51
|
Anti-Cancer Activity of Catechin against A549 Lung Carcinoma Cells by Induction of Cyclin Kinase Inhibitor p21 and Suppression of Cyclin E1 and P–AKT. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Catechin is one of the major polyphenols in teas, beans, and berry fruits. A number of studies have confirmed that catechins extract possesses health benefits in the prevention of various chronic diseases. In this study, the anti-cancer activity and mechanism of catechin against non-small cell lung cancer A549 cells were investigated. The inhibitory rate of catechin on the proliferation of A549 cells reached 19.76% at a concentration of 600 μmol·L−1 with 24 h incubation. The results demonstrated that catechin inhibits A549 cells by increasing the expressions of p21 and p27 in the cancer cells. Furthermore, the catechin treatment inhibited the expressions of cyclin E1 and phosphorylation of protein kinase (P–AKT) in a dose-dependent manner, which also contributed to the inhibition of cancer cell proliferation. Therefore, the results of this study indicated that catechin can effectively inhibit the proliferation of A549 cells through regulating its cell cycle arrest or indirectly via the p21 signaling pathway. It would provide important information for developing catechin and catechin-rich functional food or co-therapy for antitumor purposes.
Collapse
|
52
|
BommaReddy RR, Patel R, Smalley T, Acevedo-Duncan M. Effects of Atypical Protein Kinase C Inhibitor (DNDA) on Lung Cancer Proliferation and Migration by PKC-ι/FAK Ubiquitination Through the Cbl-b Pathway. Onco Targets Ther 2020; 13:1661-1676. [PMID: 32158232 PMCID: PMC7047975 DOI: 10.2147/ott.s224866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
Purpose The options for treating lung cancers are limited, as diagnosis typically occurs during the late stages of the disease. There is a dire need to develop aPKC (atypical Protein Kinase C) inhibitors due to aPKC overexpression and contributions to lung cancer malignancies. In this study, we investigate the role of atypical PKCs (aPKCs) in cell proliferation and migration in lung cancer cell lines and the effect of the novel aPKC inhibitor DNDA (3,4-amino-2,7 napthalene disulfonic acid). Methods The normal and lung cancer cells were treated with various concentrations of DNDA. We used a WST assay to determine lung cell viability, then analyzed cell apoptosis through Annexin V/PI staining and flow cytometry. Immunoprecipitation determined the proteins' associations, and Western blot allowed testing of the expression of interest proteins. We also employed the UbiTest to identify the ubiquitination of the FAK. The scratch and transwell assays measured cell migration and invasion of lung cancer cells. Results Our data from cell viability and flow cytometry showed a significant reduction in cell proliferation and induction of apoptosis with DNDA treatment in lung cancer cells, as well as no toxic effect on normal BEAS-2B lung cells. Western blot results showed that the phosphorylation of PKC-iota and phosphorylation of FAK decreased in A549 lung cancer cells upon DNDA treatment. Immunoprecipitation (IP) data revealed an association of PKC-ι with FAK and FAK with Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b). UbiTest results suggest that PKC-ι regulates FAK cleavage through its ubiquitination by Cbl-b, thereby inhibiting A549 lung cancer cells' migration. This was evident from scratch, invasion, and migration assays. Conclusion Our study data suggest that DNDA inhibits cell proliferation and induces apoptosis in lung cancer cells. Moreover, DNDA inhibit A549 lung cancer cells' migration by PKC- ι/FAK ubiquitination via Cbl-b.
Collapse
Affiliation(s)
| | - Rekha Patel
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Tracess Smalley
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | | |
Collapse
|
53
|
Noncoding RNAs and Liquid Biopsy in Lung Cancer: A Literature Review. Diagnostics (Basel) 2019; 9:diagnostics9040216. [PMID: 31818027 PMCID: PMC6963838 DOI: 10.3390/diagnostics9040216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer represents a genetically heterogeneous disease with low survival rates. Recent data have evidenced key roles of noncoding RNAs in lung cancer initiation and progression. These functional RNA molecules that can act as both oncogenes and tumor suppressors may become future biomarkers and more efficient therapeutic targets. In the precision medicine era, circulating nucleic acids have the potential to reshape the management and prognosis of cancer patients. Detecting genomic alterations and level variations of circulating nucleic acids in liquid biopsy samples represents a noninvasive method for portraying tumor burden. Research is currently trying to validate the potential role of liquid biopsy in lung cancer screening, prognosis, monitoring of disease progression, and treatment response. However, this method requires complex detection assays, and implementation of plasma genotyping in clinical practice continues to be hindered by discrepancies that arise when compared to tissue genotyping. Understanding the genomic landscape of lung cancer is essential in order to provide useful and innovative research in the age of patient-tailored therapy. In this landscape, the noncoding RNAs play a crucial role due to their target genes that dramatically influence the tumor microenvironment and the response to therapy. This article addresses present and future possible roles of liquid biopsy in lung cancer. It also discusses how the complex role of noncoding RNAs in lung tumorigenesis could influence the management of this pathology.
Collapse
|
54
|
Sarode P, Mansouri S, Karger A, Schaefer MB, Grimminger F, Seeger W, Savai R. Epithelial cell plasticity defines heterogeneity in lung cancer. Cell Signal 2019; 65:109463. [PMID: 31693875 DOI: 10.1016/j.cellsig.2019.109463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany.
| |
Collapse
|
55
|
Molecular Insights into Potential Contributions of Natural Polyphenols to Lung Cancer Treatment. Cancers (Basel) 2019; 11:cancers11101565. [PMID: 31618955 PMCID: PMC6826534 DOI: 10.3390/cancers11101565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring polyphenols are believed to have beneficial effects in the prevention and treatment of a myriad of disorders due to their anti-inflammatory, antioxidant, antineoplastic, cytotoxic, and immunomodulatory activities documented in a large body of literature. In the era of molecular medicine and targeted therapy, there is a growing interest in characterizing the molecular mechanisms by which polyphenol compounds interact with multiple protein targets and signaling pathways that regulate key cellular processes under both normal and pathological conditions. Numerous studies suggest that natural polyphenols have chemopreventive and/or chemotherapeutic properties against different types of cancer by acting through different molecular mechanisms. The present review summarizes recent preclinical studies on the applications of bioactive polyphenols in lung cancer therapy, with an emphasis on the molecular mechanisms that underlie the therapeutic effects of major polyphenols on lung cancer. We also discuss the potential of the polyphenol-based combination therapy as an attractive therapeutic strategy against lung cancer.
Collapse
|
56
|
Zhu D, Yu Y, Wang W, Wu K, Liu D, Yang Y, Zhang C, Qi Y, Zhao S. Long noncoding RNA PART1 promotes progression of non-small cell lung cancer cells via JAK-STAT signaling pathway. Cancer Med 2019; 8:6064-6081. [PMID: 31436388 PMCID: PMC6792487 DOI: 10.1002/cam4.2494] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Non‐small cell lung cancer (NSCLC), the major type of lung cancer, becomes the greatest threat to the life of people. Growing evidence shows prostate androgen‐regulated transcript 1 (PART1) is considered as effective markers for prostate cancer, and has been shown to be associated with poor prognosis of NSCLC. However, the tumorigenic mechanism of PART1 in NSCLC remains to be investigated. In this study, we found that the expression of PART1 was robustly induced in NSCLC tissues and cell lines. Functional studies established that overexpression of PART1 could promote NSCLC cell proliferation, migration, and invasion, while interference of PART1 inhibited NSCLC progression. Our results also identified miR‐635 as a novel target of PART1, whose expression was inhibited by PART1 in NSCLC cell lines. Moreover, gain‐ and loss‐of‐function studies revealed that PART1 could sponge miR‐635 and increase the expression of Janus kinase (JAK) and signal transducer and activator of transcription proteins (STATs). Finally, we deciphered the molecular mechanism by which PART1 contributed to promotion of NSCLC cell progression via phosphorylation and activation of JAK‐STAT signaling pathway. The animal experiment further confirmed that interference of NSCLC could suppress in vivo tumorigenic ability of NSCLC with favorable pharmacological activity via inactivation of JAK‐STAT signaling pathway. In conclusion, our findings clarified the biologic significance of PART1/miR‐635/JAK‐STAT axis in NSCLC progression and provided novel evidence that PART1 may be a new potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Thoracic Surgery, Henan Medical Association, Zhengzhou, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
57
|
Khawar MB, Abbasi MH, Siddique Z, Arif A, Sheikh N. An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9702562. [PMID: 31428232 PMCID: PMC6683766 DOI: 10.1155/2019/9702562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-bounded vesicles that are believed to be produced and secreted by presumably all cell types under physiological and pathological conditions, including tumors. EVs are very important vehicles in intercellular communications for both shorter and longer distances and are able to deliver a wide range of cargos including proteins, lipids, and various species of nucleic acids effectively. EVs have been emerging as a novel biotherapeutic platform to efficiently deliver therapeutic cargos to treat a broad range of diseases including cancer. This vast potential of drug delivery lies in their abilities to carry a variety of cargos and their ease in crossing the biological membranes. Similarly, their presence in a variety of body fluids makes them a potential biomarker for early diagnosis, prognostication, and surveillance of cancer. Here, we discuss the relatively least and understudied aspects of EV biology and tried to highlight the obstacles and limitations in their clinical applications and also described most of the new warfronts to beat cancer at multiple stages. However, much more challenges still remain to evaluate EV-based therapeutics, and we are very much hopeful that the current work prompts further discovery.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muddasir Hassan Abbasi
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Zerwa Siddique
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Amin Arif
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
58
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
59
|
Brigatinib: New-generation ALK inhibitor for nonsmall cell lung cancer. Curr Probl Cancer 2019; 43:100477. [PMID: 31109722 DOI: 10.1016/j.currproblcancer.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022]
Abstract
Lung cancer, specifically nonsmall cell lung cancer (NSCLC) is the leading cause of death around the world. First-line therapies for metastatic NSCLC such as crizotinib, a tyrosine kinase inhibitor (TKI), have developed resistance due to a rearrangement of the anaplastic lymphoma kinase (ALK) gene. Brigatinib, approved in May 2016, is an ALK inhibitor specifically indicated for ALK-positive metastatic NSCLC in patients who have progressed on or resistant to crizotinib therapy. In several clinical trials, brigatinib has exhibited significant improvement in progression-free survival in patients that have experienced resistance to crizotinib therapy. The optimal dose of brigatinib was found to be 180 mg once daily and demonstrated greater efficacy as compared to its 90 mg once daily dose. Brigatinib was also found to be well tolerated. Although more studies are needed, the current data from these studies indicate brigatinib may be the most favorable therapeutic approach to treat NSCLC ALK-positive patients.
Collapse
|
60
|
Zhang M, Wang Q, Wan KW, Ahmed W, Phoenix DA, Zhang Z, Elrayess MA, Elhissi A, Sun X. Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer. Int J Pharm 2019; 566:185-193. [PMID: 31051230 DOI: 10.1016/j.ijpharm.2019.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The occurrence of lung cancer is linked with tobacco smoking, mainly through the generation of polycyclic aromatic hydrocarbons (PAHs). Elevated activity of cytochrome P4501A1 (CYP1A1) plays an important role in the metabolic processing of PAHs and its carcinogenicity. The present work aimed to investigate the role of CYP1A1 gene in PAH-mediated growth and tumor development in vitro and using an in vivo animal model. RNAi strategy was utilized to inhibit the overexpression of CYP1A1 gene using cationic liposomes generated using a lipid film-coated proliposome microparticles. Treatment of PAH-induced human alveolar adenocarcinoma cell line with cationic liposomes carrying CYP1A1 siRNA resulted in down regulation of CYP1A1 mRNA, protein as well as its enzymatic activity, triggering apoptosis and inhibiting multicellular tumor spheroids formation in vitro. Furthermore, silencing of CYP1A1 gene in BALB/c nude xenografts inhibited tumor growth via down regulation of CYP1A1 expression. Altogether, our findings showed that liposome-based gene delivery technology is a viable and stable approach for targeting cancer causing genes such as CY1PA1. This technology facilitated by the use of sugar particles coated with lipid films has demonstrated ability to generate anticancer effects that might be used in the future for therapeutic intervention and treatment of lung cancer.
Collapse
Affiliation(s)
- Mengtian Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ka-Wai Wan
- Institute of Nanotechnology and Bioengineering, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Waqar Ahmed
- Nanoscience Research Group, School of Mathematics and Physics, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | | | - Abdelbary Elhissi
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar, and College of Pharmacy, Qatar University, Doha, Qatar.
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
61
|
Qin W, Wang X, Zhao H, Lu H. A Novel Joint Gene Set Analysis Framework Improves Identification of Enriched Pathways in Cross Disease Transcriptomic Analysis. Front Genet 2019; 10:293. [PMID: 31031796 PMCID: PMC6473067 DOI: 10.3389/fgene.2019.00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
Motivation: Gene set enrichment analysis is a widely accepted expression analysis tool which aims at detecting coordinated expression change within a pre-defined gene sets rather than individual genes. The benefit of gene set analysis over individual differentially expressed (DE) gene analysis includes more reproducible and interpretable results and detecting small but consistent change among gene set which could not be detected by DE gene analysis. There have been many successful gene set analysis applications in human diseases. However, when the sample size of a disease study is small and no other public data sets of the same disease are available, it will lead to lack of power to detect pathways of importance to the disease. Results: We have developed a novel joint gene set analysis statistical framework which aims at improving the power of identifying enriched gene sets through integrating multiple similar disease data sets. Through comprehensive simulation studies, we demonstrated that our proposed frameworks obtained much better AUC scores than single data set analysis and another meta-analysis method in identification of enriched pathways. When applied to two real data sets, the proposed framework could retain the enriched gene sets identified by single data set analysis and exclusively obtained up to 200% more disease-related gene sets demonstrating the improved identification power through information shared between similar diseases. We expect that the proposed framework would enable researchers to better explore public data sets when the sample size of their study is limited.
Collapse
Affiliation(s)
- Wenyi Qin
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, United States
| | - Xujun Wang
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, China
| | - Hongyu Zhao
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, China
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, United States
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University, Shanghai, China
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, United States
| |
Collapse
|
62
|
The Roles of MicroRNA in Lung Cancer. Int J Mol Sci 2019; 20:ijms20071611. [PMID: 30935143 PMCID: PMC6480472 DOI: 10.3390/ijms20071611] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the most devastating malignancy in the world. Beyond genetic research, epigenomic studies—especially investigations of microRNAs—have grown rapidly in quantity and quality in the past decade. This has enriched our understanding about basic cancer biology and lit up the opportunities for potential therapeutic development. In this review, we summarize the involvement of microRNAs in lung cancer carcinogenesis and behavior, by illustrating the relationship to each cancer hallmark capability, and in addition, we briefly describe the clinical applications of microRNAs in lung cancer diagnosis and prognosis. Finally, we discuss the potential therapeutic use of microRNAs in lung cancer.
Collapse
|
63
|
Ye T, Li J, Sun Z, Liu Y, Kong L, Zhou S, Tang J, Wang J, Xing HR. Nr5a2 promotes cancer stem cell properties and tumorigenesis in nonsmall cell lung cancer by regulating Nanog. Cancer Med 2019; 8:1232-1245. [PMID: 30740909 PMCID: PMC6434341 DOI: 10.1002/cam4.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Abstract
Lung cancer has the highest mortality rate due to late diagnosis and high incidence of metastasis. Cancer stem cells (CSCs) are a subgroup of cancer cells with self‐renewal capability similar to that of normal stem cells (NSCs). While CSCs may play an important role in cancer progression, mechanisms underlying CSC self‐renewal and the relationship between self‐renewal of the NSCs and CSCs remain elusive. The orphan nuclear receptor Nr5a2 is a transcriptional factor, and a regulator of stemness of embryonic stem cells and induced pluripotent stem cells. However, whether Nr5a2 regulates the self‐renewal of lung CSCs is unknown. Here, we showed the diagnostic and prognostic values of elevated Nr5a2 expression in human lung cancer. We generated the mouse LLC‐SD lung carcinoma CSC cellular model in which Nr5a2 expression was enhanced. Using the LLC‐SD model, through transient and stable siRNA interference of Nr5a2 expression, we provided convincing evidence for a regulatory role of Nr5a2 in the maintenance of lung CSC self‐renewal and stem cell properties in vitro. Further, using the syngeneic and orthotopic lung transplantation model, we elucidated augmented cancer biological properties associated with Nr5a2 promotion of LLC‐SD self‐renewal. More importantly, we revealed that Nr5a2’s regulatory role in promoting LLC‐SD self‐renewal is mediated by transcriptional activation of its direct target Nanog. Taken together, in this study, we have provided convincing evidence in vitro and in vivo demonstrating that Nr5a2 can induce lung CSC properties and promote tumorigenesis and progression through transcriptional up‐regulation of Nanog.
Collapse
Affiliation(s)
- Ting Ye
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Li
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yongli Liu
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangsheng Kong
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shixia Zhou
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Junlin Tang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,College of Biomedical Engineering, State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
64
|
Mervai Z, Reszegi A, Miklya I, Knoll J, Schaff Z, Kovalszky I, Baghy K. Inhibitory Effect of (2R)-1-(1-Benzofuran-2-yl)-N-propylpentan-2-amine on Lung Adenocarcinoma. Pathol Oncol Res 2019; 26:727-734. [PMID: 30734151 PMCID: PMC7242259 DOI: 10.1007/s12253-019-00603-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
BPAP is a potent enhancer substance with catecholaminergic and serotoninergic activity in the brain. It was discovered that it is also effective against certain types of experimental cancers, showing the most promising results in case of lung cancer. That is why we tested its efficacy in two different doses in a newly developed EGFR wild type mouse lung adenocarcinoma xenograft model. Experiments were conducted on FVB/N and SCID mouse strains treated with low and high dose of BPAP. Body weight, survival, and tumor volumes were recorded. Furthermore, the activity of major signaling pathways of NSCLC such as MAPK and Akt/mTOR as well as cell cycle regulation were determined. Significant inhibition of tumor growth was exerted by both doses, but the mechanism of action was different. High dose directly inhibited, whereas low dose activated the main signaling pathways. Exposure to low dose BPAP resulted in elevated activity of the mTOR pathway together with p16INK-induced cell cycle arrest, a typical feature of geroconversion, a senescent state characterized by loss of cell proliferation. Finally the events culminated in cell cycle inhibition point in case of both doses mirrored by the decrease of cyclin D1, CDK4 and PCNA. In addition, BPAP treatment had a beneficial effect on bodyweight suggesting that the compound at least in part is able to compensate the cancer-related wasting. In view of the low toxicity and confirmed antitumor effect of BPAP against experimental lung adenocarcinoma, this novel compound deserves further attention.
Collapse
Affiliation(s)
- Zsolt Mervai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest, H-1085, Hungary
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest, H-1085, Hungary
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - József Knoll
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest, H-1085, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest, H-1085, Hungary.
| |
Collapse
|
65
|
Subat S, Inamura K, Ninomiya H, Nagano H, Okumura S, Ishikawa Y. Unique MicroRNA and mRNA Interactions in EGFR-Mutated Lung Adenocarcinoma. J Clin Med 2018; 7:E419. [PMID: 30404194 PMCID: PMC6262391 DOI: 10.3390/jcm7110419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
The EGFR gene was one of the first molecules to be selected for targeted gene therapy. EGFR-mutated lung adenocarcinoma, which is responsive to EGFR inhibitors, is characterized by a distinct oncogenic pathway in which unique microRNA (miRNA)⁻mRNA interactions have been observed. However, little information is available about the miRNA⁻mRNA regulatory network involved. Both miRNA and mRNA expression profiles were investigated using microarrays in 155 surgically resected specimens of lung adenocarcinoma with a known EGFR mutation status (52 mutated and 103 wild-type cases). An integrative analysis of the data was performed to identify the unique miRNA⁻mRNA regulatory network in EGFR-mutated lung adenocarcinoma. Expression profiling of miRNAs and mRNAs yielded characteristic miRNA/mRNA signatures (19 miRNAs/431 mRNAs) in EGFR-mutated lung adenocarcinoma. Five of the 19 miRNAs were previously listed as EGFR-mutation-specific miRNAs (i.e., miR-532-3p, miR-500a-3p, miR-224-5p, miR-502-3p, and miR-532-5p). An integrative analysis of miRNA and mRNA expression revealed a refined list of putative miRNA⁻mRNA interactions, of which 63 were potentially involved in EGFR-mutated tumors. Network structural analysis provided a comprehensive view of the complex miRNA⁻mRNA interactions in EGFR-mutated lung adenocarcinoma, including DUSP4 and MUC4 axes. Overall, this observational study provides insight into the unique miRNA⁻mRNA regulatory network present in EGFR-mutated tumors. Our findings, if validated, would inform future research examining the interplay of miRNAs and mRNAs in EGFR-mutated lung adenocarcinoma.
Collapse
Affiliation(s)
- Sophia Subat
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Hironori Ninomiya
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Hiroko Nagano
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Sakae Okumura
- Department of Thoracic Surgical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| | - Yuichi Ishikawa
- Division of Pathology, The Cancer Institute; Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo 135-8550, Japan.
| |
Collapse
|
66
|
Epidermal Growth Factor Receptor Gene in Non-Small-Cell Lung Cancer: The Importance of Promoter Polymorphism Investigation. Anal Cell Pathol (Amst) 2018; 2018:6192187. [PMID: 30406002 PMCID: PMC6204164 DOI: 10.1155/2018/6192187] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/05/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Recently, epidermal growth factor receptor (EGFR) was a key molecule in investigation of lung cancer, and it was a target for a new therapeutic strategy, based on molecular analyses. In this review, we have summarized some issues considering the role of EGFR in lung cancer, its coding gene, and its promoter gene polymorphisms (SNPs) -216G/T and -191C/A in non-small-cell lung cancer (NSCLC). The position of the SNPs indicates their significant role in EGFR regulation. The accumulation of knowledge regarding SNPs lately suggests their significant and important role in the onset of carcinogenesis, the prediction of the onset of metastases, the response to therapy with TKI inhibitors, and the onset of toxic effects of the applied therapy. Based on this, we suggest further studies of the relationship of clinical significance to SNPs in patients with lung tumors.
Collapse
|
67
|
Shaukat I, Kern JJ, Höti N, Zhang H, Li J, Zheng G, Askin F, Gabrielson E, Li QK. Detection of RAS and RAS-associated alterations in primary lung adenocarcinomas. A correlation between molecular findings and tumor characteristics. Hum Pathol 2018; 84:18-25. [PMID: 30266251 DOI: 10.1016/j.humpath.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023]
Abstract
Rat sarcoma (RAS) and RAS-associated pathways play important roles in the pathogenesis of lung cancers and in the development of targeted therapies. However, the clinical significance of RAS pathways is still not fully understood. We investigated the RAS-associated molecular aberrations in primary lung adenocarcinomas and correlated molecular findings with clinicopathological characteristics of tumors. A total of 220 surgically resected tumors were identified for which a lung cancer molecular panel (testing 7 genes by next-generation sequencing and 3 genes for rearrangement by fluorescence in situ hybridization) had been performed. The overall molecular alterations were detected in 143 cases (65.00%), including 58 cases (26.36%) of KRAS, 40 cases (18.18%) of EGFR, 24 cases (10.91%) of BRAF, 8 cases (3.64%) of PIK3CA, 7 cases (3.18%) of NRAS, 6 cases (2.73%) of ALK alterations. KRAS, BRAF, NRAS, and PIK3CA mutations were more commonly seen in smokers and occurred with much higher rates than previously published data. BRAFV600E mutations were commonly seen in female smokers, whereas, BRAFnon-V600E mutations were seen in both male and female smokers with moderately to poorly differentiated tumors. PIK3CA mutations were predominantly occurred in p.E545K and p.E542K on exon 9 in moderately to poorly differentiated tumors.
Collapse
Affiliation(s)
- Irfan Shaukat
- Department of Medicine, MedStar Good Samaritan Hospital, Baltimore, MD 21234, USA
| | - Jason J Kern
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA; Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Jason Li
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Gang Zheng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Frederic Askin
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA; Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA; Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA; Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.
| |
Collapse
|
68
|
Nair S, Tang KD, Kenny L, Punyadeera C. Salivary exosomes as potential biomarkers in cancer. Oral Oncol 2018; 84:31-40. [PMID: 30115473 DOI: 10.1016/j.oraloncology.2018.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been emerging research in the field of extracellular vesicles, especially those originating from endosomes, referred to as 'exosomes. Exosomes are membrane-bound nanovesicles secreted by most cell types upon fusion of multivesicular bodies (MVBs) to the cell plasma membrane. These vesicles are present in almost all body fluids such as blood, urine, saliva, breast milk, cerebrospinal and peritoneal fluids. Exosomes participate in intercellular communication by transferring the biologically active molecules like proteins, nucleic acids, and lipids to neighboring cells. Exosomes are enriched in the tumour microenvironment and growing evidence demonstrates that exosomes mediate cancer progression and metastasis. Given the important biological role played by these nanovesicles in cancer pathogenesis, these can be used as ideal non-invasive biomarkers in detecting and monitoring tumours as well as therapeutic targets. The scope of the current review is to provide an overview of exosomes with a special focus on salivary exosomes as potential biomarkers in head and neck cancers.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia
| | - Kai Dun Tang
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia; The Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Queensland, Australia; Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Central Integrated Regional Cancer Service, Queensland Health, Queensland, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia; Translational Research Institute, Brisbane, Australia; The Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
69
|
Highly Sensitive and Reliable Detection of EGFR Exon 19 Deletions by Droplet Digital Polymerase Chain Reaction. Mol Diagn Ther 2018; 21:555-562. [PMID: 28589341 DOI: 10.1007/s40291-017-0281-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Analysis of EGFR mutations is becoming a routine clinical practice but the optimal EGFR mutation testing method is still to be determined. METHODS We determined the nucleotide sequence of deletions located in exon 19 of the EGFR gene in lung tumor samples of patients residing in different regions of Russia (153 tumor DNA specimens), using Sanger sequencing. We developed a droplet digital polymerase chain reaction assay capable of detecting all common EGFR deletions in exon 19. We also compared the therascreen amplification refractory mutation system assay with a droplet digital polymerase chain reaction assay for the detection of all the deletions in our study. RESULTS The droplet digital polymerase chain reaction assay demonstrated 100% sensitivity against polymerase chain reaction fragment length analysis and detected all possible types of deletions revealed in our study (22 types). At the same time, the therascreen EGFR RGQ PCR Kit was not able to detect deletions c.2252-2276>A and c.2253-2276 and showed low performance for another long deletion. CONCLUSION Thus, we can conclude that the extraordinary length of deletions and their atypical locations (shift at the 3'-region compared to known deletions) could be problematic for the therascreen EGFR RGQ PCR Kit and should be taken into account during targeted mutation test development. However, droplet digital polymerase chain reaction is a promising and reliable assay that can be used as a diagnostic tool to genotype formalin-fixed paraffin-embedded cancer samples for EGFR or another clinically relevant somatic mutation.
Collapse
|
70
|
Borlak J, Länger F, Chatterji B. Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3122-3144. [PMID: 29960043 DOI: 10.1016/j.bbadis.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Atypical adenomatous hyperplasia (AAH) of the lung is a pre-invasive lesion (PL) with high risk of progression to lung cancer (LC). However, the pathways involved are uncertain. We searched for novel mechanistic biomarkers of AAH in an EGF transgenic disease model of lung cancer. Disease regulated proteins were validated by Western immunoblotting and immunohistochemistry (IHC) of control and morphologically altered respiratory epithelium. Translational work involved clinical resection material. Collectively, 68 unique serum proteins were identified by 2DE-MALDI-TOF mass spectrometry and 13 reached statistical significance (p < 0.05). EGF, amphiregulin and the EGFR endosomal sorting protein VPS28 were induced up to 5-fold while IHC confirmed strong induction of these proteins. Furthermore, ApoA1, α-2-macroglobulin, and vitamin-D binding protein were nearly 6- and 2-fold upregulated in AAH; however, ApoA1 was oppositely regulated in LC to evidence disease stage dependent regulation of this tumour suppressor. Conversely, plasminogen and transthyretin were highly significantly repressed by 3- and 20-fold. IHC confirmed induced ApoA1, Fetuin-B and transthyretin expression to influence calcification, inflammation and tumour-infiltrating macrophages. Moreover, serum ApoA4, ApoH and ApoM were 2-, 2- and 6-fold repressed; however tissue ApoM and sphingosine-1-phosphate receptor expression was markedly induced to suggest a critical role of sphingosine-1-phosphate signalling in PL and malignant transformation. Finally, a comparison of three different LC models revealed common and unique serum biomarkers mechanistically linked to EGFR, cMyc and cRaf signalling. Their validation by IHC on clinical resection material established relevance for distinct human lung pathologies. In conclusion, we identified mechanistic biomarker candidates recommended for in-depth clinical evaluation.
Collapse
Affiliation(s)
- Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Florian Länger
- Hannover Medical School, Institute of Pathology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bijon Chatterji
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
71
|
Pu X, Wang J, Li W, Fan W, Wang L, Mao Y, Yang S, Liu S, Xu J, Lv Z, Xu L, Shu Y. COPB2 promotes cell proliferation and tumorigenesis through up-regulating YAP1 expression in lung adenocarcinoma cells. Biomed Pharmacother 2018; 103:373-380. [PMID: 29674272 DOI: 10.1016/j.biopha.2018.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma is the most common subtype of non-small cell lung cancer and responsible for more than 500,000 deaths per year worldwide. In this study, we aimed to explore the effects of COPB2 in the progression of lung adenocarcinoma and its underlying mechanism. The mRNA and protein levels of COPB2 in tumor tissues and cell lines were determined by qRT-PCR and western blotting analysis. siRNAs and over-expressed vector targeting COPB2 were used to down-regulate and up-regulate COPB2 expression in lung adenocarcinoma cell lines H1975. Cell apoptosis rate, proliferation and tumorigenesis of H1975 cells were determined by flow cytometry analysis, MTT assay and in vivo xenotransplantation assay, respectively. Western blotting and immunofluorescence assays were performed to evaluate the effects of COPB on the expression and subcellular location of YAP. Results showed COPB2 was significantly up-regulated in lung adenocarcinoma tissues and cell lines, which showed a close correlation with advanced clinical symptoms, such as tumor differentiation, TNM stage and the occurrence of lymph node metastasis and distance metastasis. Besides, the overall survival time of patients with high expression of COPB2 was shorter than that of patients with low COPB2 expression. After knockdown of COPB2, cell apoptosis rate was increased, whereas cell proliferation was decreased. Compared with that in the normal lung cell line H1688 cells, YAP1 expression was obviously increased in H1975, and over-expression of COPB2 translocated YAP1 from cytoplasm to nuclear, whereas knockdown of COPB2 showed the opposite effect. Overexpression of COPB2 enhanced cell proliferation, tumorigenesis and inhibited cell apoptosis. However, these effects were abolished when down-regulated YAP1 expression on the base of COPB2 over-expression. In conclusion, the increased expression of COPB2 was significantly correlated with the progression of lung adenocarcinoma. Up-regulation of COPB2 inhibited cell apoptosis and promoted cell growth and tumorigenesis through up-regulating YAP1 expression in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaolin Pu
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China; Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Wang
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weifei Fan
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Lin Wang
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Yuan Mao
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Shu Yang
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Suyao Liu
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Juqing Xu
- Oncology, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Zhigang Lv
- Central laboratory, Jiangsu Province Geriatric Institute, Nanjing, People's Republic of China
| | - Lin Xu
- Department of thoracic surgery, Jiangsu Cancer Hospital, Nanjing, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
72
|
TAZ induces lung cancer stem cell properties and tumorigenesis by up-regulating ALDH1A1. Oncotarget 2018; 8:38426-38443. [PMID: 28415606 PMCID: PMC5503543 DOI: 10.18632/oncotarget.16430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/11/2017] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in lung cancer and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Further RNA-seq and qRT-PCR analysis identified Aldh1a1, a well-established CSC marker, as critical TAZ downstream target and showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEAD. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis in the future.
Collapse
|
73
|
Abstract
Lung cancer is the leading cause of cancer deaths worldwide and over 80% of lung cancer patients are classified as having non-small cell lung cancer. Although there have been technological advancements in the early detection and standard treatment of lung cancer, it is often diagnosed at an advanced stage and is chemoresistant to most available drugs. A number of studies have demonstrated that microRNA is able to modulate various tumorigenic processes, including progression and metastasis, in various mechanisms. In this review we examine the most recent achievements in microRNA and lung cancer treatment and summarize the research progress on the reciprocal regulation between microRNA and epigenetic modifications, as both have been intensively studied in lung cancer. Epigenetic modifications on the human genome regulate gene and microRNA expression at the transcriptional level; inversely, microRNA can also transcriptionally cleave and/or translationally repress the expression of several key enzymes involved in epigenetic processes such as DNA methylation and histone modification. Better understanding of reciprocal regulation between microRNA and epigenetic modifications will underlie the development of novel microRNA orientated diagnostic and therapeutic strategies relating to lung cancer in the near future.
Collapse
Affiliation(s)
- Rajeev Kumar
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
74
|
Patel P, Galoian K. Molecular challenges of neuroendocrine tumors. Oncol Lett 2017; 15:2715-2725. [PMID: 29456718 DOI: 10.3892/ol.2017.7680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine tumors (NETs) are a very heterogeneous group that are thought to originate from the cells of the endocrine and nervous systems. These tumors develop in a number of organs, predominantly in the gastrointestinal and pulmonary systems. Clinical detection and diagnosis are reliable at the late stages when metastatic spread has occurred. However, traditional conventional therapies such as radiation and chemotherapy are not effective. In the majority of cases even surgical resection at that stage is unlikely to produce promising reusults. NETs present a serious clinical challenge, as the survival rates remain low, and as these rare tumors are very difficult to study, novel approaches and therapies are required. This review will highlight the important points of accumulated knowledge covering the molecular aspects of the role of neuroendocrine cells, hormonal peptides, the reasons for ectopic hormone production in NET, neuropeptides and epigenetic regulation as well as the other challenging questions that require further understanding.
Collapse
Affiliation(s)
- Parthik Patel
- Department of Orthopedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karina Galoian
- Department of Orthopedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
75
|
Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 2017; 17:725-737. [PMID: 29077690 DOI: 10.1038/nrc.2017.87] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small-cell lung cancer (SCLC) is a deadly tumour accounting for approximately 15% of lung cancers and is pathologically, molecularly, biologically and clinically very different from other lung cancers. While the majority of tumours express a neuroendocrine programme (integrating neural and endocrine properties), an important subset of tumours have low or absent expression of this programme. The probable initiating molecular events are inactivation of TP53 and RB1, as well as frequent disruption of several signalling networks, including Notch signalling. SCLC, when diagnosed, is usually widely metastatic and initially responds to cytotoxic therapy but nearly always rapidly relapses with resistance to further therapies. There were no important therapeutic clinical advances for 30 years, leading SCLC to be designated a 'recalcitrant cancer'. Scientific studies are hampered by a lack of tissue availability. However, over the past 5 years, there has been a worldwide resurgence of studies on SCLC, including comprehensive molecular analyses, the development of relevant genetically engineered mouse models and the establishment of patient-derived xenografts. These studies have led to the discovery of new potential therapeutic vulnerabilities for SCLC and therefore to new clinical trials. Thus, while the past has been bleak, the future offers greater promise.
Collapse
Affiliation(s)
- Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
| | - Paul A Bunn
- Division of Medical Oncology, University of Colorado Cancer Center, 12801 East 17th Avenue, Aurora, Colorado 80045, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
| |
Collapse
|
76
|
Richardson JSM, Aminudin N, Abd Malek SN. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549). Pharmacogn Mag 2017; 13:S489-S498. [PMID: 29142404 PMCID: PMC5669087 DOI: 10.4103/pm.pm_13_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/22/2017] [Indexed: 12/24/2022] Open
Abstract
Background Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. Objective A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Materials and Methods Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Results Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Conclusion Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. SUMMARY This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO2: Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PI: Propidium iodide, PMSF: Phenylmethylsulfonyl fluoride, pRB: Phosphorylated retinoblastoma, R. angustifolia: Ruta angustifolia L. Pers, Rb: Retinoblastoma, rpm: Rotation per minute, RPMI: Roswell Park Memorial Institute, S phase: Synthesis phase, SD: Standard deviation, SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Smac: Second mitochondria-derived activator of caspase, SPSS: Statistical Package for the Social Sciences, STAT3: Signal transducer and activation of transcription 3, tBID: Truncated BID, TNF: Tumor necrosis factor, TRADD: Tumor necrosis factor receptor type-1 associated death domain, TRAIL: TNF-related apoptosis- inducing ligand, USA: United States of America, v/v: Volume over volume.
Collapse
Affiliation(s)
| | - Norhaniza Aminudin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
77
|
Wang Y, Zhang J, Huang ZH, Huang XH, Zheng WB, Yin XF, Li YL, Li B, He QY. Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop. Cell Death Dis 2017; 8:e2876. [PMID: 28617433 PMCID: PMC5584574 DOI: 10.1038/cddis.2017.265] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Isodeoxyelephantopin (ESI), isolated from Elephantopus scaber L. has been reported to exert anticancer effects. In this study, we aimed to investigate whether and how cancer cells exert protective responses against ESI treatment. Confocal fluorescence microscopy showed that ESI significantly induced autophagy flux in the lung cancer cells expressing mCherry-EGFP-LC3 reporter. Treatment of the cells with ESI increased the expression levels of the autophagy markers including LC3-II, ATG3 and Beclin1 in a dose-dependent manner. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) not only attenuated the effects of ESI on autophagy, but also enhanced the effects of ESI on cell viability and apoptosis. Mechanistically, the SILAC quantitative proteomics coupled with bioinformatics analysis revealed that the ESI-regulated proteins were mainly involved in Nrf2-mediated oxidative stress response. We found that ESI induced the nuclear translocation of Nrf2 for activating the downstream target genes including HO-1 and p62 (SQSTM1). More importantly, ESI-induced p62 could competitively bind with Keap1, and releases Nrf2 to activate downstream target gene p62 as a positive feedback loop, therefore promoting autophagy. Furthermore, knockdown of Nrf2 or p62 could abrogate the ESI-induced autophagy and significantly enhanced the anticancer effect of ESI. Taken together, we demonstrated that ESI can sustain cell survival by activating protective autophagy through Nrf2-p62-keap1 feedback loop, whereas targeting this regulatory axis combined with ESI treatment may be a promising strategy for anticancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi-Hao Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Hui Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wei-Bin Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xing-Feng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
78
|
Li Z, Ivanov AA, Su R, Gonzalez-Pecchi V, Qi Q, Liu S, Webber P, McMillan E, Rusnak L, Pham C, Chen X, Mo X, Revennaugh B, Zhou W, Marcus A, Harati S, Chen X, Johns MA, White MA, Moreno C, Cooper LAD, Du Y, Khuri FR, Fu H. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat Commun 2017; 8:14356. [PMID: 28205554 PMCID: PMC5316855 DOI: 10.1038/ncomms14356] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein-protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes. PPI hubs reveal new regulatory mechanisms for cancer genes like MYC, STK11, RASSF1 and CDK4. As example, the NSD3 (WHSC1L1)-MYC interaction suggests a new mechanism for NSD3/BRD4 chromatin complex regulation of MYC-driven tumours. Association of undruggable tumour suppressors with drug targets informs therapeutic options. Based on OncoPPi-derived STK11-CDK4 connectivity, we observe enhanced sensitivity of STK11-silenced lung cancer cells to the FDA-approved CDK4 inhibitor palbociclib. OncoPPi is a focused PPI resource that links cancer genes into a signalling network for discovery of PPI targets and network-implicated tumour vulnerabilities for therapeutic interrogation.
Collapse
Affiliation(s)
- Zenggang Li
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Rina Su
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Valentina Gonzalez-Pecchi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Songlin Liu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Philip Webber
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Elizabeth McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75220, USA
| | - Lauren Rusnak
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Cau Pham
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Xiaoqian Chen
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA.,Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Brian Revennaugh
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Wei Zhou
- Department of Hematology &Medical Oncology, Emory University, Atlanta, Georgia 30322, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | - Adam Marcus
- Department of Hematology &Medical Oncology, Emory University, Atlanta, Georgia 30322, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | - Sahar Harati
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Margaret A Johns
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75220, USA
| | - Carlos Moreno
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA.,Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Lee A D Cooper
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA.,Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.,Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | - Fadlo R Khuri
- Department of Hematology &Medical Oncology, Emory University, Atlanta, Georgia 30322, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, Georgia 30322, USA.,Department of Hematology &Medical Oncology, Emory University, Atlanta, Georgia 30322, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
79
|
“An RNA-seq analysis from non-small cell lung cancer biopsies suggests an important role for aberrant alternative splicing in its pathophysiology”. HEALTH AND TECHNOLOGY 2016. [DOI: 10.1007/s12553-016-0158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
80
|
Abstract
SMYD3 is a member of the SET and MYND-domain family of methyl-transferases, the increased expression of which correlates with poor prognosis in various types of cancer. In liver and colon tumors, SMYD3 is localized in the nucleus, where it interacts with RNA Pol II and H3K4me3 and functions as a selective transcriptional amplifier of oncogenes and genes that control cell proliferation and metastatic spread. Smyd3 expression has a high discriminative power for the characterization of liver tumors and positively correlates with poor prognosis. In lung and pancreatic cancer, SMYD3 acts in the cytoplasm, potentiating oncogenic Ras/ERK signaling through the methylation of the MAP3K2 kinase and the subsequent release from its inhibitor. A clinico-pathological analysis of lung cancer patients uncovers prognostic significance of SMYD3 only for first progression survival. However, stratification of patients according to their smoking history significantly expands the prognostic value of SMYD3 to overall survival and other features, suggesting that smoking-related effects saturate the clinical analysis and mask the function of SMYD3 as an oncogenic potentiator.
Collapse
|
81
|
Helfrich BA, Kim J, Gao D, Chan DC, Zhang Z, Tan AC, Bunn PA. Barasertib (AZD1152), a Small Molecule Aurora B Inhibitor, Inhibits the Growth of SCLC Cell Lines In Vitro and In Vivo. Mol Cancer Ther 2016; 15:2314-2322. [PMID: 27496133 DOI: 10.1158/1535-7163.mct-16-0298] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/22/2016] [Indexed: 11/16/2022]
Abstract
Small-cell lung cancer (SCLC) cells have rapid proliferation, universal Rb inactivation, and high rates of MYC family amplification, making aurora kinase inhibition a natural target. Preclinical studies have demonstrated activity for Aurora A and pan-Aurora inhibitors with some relationship to MYC family expression. A clinical trial showed activity for an Aurora kinase A inhibitor, but no biomarkers were evaluated. We screened a panel of 23 SCLC lines with and without MYC family gene amplification or high MYC family gene expression for growth inhibition by the highly potent, selective aurora kinase B inhibitor barasertib. Nine of the SCLC lines were very sensitive to growth inhibition by barasertib, with IC50 values of <50 nmol/L and >75% growth inhibition at 100 nmol/L. Growth inhibition correlated with cMYC amplification (P = 0.018) and cMYC gene expression (P = 0.026). Sensitive cell lines were also enriched in a published MYC gene signature (P = 0.042). In vivo, barasertib inhibited the growth of xenografts established from an SCLC line that had high cMYC gene expression, no cMYC amplification, and was positive for the core MYC gene signature. Our studies suggest that SCLC tumors with cMYC amplification/high gene expression will frequently respond to Aurora B inhibitors and that clinical studies coupled with predictive biomarkers are indicated. Mol Cancer Ther; 15(10); 2314-22. ©2016 AACR.
Collapse
Affiliation(s)
- Barbara A Helfrich
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Jihye Kim
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Dexiang Gao
- Department of Biostatistics & Informatics, University of Colorado Cancer Center, Aurora, Colorado. Department of Medicine-Pediatrics, University of Colorado Denver-Anschutz Medical Center, Aurora, Colorado
| | - Daniel C Chan
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Zhiyong Zhang
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado
| | - Paul A Bunn
- Department of Medicine, University of Colorado Cancer Center, Aurora, Colorado.
| |
Collapse
|
82
|
Li R, Wu S, Chen X, Xu H, Teng P, Li W. miR-223/FBW7 axis regulates doxorubicin sensitivity through epithelial mesenchymal transition in non-small cell lung cancer. Am J Transl Res 2016; 8:2512-2524. [PMID: 27398136 PMCID: PMC4931147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/15/2016] [Indexed: 06/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths in the world. F-box/WD repeat-containing protein 7 (FBW7) plays important roles in human cancers, such as gastric cancer, breast cancer, and hepatocellular carcinoma. In this study, we found that high levels of FBW7 expression were associated with increased doxorubicin sensitivity in NSCLC cells. Down-regulation of FBW7 reduced the chemosensitivity in tumor cells. Twist is a critical transcription factor in epithelial-mesenchymal transition (EMT), and NSCLC cells with silenced Twist showed increased doxorubicin sensitivity. Treatment of cells with doxorubicin or hypoxia was shown to trigger EMT as evidenced by decreased E-cadherin and increased Vimentin. In contrast, ectopic expression of FBW7 prevented doxorubicin-or hypoxia-induced EMT. In addition, FBW7 was identified as a functional target of miR-223 in NSCLC cells. These findings define a critical role of miR-223/FBW7 pathway in regulating EMT and chemosensitivity in NSCLC cells.
Collapse
Affiliation(s)
- Renyuan Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University Hangzhou, China
| | - Shengjun Wu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University Hangzhou, China
| | - Xin Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University Hangzhou, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University Hangzhou, China
| | - Peng Teng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University Hangzhou, China
| | - Weidong Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Zhejiang University Hangzhou, China
| |
Collapse
|
83
|
Abbas I, Verdin A, Escande F, Saint-Georges F, Cazier F, Mulliez P, Courcot D, Shirali P, Gosset P, Garçon G. In vitro short-term exposure to air pollution PM2.5-0.3 induced cell cycle alterations and genetic instability in a human lung cell coculture model. ENVIRONMENTAL RESEARCH 2016; 147:146-158. [PMID: 26874047 DOI: 10.1016/j.envres.2016.01.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOH and/or MSI) in the PM2.5-0.3-exposed coculture model. PM2.5-0.3 exposure of human AM from the coculture model induced marked cell cycle alterations after 24h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM2.5-0.3 was reported in the L132 cells. Exposure of human AM from the coculture model to PM2.5-0.3 resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM2.5-0.3 induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability.
Collapse
Affiliation(s)
- Imane Abbas
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France; Lebanese Atomic Energy Commission - CNRS, Beirut, Lebanon
| | - Anthony Verdin
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Fabienne Escande
- Centre de Biologie Pathologie, Centre Hospitalier Régional et Universitaire, Lille, France
| | - Françoise Saint-Georges
- Université de Lille, Lille, France; Groupement Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Fabrice Cazier
- Université de Lille, Lille, France; Centre Commun de Mesures, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Philippe Mulliez
- Université de Lille, Lille, France; Groupement Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Dominique Courcot
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Pirouz Shirali
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France
| | - Pierre Gosset
- Université de Lille, Lille, France; Groupement Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Guillaume Garçon
- Université de Lille, Lille, France; EA4492-UCEIV, Université du Littoral-Côte d'Opale, Dunkerque, France; EA4483-IMPECS, Université de Lille 2, Lille, France.
| |
Collapse
|
84
|
Frequencies of EGFR single nucleotide polymorphisms in non-small cell lung cancer patients and healthy individuals in the Republic of Serbia: a preliminary study. Tumour Biol 2016; 37:10479-86. [DOI: 10.1007/s13277-016-4930-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/28/2016] [Indexed: 01/06/2023] Open
|
85
|
Jiang R, Wang X, Jin Z, Li K. Association of Nuclear PIM1 Expression with Lymph Node Metastasis and Poor Prognosis in Patients with Lung Adenocarcinoma and Squamous Cell Carcinoma. J Cancer 2016; 7:324-34. [PMID: 26918046 PMCID: PMC4747887 DOI: 10.7150/jca.13422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/17/2015] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence indicates that aberrant expression of PIM1, p-STAT3 and c-MYC is involved in the pathogenesis of various solid tumors, but its prognostic value is still unclear in non-small cell lung cancer (NSCLC). Here, we sought to evaluate the expression and prognostic role of these markers in patients with lung adenocarcinoma (AD) and squamous cell carcinoma (SCC). Real time RT-PCR and Western blotting was used to analyze the mRNA and protein expression of PIM1 in NSCLC cell lines, respectively. The expression of PIM1, p-STAT3, and c-MYC was immunohistochemically tested in archival tumor samples from 194 lung AD and SCC patients. High nuclear PIM1 expression was detected in 43.3% of ADs and SCCs, and was significantly correlated with lymph node (LN) metastasis (P = 0.028) and histology (P = 0.003). High nuclear PIM1 expression (P = 0.034), locally advanced stage (P < 0.001), AD (P = 0.007) and poor pathologic differentiation (P = 0.002) were correlated with worse disease-free survival (DFS). High nuclear PIM1 expression (P = 0.009), advanced clinical stage (P < 0.001) and poor pathologic differentiation (P = 0.004) were independent unfavorable prognostic factors for overall survival (OS). High p-STAT3 expression was not associated with OS but significantly correlated with LN metastasis, while c-MYC was not significantly correlated with any clinicopathological parameter or survival. Therefore, in AD and SCC patients, nuclear PIM1 expression level is an independent factor for DFS and OS and it might serve as a predictive biomarker for outcome.
Collapse
Affiliation(s)
- Richeng Jiang
- 1. Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer;; 2. Key Laboratory of Cancer Prevention and Therapy, Tianjin;; 3. Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300060, PR China
| | - Xinyue Wang
- 1. Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer;; 2. Key Laboratory of Cancer Prevention and Therapy, Tianjin;; 3. Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300060, PR China
| | - Ziliang Jin
- 4. Department of Radiotherapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Kai Li
- 1. Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer;; 2. Key Laboratory of Cancer Prevention and Therapy, Tianjin;; 3. Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300060, PR China
| |
Collapse
|
86
|
Luo J, Xiong J, Wu J, Ye X. Genetic polymorphisms and haplotypes of TRAIL gene correlate with NSCLC susceptibility in a group of Chinese patients. Int J Clin Exp Med 2015; 8:16223-16230. [PMID: 26629137 PMCID: PMC4656262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
The association between genetic polymorphisms and haplotypes of TNF-related apoptosis-inducing ligand (TRAIL) and the NSCLC development was investigated in 592 Chinese patients and the prevalence of G1525A, G1588A, and C1595T gene polymorphisms compared between the NSCLC patients and control group in this study. It was found that the frequencies of variant allele A and genotype GA+AA of G1525A were significantly lower and those of variant alleles A and T of G1588A and C1595T significantly higher in the NSCLC patients compared with those in control. The frequencies of variant allele T and genotype CT+TT of C1595T were significantly higher in stage III and IV than in stage I and II of the patients. Moreover, the frequencies of variant allele A and genotype GA+AA of G1525A were significantly higher in stage III and IV than in stage I and II of the patients. In addition, TRAIL gene variants G1525A/G1588A/C1595T were found to be in complete linkage disequilibrium in all patients. Compared with the healthy people, the frequency of AAT haplotype was significantly lower whereas that of GAT haplotype significantly higher in NSCLC patients. The results indicated that the genetic polymorphisms and haplotypes of TRAIL gene correlated significantly with the NSCLC susceptibility in the group of Chinese patients.
Collapse
Affiliation(s)
- Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Jinmeng Xiong
- Department of Gerontology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Jianghua Wu
- Department of Gerontology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Xujun Ye
- Department of Gerontology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| |
Collapse
|
87
|
Trendowski M. PU-H71: An improvement on nature's solutions to oncogenic Hsp90 addiction. Pharmacol Res 2015; 99:202-16. [DOI: 10.1016/j.phrs.2015.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022]
|
88
|
Prognostic impact of Bcl-2 depends on tumor histology and expression of MALAT-1 lncRNA in non-small-cell lung cancer. J Thorac Oncol 2015; 9:1294-304. [PMID: 25036876 DOI: 10.1097/jto.0000000000000243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Apoptosis is a crucial pathway in tumor growth and metastatic development. Apoptotic proteins regulate the underlying molecular cascades and are thought to modulate the tumor response to chemotherapy and radiation. However, the prognostic value of the expression of apoptosis regulators in localized non-small-cell lung cancer (NSCLC) is still unclear. METHODS We investigated the protein expression of apoptosis regulators Bcl-2, Bcl-xl, Mcl-1, and pp32/PHAPI, and the expression of the lncRNA MALAT-1 in tumor samples from 383 NSCLC patients (median age: 65.6 years; 77.5% male; paraffin-embedded tissue microarrays). For statistical analysis correlation tests, Log rank tests and Cox proportional hazard models were applied. RESULTS Tumor histology was significantly associated with the expression of Bcl-2, Bcl-xl and Mcl-1 (all p < 0.001). Among the tested apoptotic markers only Bcl-2 demonstrated prognostic impact (hazard ratio = 0.64, p = 0.012). For NSCLC patients with non-adenocarcinoma histology, Bcl-2 expression was associated with increased overall survival (p = 0.036). Besides tumor histology, prognostic impact of Bcl-2 was also found to depend on MALAT-1 lncRNA expression. Gene expression analysis of A549 adenocarcinoma cells with differential MALAT-1 lncRNA expression demonstrated an influence on the expression of Bcl-2 and its interacting proteins. CONCLUSIONS Bcl-2 expression was specifically associated with superior prognosis in localized NSCLC. An interaction of Bcl-2 with MALAT-1 lncRNA expression was revealed, which merits further investigation for risk prediction in resectable NSCLC patients.
Collapse
|
89
|
Lesur A, Ancheva L, Kim YJ, Berchem G, van Oostrum J, Domon B. Screening protein isoforms predictive for cancer using immunoaffinity capture and fast LC-MS in PRM mode. Proteomics Clin Appl 2015; 9:695-705. [PMID: 25656350 DOI: 10.1002/prca.201400158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE We report an immunocapture strategy to extract proteins known to harbor driver mutations for a defined cancer type before the simultaneous assessment of their mutational status by MS. Such a method bypasses the sensitivity and selectivity issues encountered during the analysis of unfractionated complex biological samples. EXPERIMENTAL DESIGN Fast LC separations using short nanobore columns hyphenated with a high-resolution quadrupole-orbitrap mass spectrometer have been devised to take advantage of fast MS cycle times in conjunction with sharp chromatographic peak widths to accelerate the sample analysis throughput. Such an analytical platform is well suited to analyze simple protein mixtures obtained after immunoaffinity enrichment. RESULTS After establishing the technical performance of the platform, the method was applied to the quantitative profiling of cellular Ras and EGFR protein isoforms, as well as serum amyloid A isoforms in plasma. CONCLUSIONS AND CLINICAL RELEVANCE Immunoaffinity purification combined with fast LC-MS detection for the detection of driver mutations in tissue and tumor biomarkers in plasma samples can assist clinicians to select an optimal therapeutic intervention for patients.
Collapse
Affiliation(s)
- Antoine Lesur
- Luxembourg Clinical Proteomics Center (LCP), CRP-Santé, Strassen, Luxembourg
| | - Lina Ancheva
- Luxembourg Clinical Proteomics Center (LCP), CRP-Santé, Strassen, Luxembourg
| | - Yeoun Jin Kim
- Luxembourg Clinical Proteomics Center (LCP), CRP-Santé, Strassen, Luxembourg
| | - Guy Berchem
- Laboratory of Experimental Hemato-Oncology, CRP-Santé, Strassen, Luxembourg.,Centre Hospitalier Luxembourg (CHL), Strassen, Luxembourg
| | - Jan van Oostrum
- Luxembourg Clinical Proteomics Center (LCP), CRP-Santé, Strassen, Luxembourg
| | - Bruno Domon
- Luxembourg Clinical Proteomics Center (LCP), CRP-Santé, Strassen, Luxembourg
| |
Collapse
|
90
|
Yeung B, Yu J, Yang X. Roles of the Hippo pathway in lung development and tumorigenesis. Int J Cancer 2015; 138:533-9. [PMID: 25644176 DOI: 10.1002/ijc.29457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Lung cancer is the most commonly diagnosed cancer and accounts for one fifth of all cancer deaths worldwide. Although significant progress has been made toward our understanding of the causes of lung cancer, the 5-year survival is still lower than 15%. Therefore, there is an urgent need for novel lung cancer biomarkers and drug targets. The Hippo signaling pathway is an emerging signaling pathway that regulates various biological processes. Recently, increasing evidence suggests that the Hippo pathway may play important roles in not only lung development but also lung tumorigenesis. In this review article, we will summarize the most recent advances and predict future directions on this new cancer research field.
Collapse
Affiliation(s)
- Benjamin Yeung
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jihang Yu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
91
|
Ravi J, Sneh A, Shilo K, Nasser MW, Ganju RK. FAAH inhibition enhances anandamide mediated anti-tumorigenic effects in non-small cell lung cancer by downregulating the EGF/EGFR pathway. Oncotarget 2015; 5:2475-86. [PMID: 24811863 PMCID: PMC4058020 DOI: 10.18632/oncotarget.1723] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The endocannabinoid anandamide (AEA), a neurotransmitter was shown to have anti-cancer effects. Fatty acid amide hydrolase (FAAH) metabolizes AEA and decreases its anti-tumorigenic activity. In this study, we have analyzed the role of FAAH inhibition in non-small cell lung cancer (NSCLC). We have shown that FAAH and CB1 receptor which is activated by AEA are expressed in lung adenocarcinoma patient samples and NSCLC cell lines A549 and H460. Since the synthetic analogue of anandamide (Met-F-AEA) did not possess significant anti-tumorigenic effects, we used Met-F-AEA in combination with FAAH inhibitor URB597 which significantly reduced EGF (epidermal growth factor)-induced proliferative and chemotactic activities in vitro when compared to anti-tumorigenic activity of Met-F-AEA alone. Further analysis of signaling mechanisms revealed that Met-F-AEA in combination with URB597 inhibits activation of EGFR and its downstream signaling ERK, AKT and NF-kB. In addition, it inhibited MMP2 secretion and stress fiber formation. We have also shown that the Met-F-AEA in combination with URB597 induces G0/G1 cell cycle arrest by downregulating cyclin D1 and CDK4 expressions, ultimately leading to apoptosis via activation of caspase-9 and PARP. Furthermore, the combination treatment inhibited tumor growth in a xenograft nude mouse model system. Tumors derived from Met-F-AEA and URB597 combination treated mice showed reduced EGFR, AKT and ERK activation and MMP2/MMP9 expressions when compared to Met-F-AEA or URB597 alone. Taken together, these data suggest in EGFR overexpressing NSCLC that the combination of Met-F-AEA with FAAH inhibitor resulted in superior therapeutic response compared to individual compound activity alone.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Pathology, The Ohio State University, Ohio, USA
| | | | | | | | | |
Collapse
|
92
|
Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang Y, Lv T, Yao Y, Yuan D, Song Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett 2015; 359:218-25. [PMID: 25617799 DOI: 10.1016/j.canlet.2015.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 01/22/2023]
Abstract
Previous studies have demonstrated that protein tyrosine phosphatase 1B (PTP1B) can promote tumor progression in breast cancer, colon cancer and prostate cancer. Additionally, PTP1B acts as a tumor suppressor in other cancers, such as esophageal cancer and lymphoma. These findings suggest that PTP1B functions as a double-facet molecule in tumors, and the role of PTP1B in non-small cell lung cancer (NSCLC) is unknown. The present study demonstrates that the expression of PTP1B in NSCLC tissue is significantly higher than its expression in benign lung disease and is associated with the stage and overall survival (OS) of NSCLC patients. In vitro studies have demonstrated that PTP1B promotes the proliferation and metastasis of NSCLC cells by reducing the expression of p-src (Tyr527), which activates src and ERK1/2. This study provides the first exploration of the role of PTP1B in the proliferation and metastasis of NSCLC and subsequently elucidates the role of PTP1B in cancer. Our study uncovered that PTP1B can promote NSCLC proliferation and metastasis by activating src and subsequently ERK1/2 and provides a theoretical basis for future applications of PTP1B inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ying Wu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wenjun Liang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yunfen Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yanwen Yao
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
93
|
Howells LM, Mahale J, Sale S, McVeigh L, Steward WP, Thomas A, Brown K. Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. J Pharmacol Exp Ther 2014; 350:483-94. [PMID: 24939419 DOI: 10.1124/jpet.114.216333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Lung cancer is responsible for over one million deaths worldwide each year. Smoking cessation for lung cancer prevention remains key, but it is increasingly acknowledged that prevention strategies also need to focus on high-risk groups, including ex-smokers, and patients who have undergone resection of a primary tumor. Models for chemoprevention of lung cancer often present conflicting results, making rational design of lung cancer chemoprevention trials challenging. There has been much focus on use of dietary bioactive compounds in lung cancer prevention strategies, primarily due to their favorable toxicity profile and long history of use within the human populace. One such compound is curcumin, derived from the spice turmeric. This review summarizes and stratifies preclinical evidence for chemopreventive efficacy of curcumin in models of lung cancer, and adjudges the weight of evidence for use of curcumin in lung cancer chemoprevention strategies.
Collapse
Affiliation(s)
- Lynne M Howells
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Jagdish Mahale
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Stewart Sale
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Laura McVeigh
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - William P Steward
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Anne Thomas
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
94
|
Milea A, George SHL, Matevski D, Jiang H, Madunic M, Berman HK, Gauthier ML, Gallie B, Shaw PA. Retinoblastoma pathway deregulatory mechanisms determine clinical outcome in high-grade serous ovarian carcinoma. Mod Pathol 2014; 27:991-1001. [PMID: 24336157 DOI: 10.1038/modpathol.2013.218] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/01/2013] [Accepted: 10/06/2013] [Indexed: 01/08/2023]
Abstract
Alterations in the retinoblastoma pathway are frequent in ovarian/tubal high-grade serous cancers, but the mechanism of deregulation and the impact on patient outcome are poorly understood. A cohort of 334 high-grade serous carcinomas was studied by immunohistochemical analysis of RB1, p16, cyclin D1, cyclin E1, and Ki67. Additional detailed analyses including RB1 allelic deletion (n=42), mutation (n=75), methylation (n=31), and SNP array analyses (n=75) were performed on cases with clinical parameters, including age, debulking status, treatment, and clinical outcome. p16/RB1 expression results yielded three distinct clinically relevant subgroups upon multivariable analysis controlling for stage, debulking status, and treatment types: p16 homogeneous/RB1+ with the shortest progression-free survival (median 15 months (95% CI: 13-18); P=0.016) compared with the p16 heterogeneous/RB1+ subgroup (median 22 months (95% CI: 16-32)) and the p16 homogeneous/RB1- subgroup (median 20 months (95% CI: 15-24)). Patients in the p16 homo/RB1- subgroup showed a significant increase in overall survival (>60 months; P=0.013), which suggests an increase in sensitivity to cytotoxic agents. Analyses of Rb pathway mechanistic differences among these groups revealed frequent RB1 genomic alterations such as RB1 allelic loss and/or large spanning deletions (83%) in the p16 homo/RB1- subgroups, also indicating that RB1 deletions are frequent in high-grade serous carcinoma. CCNE1 gene gains/amplifications were frequent in the p16 homogeneous/RB1+ subgroup (68%) and cyclin D1 protein overexpression was predominantly characteristic of the p16 heterogeneous/RB1+ subgroup. These subcategories occur early in tumor progression and are seen with similar frequency in the cancer precursor lesion, serous tubal intra-epithelial carcinoma. Overall, this study uniquely identifies multiple non-synonymous mechanisms of retinoblastoma pathway deregulation that correlate with significantly different clinical outcomes. Furthermore, deregulations identified in precursor lesions suggest a key role of this pathway in serous tumor development. Recognition of these categories may identify patients with increased sensitivity to chemotherapy and new opportunities for novel therapeutics.
Collapse
Affiliation(s)
- Anca Milea
- 1] Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada [3] Princess Margaret Cancer Centre, Toronto, ON, Canada [4] Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Sophia H L George
- 1] Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada [2] Princess Margaret Cancer Centre, Toronto, ON, Canada [3] Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Donco Matevski
- 1] Department of Pathology, University Health Network, Toronto, ON, Canada [2] Impact Genetics, Toronto, ON, Canada
| | - Haiyan Jiang
- 1] Princess Margaret Cancer Centre, Toronto, ON, Canada [2] Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Mary Madunic
- 1] Princess Margaret Cancer Centre, Toronto, ON, Canada [2] Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Hal K Berman
- 1] Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada [3] Princess Margaret Cancer Centre, Toronto, ON, Canada [4] Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Mona L Gauthier
- 1] Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada [2] Princess Margaret Cancer Centre, Toronto, ON, Canada [3] Department of Pathology, University Health Network, Toronto, ON, Canada [4] Department of Medical Biophyics, University of Toronto, Toronto, ON, Canada
| | - Brenda Gallie
- 1] Princess Margaret Cancer Centre, Toronto, ON, Canada [2] Department of Pathology, University Health Network, Toronto, ON, Canada [3] Impact Genetics, Toronto, ON, Canada [4] Department of Medical Biophyics, University of Toronto, Toronto, ON, Canada [5] Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patricia A Shaw
- 1] Campbell Family Institute for Breast Cancer Research, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada [3] Princess Margaret Cancer Centre, Toronto, ON, Canada [4] Department of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
95
|
Qu G, Liu C, Sun B, Zhou C, Zhang Z, Wang P. Combination of BIBW2992 and ARQ 197 is effective against erlotinib-resistant human lung cancer cells with the EGFR T790M mutation. Oncol Rep 2014; 32:341-7. [PMID: 24842595 DOI: 10.3892/or.2014.3178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/24/2014] [Indexed: 11/05/2022] Open
Abstract
Although the EGFR tyrosine kinase inhibitors (EGFR-TKI) erlotinib and gefitinib have shown marked effects against EGFR-mutated lung cancer, patients acquire resistance by various mechanisms, including the EGFR T790M mutation and Met induction, consequently suffering relapse. Thus, novel agents to overcome EGFR-TKI resistance are urgently needed. We aimed to investigate the inhibitory effects of a combination of BIBW2992 (irreversible EGFR inhibitor)/ARQ 197 (MET inhibitor) on the human lung adenocarcinoma cell line H1975. H1975 cells (harboring a T790M mutation in EGFR) were treated with erlotinib, BIBW2992 or ARQ 197 separately or with combinations of erlotinib/ARQ 197 or BIBW2992/ARQ 197. Cell growth, apoptosis and cell cycle distribution were evaluated by MTT assay, Annexin V/propidium iodide (PI) double staining and flow cytometry, respectively. EGFR, MET, AKT, ERK and the respective phosphorylated counterparts were detected by western blot analysis. Pathway-specific knockdown of MET and/or EGFR kinase signaling was achieved by siRNA interference. H1975 cells displayed EGFR and MET activation, and were resistant to erlotinib. The BIBW2992/ARQ 197 combination significantly inhibited growth, induced cell cycle arrest and apoptosis, and altered the phosphorylation of EGFR, MET, AKT and ERK1/2 in the H1975 cells. Phosphorylation of AKT and ERK1/2, downstream effectors of the EGFR and MET pathways, was not affected by the other tested treatments. Finally, knockdown of MET and/or EGFR in the H1975 cells confirmed the enhanced downstream inhibition of both MET and EGFR pathways. Combination of an irreversible EGFR inhibitor and MET inhibitor is effective in controlling H1975 cells with acquired resistance to erlotinib, by a mechanism involving the downregulation of PI3K/AKT and MEK/ERK signaling pathways.
Collapse
Affiliation(s)
- Geping Qu
- Nanlou Respiratory Diseases Department, The Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, The Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Baojun Sun
- Nanlou Respiratory Diseases Department, The Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Changxi Zhou
- Nanlou Respiratory Diseases Department, The Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Zhijian Zhang
- Nanlou Respiratory Diseases Department, The Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Peng Wang
- Nanlou Respiratory Diseases Department, The Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
96
|
Identification and characterization of a suite of tumor targeting peptides for non-small cell lung cancer. Sci Rep 2014; 4:4480. [PMID: 24670678 PMCID: PMC3967199 DOI: 10.1038/srep04480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/21/2014] [Indexed: 01/01/2023] Open
Abstract
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071–40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.
Collapse
|
97
|
Gomes A, Reis-Silva M, Alarcão A, Couceiro P, Sousa V, Carvalho L. Promoter hypermethylation of DNA repair genes MLH1 and MSH2 in adenocarcinomas and squamous cell carcinomas of the lung. REVISTA PORTUGUESA DE PNEUMOLOGIA 2014; 20:20-30. [DOI: 10.1016/j.rppneu.2013.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/28/2013] [Accepted: 07/29/2013] [Indexed: 11/28/2022] Open
|
98
|
Pastrello C, Otasek D, Fortney K, Agapito G, Cannataro M, Shirdel E, Jurisica I. Visual data mining of biological networks: one size does not fit all. PLoS Comput Biol 2013; 9:e1002833. [PMID: 23341759 PMCID: PMC3547662 DOI: 10.1371/journal.pcbi.1002833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High-throughput technologies produce massive amounts of data. However, individual methods yield data specific to the technique used and biological setup. The integration of such diverse data is necessary for the qualitative analysis of information relevant to hypotheses or discoveries. It is often useful to integrate these datasets using pathways and protein interaction networks to get a broader view of the experiment. The resulting network needs to be able to focus on either the large-scale picture or on the more detailed small-scale subsets, depending on the research question and goals. In this tutorial, we illustrate a workflow useful to integrate, analyze, and visualize data from different sources, and highlight important features of tools to support such analyses.
Collapse
Affiliation(s)
- Chiara Pastrello
- CRO Aviano, National Cancer Institute, Aviano, Italy
- Ontario Cancer Institute, the Campbell Family Institute for Cancer Research, and Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - David Otasek
- Ontario Cancer Institute, the Campbell Family Institute for Cancer Research, and Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Kristen Fortney
- Ontario Cancer Institute, the Campbell Family Institute for Cancer Research, and Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Giuseppe Agapito
- Ontario Cancer Institute, the Campbell Family Institute for Cancer Research, and Techna Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medical and Surgical Sciences, University Magna Græcia, Catanzaro, Italy
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, University Magna Græcia, Catanzaro, Italy
| | - Elize Shirdel
- Ontario Cancer Institute, the Campbell Family Institute for Cancer Research, and Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Ontario Cancer Institute, the Campbell Family Institute for Cancer Research, and Techna Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Computer Science and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
99
|
Story M, Ding LH, Brock WA, Ang KK, Alsbeih G, Minna J, Park S, Das A. Defining molecular and cellular responses after low and high linear energy transfer radiations to develop biomarkers of carcinogenic risk or therapeutic outcome. HEALTH PHYSICS 2012; 103:596-606. [PMID: 23032890 PMCID: PMC4492459 DOI: 10.1097/hp.0b013e3182692085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The variability in radiosensitivity across the human population is governed in part by genetic factors. The ability to predict therapeutic response, identify individuals at greatest risk for adverse clinical responses after therapeutic radiation doses, or identify individuals at high risk for carcinogenesis from environmental or medical radiation exposures has a medical and economic impact on both the individual and society at large. As radiotherapy incorporates particles, particularly particles larger than protons, into therapy, the need for such discriminators, (i.e., biomarkers) will become ever more important. Cellular assays for survival, DNA repair, or chromatid/chromosomal analysis have been used to identify at-risk individuals, but they are not clinically applicable. Newer approaches, such as genome-wide analysis of gene expression or single nucleotide polymorphisms and small copy number variations within chromosomes, are examples of technologies being applied to the discovery process. Gene expression analysis of primary or immortalized human cells suggests that there are distinct gene expression patterns associated with radiation exposure to both low and high linear energy transfer radiations and that those most radiosensitive are discernible by their basal gene expression patterns. However, because the genetic alterations that drive radio response may be subtle and cumulative, the need for large sample sizes of specific cell or tissue types is required. A systems biology approach will ultimately be necessary. Potential biomarkers from cell lines or animal models will require validation in a human setting where possible and before being considered as a credible biomarker some understanding of the molecular mechanism is necessary.
Collapse
Affiliation(s)
- Michael Story
- Department of Radiation Oncology, Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Nagy-Mignotte H, Guillem P, Vignoud L, Coudurier M, Vesin A, Bonneterre V, Toffart AC, Sakhri L, Brambilla C, Brambilla E, Timsit JF, Moro-Sibilot D. Outcomes in recurrent small-cell lung cancer after one to four chemotherapy lines: A retrospective study of 300 patients. Lung Cancer 2012; 78:112-20. [DOI: 10.1016/j.lungcan.2012.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/31/2012] [Accepted: 06/09/2012] [Indexed: 12/23/2022]
|