of DOCK4 lead to increased global tyrosine phosphorylation of proteins in primary human HSCs. LYN kinase and phosphatases INPP5D (SHIP1) and PTPN6 (SHP1) displayed greatest levels of tyrosine phosphorylation when DOCK4 expression levels were reduced using DOCK4-specific siRNA. Our data also found that increased phosphorylation of SHIP1 and SHP1 phosphatases were due to LYN kinase targeting these phosphatases as substrates. Increased migration and impediment of HSC differentiation were consequences of these signaling alterations. Pharmacologic inhibition of SHP1 reversed these functional aberrations in HSCs expressing low DOCK4 levels. In addition, differentiation block seen in DOCK4 haplo-insufficient [-7/(del)7q] MDS was rescued by inhibition of SHP1 phosphatase. CONCLUSIONS LYN kinase and phosphatases SHP1 and SHIP1 are perturbed when DOCK4 expression levels are low. Inhibition of SHP1 promotes erythroid differentiation in healthy HSCs and in -7/(del)7q MDS samples with low DOCK4 expression. Inhibitors of LYN, SHP1 and SHIP1 also abrogated increased migratory properties in HSCs expressing reduced levels of DOCK4.
Collapse
Affiliation(s)
- Sriram Sundaravel
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Wen-Liang Kuo
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Jong Jin Jeong
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Gaurav S Choudhary
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Hui Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Sandeep Gurbuxani
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | | - Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
66
|
Kaner JD, Thibaud S, Jasra S, Wang Y, Janakiram M, Sharma A, Sridharan A, Elias H, Polineni R, Assal A, Weiss L, Braunschweig I, Steidl U, Pradhan K, Shastri A, Chaitowitz M, Zingman B, Will B, Mantzaris I, Verma A. HIV portends a poor prognosis in myelodysplastic syndromes. Leuk Lymphoma 2019; 60:3529-3535. [DOI: 10.1080/10428194.2019.1633631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Justin D. Kaner
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Santiago Thibaud
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Sakshi Jasra
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Yanhua Wang
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Murali Janakiram
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anjali Sharma
- Division of Infectious Diseases, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ashwin Sridharan
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Harold Elias
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Rahul Polineni
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Amer Assal
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Louis Weiss
- Division of Infectious Diseases, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ira Braunschweig
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Kith Pradhan
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Mark Chaitowitz
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Barry Zingman
- Division of Infectious Diseases, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Britta Will
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ioannis Mantzaris
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
67
|
Bataller A, Montalban-Bravo G, Soltysiak KA, Garcia-Manero G. The role of TGFβ in hematopoiesis and myeloid disorders. Leukemia 2019; 33:1076-1089. [PMID: 30816330 PMCID: PMC11789621 DOI: 10.1038/s41375-019-0420-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
The role of transforming growth factor-β (TGFβ) signaling in embryological development and tissue homeostasis has been thoroughly characterized. Its canonical downstream cascade is well known, even though its true complexity and other non-canonical pathways are still being explored. TGFβ signaling has been described as an important pathway involved in carcinogenesis and cancer progression. In the hematopoietic compartment, the TGFβ pathway is an important regulator of proliferation and differentiation of different cell types and has been implicated in the pathogenesis of a diverse variety of bone marrow disorders. Due to its importance in hematological diseases, novel inhibitors of this pathway are being developed against a number of hematopoietic disorders, including myelodysplastic syndromes (MDS). In this review, we provide an overview of the TGFβ pathway, focusing on its role in hematopoiesis and impact on myeloid disorders. We will discuss therapeutic interventions with promising results against MDS.
Collapse
Affiliation(s)
- Alex Bataller
- Hematology Department, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Kelly A Soltysiak
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
68
|
Müller-Thomas C, Tüchler H, Rudelius M, Schneider H, Pfefferkorn S, Götze KS. Serum Vitamin D Levels in Patients with Myelodysplastic Syndromes: A Retrospective Single-Center Analysis. Acta Haematol 2019; 141:225-231. [PMID: 30965326 DOI: 10.1159/000496014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS There is growing evidence supporting the role of innate immune deregulation and inflammation in the pathogenesis of myelodysplastic syndromes (MDS). Vitamin D (VD) is known to be involved in various immune and epigenetic processes. This analysis aimed to evaluate serum VD levels in patients with MDS and to analyze associations between serum VD levels and disease characteristics. METHODS Serum levels of 25-hydroxyvitamin D3 (25(OH)-D3), the major form of VD in human serum, were measured by chemiluminescence immunoassay in 62 unselected patients with MDS. Associations between serum 25(OH)-D3 levels and disease characteristics were analyzed using Kendall's tau and two-sided p values. RESULTS The median serum 25(OH)-D3 level was markedly reduced (17.5 ng/mL). Patients with lower-risk disease features had lower serum 25(OH)-D3 levels than patients with higher-risk disease features with regard to medullary blast counts (16 vs. 31 ng/mL, p < 0.001), the revised international prognostic scoring system (13 vs. 30.5 ng/mL, p = 0.001), and blood counts. CONCLUSIONS We show that patients with lower-risk disease characteristics exhibit lower serum VD levels than patients with higher-risk disease characteristics. Whether these findings might reflect innate immune deregulation has to be investigated in further studies.
Collapse
Affiliation(s)
- Catharina Müller-Thomas
- Department of Medicine III, Hematology and Oncology, Technische Universität München, Munich, Germany,
| | - Heinz Tüchler
- Ludwig Boltzmann Institute for Leukemia Research, Vienna, Austria
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Heike Schneider
- Institute of Clinical Chemistry und Pathobiochemistry, Technische Universität München, Munich, Germany
| | - Sabrina Pfefferkorn
- Department of Medicine III, Hematology and Oncology, Technische Universität München, Munich, Germany
| | - Katharina S Götze
- Department of Medicine III, Hematology and Oncology, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
69
|
Leukemia Stem Cells in the Pathogenesis, Progression, and Treatment of Acute Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:95-128. [DOI: 10.1007/978-981-13-7342-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
70
|
Chen J, Kao YR, Sun D, Todorova TI, Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A, Steidl U. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med 2018; 25:103-110. [PMID: 30510255 PMCID: PMC6436966 DOI: 10.1038/s41591-018-0267-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/23/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yun-Ruei Kao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daqian Sun
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Stem Cell Isolation and Xenotransplantation Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Reynolds
- Genomics Core Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swathi-Rao Narayanagari
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Stem Cell Isolation and Xenotransplantation Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine (Oncology), Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine (Oncology), Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA. .,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine (Oncology), Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY, USA. .,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
71
|
Abstract
SIGNIFICANCE The long-term hematopoietic stem cell (LT-HSC) demonstrates characteristics of self-renewal and the ability to manage expansion of the hematopoietic compartment while maintaining the capacity for differentiation into hematopoietic stem/progenitor cell (HSPC) and terminal subpopulations. Deregulation of the HSPC redox environment results in loss of signaling that normally controls HSPC fate, leading to a loss of HSPC function and exhaustion. The characteristics of HSPC exhaustion via redox stress closely mirror phenotypic traits of hematopoietic malignancies and the leukemic stem cell (LSC). These facets elucidate the HSC/LSC redox environment as a druggable target and a growing area of cancer research. Recent Advances: Although myelosuppression and exhaustion of the hematopoietic niche are detrimental side effects of classical chemotherapies, new agents that modify the HSPC/LSC redox environment have demonstrated the potential for protection of normal HSPC function while inducing cytotoxicity within malignant populations. CRITICAL ISSUES New therapies must preserve, or only slightly disturb normal HSPC redox balance and function, while simultaneously altering the malignant cellular redox state. The cascade nature of redox damage makes this a critical and delicate line for the development of a redox-based therapeutic index. FUTURE DIRECTIONS Recent evidence demonstrates the potential for redox-based therapies to impact metabolic and epigenetic factors that could contribute to initial LSC transformation. This is balanced by the development of therapies that protect HSPC function. This pushes toward therapies that may alter the HSC/LSC redox state but lead to initiation cell fate signaling lost in malignant transformation while protecting normal HSPC function. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Dustin Carroll
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky , Lexington, Kentucky
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
72
|
Steensma DP. Clinical consequences of clonal hematopoiesis of indeterminate potential. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:264-269. [PMID: 30504320 PMCID: PMC6245996 DOI: 10.1182/asheducation-2018.1.264] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Clonally restricted hematopoiesis is a common aging-associated biological state that predisposes to subsequent development of a hematological malignancy or cardiovascular death. Clonal expansion driven by leukemia-associated somatic mutations, such as DNMT3A, ASXL1, or TET2, is best characterized, but oligoclonality can also emerge without recognized leukemia-driver mutations, perhaps as a result of stochastic neutral drift. Murine models provide compelling evidence that a major mechanism of increased cardiovascular mortality in the context of clonal hematopoiesis is accelerated atherogenesis driven by inflammasome-mediated endothelial injury, resulting from proinflammatory interactions between endothelium and macrophages derived from circulating clonal monocytes. Altered inflammation likely influences other biological processes as well. The rate of development of overt neoplasia in patients with clonal hematopoiesis of indeterminate potential (CHIP), as currently defined, is 0.5% to 1% per year. Contributing factors to clonal progression other than acquisition of secondary mutations in hematopoietic cells (ie, stronger leukemia drivers) are incompletely understood. Disordered endogenous immunity in the context of increased proliferative pressure, short telomeres leading to chromosomal instability, an unhealthy marrow microenvironment that favors expansion of clonal stem cells and acquisition of new mutations while failing to support healthy hematopoiesis, and aging-associated changes in hematopoietic stem cells, including altered DNA damage response, an altered transcriptional program, and consequences of epigenetic alterations, are all potential contributors to clonal progression. Clinical management of patients with CHIP includes monitoring for hematological changes and reduction of modifiable cardiovascular risk factors; eventually, it will also likely include anti-inflammatory therapies and targeted approaches to prune emergent dangerous clones.
Collapse
Affiliation(s)
- David P Steensma
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
73
|
Steensma DP. Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv 2018; 2:3404-3410. [PMID: 30482770 PMCID: PMC6258914 DOI: 10.1182/bloodadvances.2018020222] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023] Open
Abstract
Clonally restricted hematopoiesis is a common aging-associated biological state that predisposes to subsequent development of a hematological malignancy or cardiovascular death. Clonal expansion driven by leukemia-associated somatic mutations, such as DNMT3A, ASXL1, or TET2, is best characterized, but oligoclonality can also emerge without recognized leukemia-driver mutations, perhaps as a result of stochastic neutral drift. Murine models provide compelling evidence that a major mechanism of increased cardiovascular mortality in the context of clonal hematopoiesis is accelerated atherogenesis driven by inflammasome-mediated endothelial injury, resulting from proinflammatory interactions between endothelium and macrophages derived from circulating clonal monocytes. Altered inflammation likely influences other biological processes as well. The rate of development of overt neoplasia in patients with clonal hematopoiesis of indeterminate potential (CHIP), as currently defined, is 0.5% to 1% per year. Contributing factors to clonal progression other than acquisition of secondary mutations in hematopoietic cells (ie, stronger leukemia drivers) are incompletely understood. Disordered endogenous immunity in the context of increased proliferative pressure, short telomeres leading to chromosomal instability, an unhealthy marrow microenvironment that favors expansion of clonal stem cells and acquisition of new mutations while failing to support healthy hematopoiesis, and aging-associated changes in hematopoietic stem cells, including altered DNA damage response, an altered transcriptional program, and consequences of epigenetic alterations, are all potential contributors to clonal progression. Clinical management of patients with CHIP includes monitoring for hematological changes and reduction of modifiable cardiovascular risk factors; eventually, it will also likely include anti-inflammatory therapies and targeted approaches to prune emergent dangerous clones.
Collapse
Affiliation(s)
- David P Steensma
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
74
|
Shastri A, Choudhary G, Teixeira M, Gordon-Mitchell S, Ramachandra N, Bernard L, Bhattacharyya S, Lopez R, Pradhan K, Giricz O, Ravipati G, Wong LF, Cole S, Bhagat TD, Feld J, Dhar Y, Bartenstein M, Thiruthuvanathan VJ, Wickrema A, Ye BH, Frank DA, Pellagatti A, Boultwood J, Zhou T, Kim Y, MacLeod AR, Epling-Burnette PK, Ye M, McCoon P, Woessner R, Steidl U, Will B, Verma A. Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. J Clin Invest 2018; 128:5479-5488. [PMID: 30252677 DOI: 10.1172/jci120156] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/20/2018] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Transcriptomic analysis of stem and progenitor populations in MDS and AML demonstrated overexpression of STAT3 that was validated in an independent cohort. STAT3 overexpression was predictive of a shorter survival and worse clinical features in a large MDS cohort. High STAT3 expression signature in MDS CD34+ cells was similar to known preleukemic gene signatures. Functionally, STAT3 inhibition by a clinical, antisense oligonucleotide, AZD9150, led to reduced viability and increased apoptosis in leukemic cell lines. AZD9150 was rapidly incorporated by primary MDS/AML stem and progenitor cells and led to increased hematopoietic differentiation. STAT3 knockdown also impaired leukemic growth in vivo and led to decreased expression of MCL1 and other oncogenic genes in malignant cells. These studies demonstrate that STAT3 is an adverse prognostic factor in MDS/AML and provide a preclinical rationale for studies using AZD9150 in these diseases.
Collapse
Affiliation(s)
- Aditi Shastri
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | - Lumie Bernard
- Albert Einstein College of Medicine, New York, New York, USA
| | | | - Robert Lopez
- Albert Einstein College of Medicine, New York, New York, USA
| | - Kith Pradhan
- Albert Einstein College of Medicine, New York, New York, USA
| | - Orsolya Giricz
- Albert Einstein College of Medicine, New York, New York, USA
| | | | - Li-Fan Wong
- Albert Einstein College of Medicine, New York, New York, USA
| | - Sally Cole
- Albert Einstein College of Medicine, New York, New York, USA
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, New York, New York, USA
| | - Jonathan Feld
- Albert Einstein College of Medicine, New York, New York, USA
| | - Yosman Dhar
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | - B Hilda Ye
- Albert Einstein College of Medicine, New York, New York, USA
| | - David A Frank
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford Biomedical Research Centre Haematology Theme, Oxford, United Kingdom
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford Biomedical Research Centre Haematology Theme, Oxford, United Kingdom
| | - Tianyuan Zhou
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Youngsoo Kim
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | | | - Minwei Ye
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | | - Ulrich Steidl
- Albert Einstein College of Medicine, New York, New York, USA
| | - Britta Will
- Albert Einstein College of Medicine, New York, New York, USA
| | - Amit Verma
- Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
75
|
SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell 2018; 23:355-369.e9. [PMID: 30146412 DOI: 10.1016/j.stem.2018.07.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 01/27/2023]
Abstract
Myelodysplastic syndrome (MDS), a largely incurable hematological malignancy, is derived from aberrant clonal hematopoietic stem/progenitor cells (HSPCs) that persist after conventional therapies. Defining the mechanisms underlying MDS HSPC maintenance is critical for developing MDS therapy. The deacetylase SIRT1 regulates stem cell proliferation, survival, and self-renewal by deacetylating downstream proteins. Here we show that SIRT1 protein levels were downregulated in MDS HSPCs. Genetic or pharmacological activation of SIRT1 inhibited MDS HSPC functions, whereas SIRT1 deficiency enhanced MDS HSPC self-renewal. Mechanistically, the inhibitory effects of SIRT1 were dependent on TET2, a safeguard against HSPC transformation. SIRT1 deacetylated TET2 at conserved lysine residues in its catalytic domain, enhancing TET2 activity. Our genome-wide analysis identified cancer-related genes regulated by the SIRT1/TET2 axis. SIRT1 activation also inhibited functions of MDS HSPCs from patients with TET2 heterozygous mutations. Altogether, our results indicate that restoring TET2 function through SIRT1 activation represents a promising means to target MDS HSPCs.
Collapse
|
76
|
Ivy KS, Brent Ferrell P. Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes. Curr Hematol Malig Rep 2018; 13:244-255. [PMID: 29934935 PMCID: PMC6560359 DOI: 10.1007/s11899-018-0463-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Immune dysregulation is a defining feature of myelodysplastic syndromes (MDS). Recently, several studies have further defined the complex role of immune alterations within MDS. Herein, we will summarize some of these findings and discuss the therapeutic strategies currently in development. RECENT FINDINGS Immune alterations in MDS are complex, heterogeneous, and intertwined with clonal hematopoiesis and stromal cell dysfunction. Inflammation in MDS proceeds as a vicious cycle, mediated in large part by secreted factors, which induce cell death and activate innate immune signaling. Therapeutic targeting of this variable immune dysregulation has led to modest responses thus far, but incorporation of the growing repertoire of immunotherapy brings new potential for improved outcomes. The immune milieu is variable across the spectrum of MDS subtypes, with a changing balance of inflammatory and suppressive cellular forces from low- to high-risk disease.
Collapse
Affiliation(s)
- Kathryn S Ivy
- Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
77
|
Shi M, Dong X, Huo L, Wei X, Wang F, Sun K. The Potential Roles and Advantages of Single Cell Sequencing in the Diagnosis and Treatment of Hematological Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:119-133. [DOI: 10.1007/978-981-13-0502-3_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
78
|
Mitchell K, Barreyro L, Todorova TI, Taylor SJ, Antony-Debré I, Narayanagari SR, Carvajal LA, Leite J, Piperdi Z, Pendurti G, Mantzaris I, Paietta E, Verma A, Gritsman K, Steidl U. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med 2018; 215:1709-1727. [PMID: 29773641 PMCID: PMC5987926 DOI: 10.1084/jem.20180147] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
The surface molecule interleukin-1 receptor accessory protein (IL1RAP) is consistently overexpressed across multiple genetic subtypes of acute myeloid leukemia (AML) and other myeloid malignancies, including at the stem cell level, and is emerging as a novel therapeutic target. However, the cell-intrinsic functions of IL1RAP in AML cells are largely unknown. Here, we show that targeting of IL1RAP via RNA interference, genetic deletion, or antibodies inhibits AML pathogenesis in vitro and in vivo, without perturbing healthy hematopoietic function or viability. Furthermore, we found that the role of IL1RAP is not restricted to the IL-1 receptor pathway, but that IL1RAP physically interacts with and mediates signaling and pro-proliferative effects through FLT3 and c-KIT, two receptor tyrosine kinases with known key roles in AML pathogenesis. Our study provides a new mechanistic basis for the efficacy of IL1RAP targeting in AML and reveals a novel role for this protein in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Laura Barreyro
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Samuel J Taylor
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Luis A Carvajal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Joana Leite
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Zubair Piperdi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Gopichand Pendurti
- Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ioannis Mantzaris
- Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Elisabeth Paietta
- Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY
- Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY
- Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY
- Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
79
|
Ostendorf BN, Flenner E, Flörcken A, Westermann J. Phenotypic characterization of aberrant stem and progenitor cell populations in myelodysplastic syndromes. PLoS One 2018; 13:e0197823. [PMID: 29799854 PMCID: PMC5969762 DOI: 10.1371/journal.pone.0197823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/09/2018] [Indexed: 01/04/2023] Open
Abstract
Recent reports have revealed myelodysplastic syndromes (MDS) to arise from cancer stem cells phenotypically similar to physiological hematopoietic stem cells. Myelodysplastic hematopoiesis maintains a hierarchical organization, but the proportion of several hematopoietic compartments is skewed and multiple surface markers are aberrantly expressed. These aberrant antigen expression patterns hold diagnostic and therapeutic promise. However, eradication of MDS requires targeting of early myelodysplasia propagating stem cells. This warrants an exact assessment of the differentiation stage at which aberrant expression occurs in transformed hematopoiesis. Here, we report results on the prospective and extensive dissection of the hematopoietic hierarchy in 20 patients with either low-risk MDS or MDS with excess blasts and compare it to hematopoiesis in patients with non-malignancy-associated cytopenia or B cell lymphoma without bone marrow infiltration. We found patients with MDS with excess blasts to exhibit characteristic expansions of specific immature progenitor compartments. We also identified the aberrant expression of several markers including ALDH, CLL-1, CD44, and CD47 to be specific features of hematopoiesis in MDS with excess blasts. We show that amongst these, aberrant CLL-1 expression manifested at the early uncommitted hematopoietic stem cell level, suggesting a potential role as a therapeutic target.
Collapse
Affiliation(s)
- Benjamin N. Ostendorf
- Department of Hematology, Oncology, and Tumor Immunology, Charité –Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- Labor Berlin Charité Vivantes GmbH, Berlin, Germany
- * E-mail: (BNO); (JW)
| | - Eva Flenner
- Department of Hematology, Oncology, and Tumor Immunology, Charité –Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- Labor Berlin Charité Vivantes GmbH, Berlin, Germany
| | - Anne Flörcken
- Department of Hematology, Oncology, and Tumor Immunology, Charité –Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- Labor Berlin Charité Vivantes GmbH, Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology, and Tumor Immunology, Charité –Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
- Labor Berlin Charité Vivantes GmbH, Berlin, Germany
- * E-mail: (BNO); (JW)
| |
Collapse
|
80
|
Mani R, Goswami S, Gopalakrishnan B, Ramaswamy R, Wasmuth R, Tran M, Mo X, Gordon A, Bucci D, Lucas DM, Mims A, Brooks C, Dorrance A, Walker A, Blum W, Byrd JC, Lozanski G, Vasu S, Muthusamy N. The interleukin-3 receptor CD123 targeted SL-401 mediates potent cytotoxic activity against CD34 +CD123 + cells from acute myeloid leukemia/myelodysplastic syndrome patients and healthy donors. Haematologica 2018; 103:1288-1297. [PMID: 29773600 PMCID: PMC6068035 DOI: 10.3324/haematol.2018.188193] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
Diseases with clonal hematopoiesis such as myelodysplastic syndrome and acute myeloid leukemia have high rates of relapse. Only a small subset of acute myeloid leukemia patients are cured with chemotherapy alone. Relapse in these diseases occurs at least in part due to the failure to eradicate leukemic stem cells or hematopoietic stem cells in myelodysplastic syndrome. CD123, the alpha chain of the interleukin-3 receptor heterodimer, is expressed on the majority of leukemic stem cells and myelodysplastic syndrome hematopoietic stem cells and in 80% of acute myeloid leukemia. Here, we report indiscriminate killing of CD123+ normal and acute myeloid leukemia / myelodysplastic syndrome cells by SL-401, a diphtheria toxin interleukin-3 fusion protein. SL-401 induced cytotoxicity of CD123+ primary cells/blasts from acute myeloid leukemia and myelodysplastic syndrome patients but not CD123− lymphoid cells. Importantly, SL-401 was highly active even in cells expressing low levels of CD123, with minimal effect on modulation of the CD123 target in acute myeloid leukemia. SL-401 significantly prolonged survival of leukemic mice in acute myeloid leukemia patient-derived xenograft mouse models. In addition to primary samples, studies on normal cord blood and healthy marrow show that SL-401 has activity against normal hematopoietic progenitors. These findings indicate potential use of SL-401 as a “bridge-to-transplant” before allogeneic hematopoietic cell transplantation in acute myeloid leukemia / myelodysplastic syndrome patients.
Collapse
Affiliation(s)
- Rajeswaran Mani
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Swagata Goswami
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Rahul Ramaswamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ronni Wasmuth
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Minh Tran
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Amber Gordon
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Donna Bucci
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David M Lucas
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice Mims
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Adrienne Dorrance
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Alison Walker
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - William Blum
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John C Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Gerard Lozanski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sumithira Vasu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA .,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
81
|
Geyh S, Rodríguez-Paredes M, Jäger P, Koch A, Bormann F, Gutekunst J, Zilkens C, Germing U, Kobbe G, Lyko F, Haas R, Schroeder T. Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica 2018; 103:1462-1471. [PMID: 29773599 PMCID: PMC6119130 DOI: 10.3324/haematol.2017.186734] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells are involved in the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia, but the underlying mechanisms are incompletely understood. To further characterize the pathological phenotype we performed RNA sequencing of mesenchymal stromal cells from patients with myelodysplastic syndromes and acute myeloid leukemia and found a specific molecular signature of genes commonly deregulated in these disorders. Pathway analysis showed a strong enrichment of genes related to osteogenesis, senescence, inflammation and inhibitory cytokines, thereby reflecting the structural and functional deficits of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia on a molecular level. Further analysis identified transforming growth factor β1 as the most probable extrinsic trigger factor for this altered gene expression. Following exposure to transforming growth factor β1, healthy mesenchymal stromal cells developed functional deficits and adopted a phenotype reminiscent of that observed in patient-derived stromal cells. These suppressive effects of transforming growth factor β1 on stromal cell functionality were abrogated by SD-208, an established inhibitor of transforming growth factor β receptor signaling. Blockade of transforming growth factor β signaling by SD-208 also restored the osteogenic differentiation capacity of patient-derived stromal cells, thus confirming the role of transforming growth factor β1 in the bone marrow microenvironment of patients with myelodysplastic syndromes and acute myeloid leukemia. Our findings establish transforming growth factor β1 as a relevant trigger causing functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia and identify SD-208 as a candidate to revert these effects.
Collapse
Affiliation(s)
- Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Manuel Rodríguez-Paredes
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany.,Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Felix Bormann
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Zilkens
- Department of Orthopedic Surgery, University of Duesseldorf, Medical Faculty, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Germany
| |
Collapse
|
82
|
Li Y, Cheng J, Li Y, Jiang Y, Ma J, Li Q, Pang T. CXCL8 is associated with the recurrence of patients with acute myeloid leukemia and cell proliferation in leukemia cell lines. Biochem Biophys Res Commun 2018; 499:524-530. [DOI: 10.1016/j.bbrc.2018.03.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/14/2022]
|
83
|
Tasian SK, Bornhäuser M, Rutella S. Targeting Leukemia Stem Cells in the Bone Marrow Niche. Biomedicines 2018; 6:biomedicines6010022. [PMID: 29466292 PMCID: PMC5874679 DOI: 10.3390/biomedicines6010022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/06/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023] Open
Abstract
Abstract: The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic.
Collapse
Affiliation(s)
- Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden 01069, Germany.
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
84
|
Povinelli BJ, Rodriguez-Meira A, Mead AJ. Single cell analysis of normal and leukemic hematopoiesis. Mol Aspects Med 2018; 59:85-94. [PMID: 28863981 PMCID: PMC5771467 DOI: 10.1016/j.mam.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023]
Abstract
The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application.
Collapse
Affiliation(s)
- Benjamin J Povinelli
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alba Rodriguez-Meira
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam J Mead
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom.
| |
Collapse
|
85
|
Ruppenthal S, Kleiner H, Nolte F, Fabarius A, Hofmann WK, Nowak D, Seifarth W. Increased separase activity and occurrence of centrosome aberrations concur with transformation of MDS. PLoS One 2018; 13:e0191734. [PMID: 29370237 PMCID: PMC5784974 DOI: 10.1371/journal.pone.0191734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/10/2018] [Indexed: 01/15/2023] Open
Abstract
ESPL1/separase, a cysteine endopeptidase, is a key player in centrosome duplication and mitotic sister chromatid separation. Aberrant expression and/or altered separase proteolytic activity are associated with centrosome amplification, aneuploidy, tumorigenesis and disease progression. Since centrosome alterations are a common and early detectable feature in patients with myelodysplastic syndrome (MDS) and cytogenetic aberrations play an important role in disease risk stratification, we examined separase activity on single cell level in 67 bone marrow samples obtained from patients with MDS, secondary acute myeloid leukemia (sAML), de novo acute myeloid leukemia (AML) and healthy controls by a flow cytometric separase activity assay. The separase activity distribution (SAD) value, a calculated measure for the occurrence of cells with prominent separase activity within the analyzed sample, was tested for correlation with the centrosome, karyotype and gene mutation status. We found higher SAD values in bone marrow cells of sAML patients than in corresponding cells of MDS patients. This concurred with an increased incidence of aberrant centrosome phenotypes in sAML vs. MDS samples. No correlation was found between SAD values and the karyotype/gene mutation status. During follow-up of four MDS patients we observed increasing SAD values after transformation to sAML, in two patients SAD values decreased during azacitidine therapy. Cell culture experiments employing MDS-L cells as an in vitro model of MDS revealed that treatment with rigosertib, a PLK1 inhibitor and therapeutic drug known to induce G2/M arrest, results in decreased SAD values. In conclusion, the appearance of cells with unusual high separase activity levels, as indicated by increased SAD values, concurs with the transformation of MDS to sAML and may reflect separase dysregulation potentially contributing to clonal evolution during MDS progression. Separase activity measurement may therefore be useful as a novel additional molecular marker for disease monitoring.
Collapse
Affiliation(s)
- Sabrina Ruppenthal
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| | - Helga Kleiner
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
86
|
Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol 2018; 15:219-233. [PMID: 29311715 DOI: 10.1038/nrclinonc.2017.197] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several haematological malignancies, including multiple myeloma (MM) and acute myeloid leukaemia (AML), have well-defined precursor states that precede the development of overt cancer. MM is almost always preceded by monoclonal gammopathy of undetermined significance (MGUS), and at least a quarter of all patients with myelodysplastic syndromes (MDS) have disease that evolves into AML. In turn, MDS are frequently anteceded by clonal haematopoiesis of indeterminate potential (CHIP). The acquisition of additional genetic and epigenetic alterations over time clearly influences the increasingly unstable and aggressive behaviour of neoplastic haematopoietic clones; however, perturbations in the bone-marrow microenvironment are increasingly recognized to have key roles in initiating and supporting oncogenesis. In this Review, we focus on the concept that the haematopoietic neoplasia-microenvironment relationship is an intimate rapport between two partners, provide an overview of the evidence supporting a role for the bone-marrow niche in promoting neoplasia, and discuss the potential for niche-specific therapeutic targets.
Collapse
Affiliation(s)
- Irene M Ghobrial
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Alexandre Detappe
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Kenneth C Anderson
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - David P Steensma
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
87
|
The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications. Blood 2017; 129:1617-1626. [PMID: 28159735 DOI: 10.1182/blood-2016-11-696070] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Similar to their healthy counterpart, malignant hematopoietic stem cells in myeloid malignancies, such as myeloproliferative neoplasms, myelodysplastic syndromes, and acute myeloid leukemia, reside in a highly complex and dynamic cellular microenvironment in the bone marrow. This environment provides key regulatory signals for and tightly controls cardinal features of hematopoietic stem cells (HSCs), including self-renewal, quiescence, differentiation, and migration. These features are essential to maintaining cellular homeostasis and blood regeneration throughout life. A large number of studies have extensively addressed the composition of the bone marrow niche in mouse models, as well as the cellular and molecular communication modalities at play under both normal and pathogenic situations. Although instrumental to interrogating the complex composition of the HSC niche and dissecting the niche remodeling processes that appear to actively contribute to leukemogenesis, these models may not fully recapitulate the human system due to immunophenotypic, architectural, and functional inter-species variability. This review summarizes several aspects related to the human hematopoietic niche: (1) its anatomical structure, composition, and function in normal hematopoiesis; (2) its alteration and functional relevance in the context of chronic and acute myeloid malignancies; (3) age-related niche changes and their suspected impact on hematopoiesis; (4) ongoing efforts to develop new models to study niche-leukemic cell interaction in human myeloid malignancies; and finally, (5) how the knowledge gained into leukemic stem cell (LSC) niche dependencies might be exploited to devise novel therapeutic strategies that aim at disrupting essential niche-LSC interactions or improve the regenerative ability of the disease-associated hematopoietic niche.
Collapse
|