51
|
Ghirardo S, Mazzolai M, Di Marco A, Petreschi F, Ullmann N, Ciofi Degli Atti ML, Cutrera R. Biological Treatments and Target Therapies for Pediatric Respiratory Medicine: Not Only Asthma. Front Pediatr 2022; 10:837667. [PMID: 35242725 PMCID: PMC8885732 DOI: 10.3389/fped.2022.837667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
We present a description of pediatric pneumology biological medications and other target therapies. The article aims at introducing the importance of a molecular approach to improve treatments. The first item treated was T2-High asthma and its current biological treatment and prescribing indications to propose a flow-chart to guide the clinical choice. Molecular rationales of such treatments are used to introduce a more general description of the biological and molecular approach to target therapies application. We introduce a general interpretation approach to neutrophilic asthma using the molecular plausibility one in order to propose possible future treatments mainly targeting interleukin-1 (IL-1), IL-17, IL-12, and IL-23. Indeed, cytokines can be excellent targets for several biological treatments. Downregulation of specific cytokines can be crucial in treating autoinflammatory and rheumatological diseases with a pulmonary involvement. Such conditions, although rare, should be early recognized as they can involve significant improvement with a properly targeted therapy. We face these conditions in a cherry-picking fashion picturing SAVI (STING-associated vasculopathy with onset in infancy), CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature), and COPA (coat proteins alpha syndrome) syndrome pulmonary involvement. Such examples are functional to introduce molecular-based approach for patients with rare conditions. Molecular plausibility can be highly valuable in treating patients with not-approved but possibly highly effective therapies. Due to the rarity of these conditions, we stress the concept of basket trials using the example of cytokinin-directed immunosuppressive treatment. Lastly, we provide an example of augmentative therapy using the alpha1 antitrypsin deficiency as a model. In summary, the article presents a collection of the most recent achievements and some possible future developments of target therapies for pediatric pulmonary conditions.
Collapse
Affiliation(s)
- Sergio Ghirardo
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Michele Mazzolai
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Di Marco
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesca Petreschi
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicola Ullmann
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marta Lucia Ciofi Degli Atti
- Clinical, Management and Technology Innovation Research Unit, Medical Direction, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Renato Cutrera
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
52
|
Kang N, Song WJ. Discovering Biomarkers of Neutrophilic Asthma: A Clinician's Perspective. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:1-4. [PMID: 34983102 PMCID: PMC8724821 DOI: 10.4168/aair.2022.14.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Noeul Kang
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
53
|
Shaban SA, Brakhas SA, Ad'hiah AH. Association of interleukin-17A genetic polymorphisms with risk of asthma: A case-control study in Iraqi patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
54
|
Bergantini L, d'Alessandro M, Cameli P, Pianigiani T, Fanetti M, Sestini P, Bargagli E. Follicular T Helper and Breg Cell Balance in Severe Allergic Asthma Before and After Omalizumab Therapy. Mol Diagn Ther 2021; 25:593-605. [PMID: 34342843 PMCID: PMC8410727 DOI: 10.1007/s40291-021-00545-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Severe allergic asthma (SAA) is based on type 2 (T2-high) immune responses to allergens promoting type 2 T helper (Th2) cell cytokine responses and production of IgE antibodies. Omalizumab was the first biological drug licensed for clinical use in the management of IgE-mediated SAA. Despite emerging evidence supporting the prominent role of follicular T cells (Tfh), Breg and Treg subsets, in the development and progression of SAA, no data are available on the impact of omalizumab therapy. METHODS Ten SAA patients monitored at the Respiratory Diseases Unit of Siena University Hospital and ten healthy sex- and age-matched controls were enrolled in the study. Clinical and functional parameters were collected at baseline (T0) and after 6 months of therapy (T6). Cellular population analysis was determined through multicolour flow cytometry. RESULTS SAA patients showed higher percentages of Th17.1, Tfh and Tfh2 while CD24hiCD27hi Breg cell, Treg and Tfr percentages were significantly lower than in controls. Higher percentages of Tfh2 in patients with nasal polyps than in those without and in controls were observed. At T6, significant decreases in Tfh and Tfh2 compared with T0 were observed. A slightly significant increase in Teffs was reported at T6 compared to T0. ΔIgE levels in serum were correlated with ΔCD19+CD24+CD27+ Breg cell percentages (r = - 0.86, p = 0.0022). CONCLUSIONS Our data explored the changes in Tfh cells, Tregs and Bregs in severe asthma. The restoration of immunological imbalance in SAA patients after omalizumab is certainly intriguing and represents a glimpse into the comprehension of immunological effects of treatment.
Collapse
Affiliation(s)
- Laura Bergantini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy.
| | - Miriana d'Alessandro
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Paolo Cameli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Tommaso Pianigiani
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Matteo Fanetti
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Piersante Sestini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Elena Bargagli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| |
Collapse
|
55
|
Ondari E, Calvino-Sanles E, First NJ, Gestal MC. Eosinophils and Bacteria, the Beginning of a Story. Int J Mol Sci 2021; 22:8004. [PMID: 34360770 PMCID: PMC8347986 DOI: 10.3390/ijms22158004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.
Collapse
Affiliation(s)
| | | | | | - Monica C. Gestal
- LSU Health, Department of Microbiology and Immunology, Louisiana State University (LSU), Shreveport, LA 71103, USA; (E.O.); (E.C.-S.); (N.J.F.)
| |
Collapse
|
56
|
Jakiela B, Rebane A, Soja J, Bazan-Socha S, Laanesoo A, Plutecka H, Surmiak M, Sanak M, Sladek K, Bochenek G. Remodeling of bronchial epithelium caused by asthmatic inflammation affects its response to rhinovirus infection. Sci Rep 2021; 11:12821. [PMID: 34140575 PMCID: PMC8211645 DOI: 10.1038/s41598-021-92252-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Human rhinoviruses (HRV) are frequent cause of asthma exacerbations, however the influence of airway inflammation on the severity of viral infection is poorly understood. Here, we investigated how cytokine-induced remodeling of airway epithelium modulates antiviral response. We analyzed gene expression response in in vitro differentiated bronchial epithelium exposed to cytokines and next infected with HRV16. IL-13-induced mucous cell metaplasia (MCM) was associated with impaired ciliogenesis and induction of antiviral genes, resulting in lower susceptibility to HRV. Epithelial-mesenchymal transition caused by TGF-β was associated with increased virus replication and boosted innate response. Moreover, HRV infection per se caused transient upregulation of MCM markers and growth factors, followed by low-level virus replication and shedding. Our data suggest that the outcome of HRV infection depends on the type of lower airway inflammation and the extent of epithelial damage. Type-2 inflammation (eosinophilic asthma) may induce antiviral state of epithelium and decrease virus sensitivity, while growth factor exposure during epithelial repair may facilitate virus replication and inflammatory response. Additionally, responses to HRV were similar in cells obtained from asthma patients and control subjects, which implicates that antiviral mechanisms are not intrinsically impaired in asthma, but may develop in the presence of uncontrolled airway inflammation.
Collapse
Affiliation(s)
- Bogdan Jakiela
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Ana Rebane
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jerzy Soja
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Stanislawa Bazan-Socha
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Anet Laanesoo
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanna Plutecka
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Marcin Surmiak
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Marek Sanak
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Krzysztof Sladek
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Grazyna Bochenek
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| |
Collapse
|
57
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
58
|
Güder S, Güder H. The course of COVID-19 infection and prolonged sneezing and nasal congestion in a patient using ixekizumab. Dermatol Ther 2021; 34:e14894. [PMID: 33599042 PMCID: PMC7995103 DOI: 10.1111/dth.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Semih Güder
- Department of Dermatology, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Hüsna Güder
- Department of Dermatology, Medical Faculty, Maltepe University, Istanbul, Turkey
| |
Collapse
|
59
|
Suraya R, Nagano T, Katsurada M, Sekiya R, Kobayashi K, Nishimura Y. Molecular mechanism of asthma and its novel molecular target therapeutic agent. Respir Investig 2021; 59:291-301. [PMID: 33549541 DOI: 10.1016/j.resinv.2020.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Asthma is a chronic disease with major public health ramifications owing to its high morbidity and mortality rates, especially in severe and recurrent cases. Conventional therapeutic options could partially alleviate the burden of asthma, yet a novel approach is needed to completely control this condition. To do so, a comprehensive understanding of the molecular mechanism underlying asthma is essential to recognize and treat the major pathways that drive its pathophysiology. In this review, we will discuss the molecular mechanism of asthma, in particular focusing on the type of inflammatory responses it elicits, namely type 2 and non-type 2 asthma. Furthermore, we will discuss the novel therapeutic options that target the aberrant molecules found in asthma pathophysiology. We will specifically focus on the role of novel monoclonal antibody therapies recently developed, such as the anti-IgE, IL-5, IL-5Rα, and IL-4Rα antibodies, drugs that have been extensively studied preclinically and clinically.
Collapse
Affiliation(s)
- Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Reina Sekiya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
60
|
Khan MA, Khan ZA, Charles M, Pratap P, Naeem A, Siddiqui Z, Naqvi N, Srivastava S. Cytokine Storm and Mucus Hypersecretion in COVID-19: Review of Mechanisms. J Inflamm Res 2021; 14:175-189. [PMID: 33519225 PMCID: PMC7838037 DOI: 10.2147/jir.s271292] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Mucus is an integral part of the respiratory physiology. It protects the respiratory tract by acting as a physical barrier against inhaled particles and microbes. Excessive inflammation in conditions such as COVID-19 can result in over-production of mucus which obstructs the airway. Build-up of mucus can also contribute to recurrent airway infection, causing further obstruction. This article summarizes the current understanding and knowledge of respiratory mucus production and proposes the role of cytokine storm in inducing sudden mucus hypersecretion in COVID-19. Based on these cascades, the active constituents that inhibit or activate several potential targets are outlined for further research. These may be explored for the discovery and design of drugs to combat cytokine storm and its ensuing complications.
Collapse
Affiliation(s)
- Mohsin Ali Khan
- Reseach & Development Department, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Zaw Ali Khan
- Reseach & Development Department, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Mark Charles
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Pushpendra Pratap
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Abdul Naeem
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Nigar Naqvi
- Department of Nutrition, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Shikha Srivastava
- Department of Nutrition, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
61
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
62
|
Ramos-Ramírez P, Malmhäll C, Johansson K, Adner M, Lötvall J, Bossios A. Lung Regulatory T Cells Express Adiponectin Receptor 1: Modulation by Obesity and Airway Allergic Inflammation. Int J Mol Sci 2020; 21:ijms21238990. [PMID: 33256137 PMCID: PMC7730828 DOI: 10.3390/ijms21238990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022] Open
Abstract
Regulatory T cells (Tregs) decrease in the adipose tissue upon weight gain, contributing to persistent low-grade inflammation in obesity. We previously showed that adipose tissue Tregs express the adiponectin receptor 1 (AdipoR1); however, the expression in lung Tregs is still unknown. Here, we aimed to determine whether Helios+ and Helios- Treg subsets expressed AdipoR1 in the lungs of obese mice and whether different obesity grades affected the expression upon allergic lung inflammation. For diet-induced obesity (DIO), mice were fed a high-fat diet (HFD) for up to 15 weeks (overweight), 21 weeks (obesity), and 26 weeks (morbid obesity). Overweight and morbidly obese mice were sensitized and challenged with ovalbumin (OVA) to induce allergic lung inflammation. The AdipoR1 expression was reduced significantly in the lung Helios+ and Helios- Tregs of obese mice compared with lean mice. Airway allergic inflammation showed reduced AdipoR1 expression in lung Foxp3+ Tregs. Obesity significantly exacerbated the eosinophilic airway inflammation and reduced the number of Helios+ Tregs in lung and adipose tissue in the obesity-associated asthma model. Upon further weight gain, AdipoR1-expressing Tregs in the lungs of allergic mice were increased, whereas AdipoR1-expressing Tregs in adipose tissue were reduced. These data suggest that obesity-associated adipose tissue inflammation may exacerbate allergic inflammation by downregulating the AdipoR1+ Tregs in the lungs.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Krefting Research Centre, Department for Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.R.-R.); (C.M.); (K.J.); (J.L.)
| | - Carina Malmhäll
- Krefting Research Centre, Department for Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.R.-R.); (C.M.); (K.J.); (J.L.)
| | - Kristina Johansson
- Krefting Research Centre, Department for Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.R.-R.); (C.M.); (K.J.); (J.L.)
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Jan Lötvall
- Krefting Research Centre, Department for Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.R.-R.); (C.M.); (K.J.); (J.L.)
| | - Apostolos Bossios
- Krefting Research Centre, Department for Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (P.R.-R.); (C.M.); (K.J.); (J.L.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
- Correspondence: ; Tel.: +46-8-58586734
| |
Collapse
|