51
|
Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics 2017; 18:391. [PMID: 28521734 PMCID: PMC5437419 DOI: 10.1186/s12864-017-3774-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n = 2x = 50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes. Results The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30–38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10–30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides. Conclusions Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation suggesting its recent origin and/or intensive homogenisation processes. The dense methylation of units indicates that powerful epigenetic mechanisms have evolved in this group of fish to silence amplified genes. We discuss how the higher-order repeat structures impact on homogenisation of 5S rDNA in the genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3774-7) contains supplementary material, which is available to authorized users.
Collapse
|
52
|
Suárez P, Pinto Barroso ICG, Silva DDS, Milhomem SSR, Cabral-de-Mello DC, Martins C, Pieczarka JC, Nagamachi CY. Highest Diploid Number Among Gymnotiformes: First Cytogenetic Insights into Rhabdolichops (Sternopygidae). Zebrafish 2017; 14:272-279. [PMID: 28394248 DOI: 10.1089/zeb.2016.1405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report the first comparative cytogenetic analysis of two species from electrogenic fish of genus Rhabdolichops (Sternopygidae, Gymnotiformes): Rhabdolichops troscheli and Rhabdolichops cf eastwardi. R. troscheli has 2n = 54 (fundamental number [FN] = 66), whereas R. cf. eastwardi has 2n = 74 (FN = 78). C-banding revealed centromeric constitutive heterochromatin in both species. Ag-NORs mapped on pair 6 in R. troscheli and pair 30 in R. cf eastwardi. Fluorescense in situ hybridization with 18S rDNA probes confirmed the Ag-NOR staining results and revealed additional (presumably silent) ribosomal genes on pairs 12, 13, 21, 23, 26, and 27 in R. cf eastwardi. 5S rDNA was found on the centromeres of pair 7 in both species. Telomeric probes showed only distal locations. Dispersed signal patterns were obtained using probes for retrotransposons Rex1 and Rex3. Histone H1 and H3 genes were found together on pair 6 in R. cf eastwardi. The high diploid number found in Rhabdolichops suggests that chromosome fission may have contributed to its chromosomal evolution, phylogenetic relationship of the Sternopygidae suggests that this increase in diploid number could be a synapomorphic characteristic of genus Rhabdolichops. Although both species are phylogenetically close related, their karyotype structure has undergone divergent evolutionary directions. All in all, our results strongly suggest that R. cf eastwardi experencied recent intense genome reorganization.
Collapse
Affiliation(s)
- Pablo Suárez
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
- 2 Instituto de Biología Subtropical , CONICET-UNaM, Puerto Iguazú, Argentina
| | - Inaê Cristina Guerreiro Pinto Barroso
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | | | - Susana S R Milhomem
- 4 Instituto Federal de Educação , Ciência e Tecnologia de Goiás, Valparaiso de Goiás, Brazil
| | | | - Cesar Martins
- 6 Instituto de Biociências, Universidade Estadual Paulista Julio de Mesquita Filho , Botucatu, Brazil
| | - Julio Cesar Pieczarka
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará , Belém, Brazil
| |
Collapse
|
53
|
Locati MD, Pagano JFB, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Zhu K, Spaink HP, Girard G, Rauwerda H, Jonker MJ, Dekker RJ, Breit TM. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA (NEW YORK, N.Y.) 2017; 23:446-456. [PMID: 28003516 PMCID: PMC5340908 DOI: 10.1261/rna.059642.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/03/2016] [Indexed: 05/31/2023]
Abstract
5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci.
Collapse
Affiliation(s)
- Mauro D Locati
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Johanna F B Pagano
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Wim A Ensink
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Marina van Olst
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Selina van Leeuwen
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Ulrike Nehrdich
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Kongju Zhu
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories - Cell Observatorium, Leiden 2333 CE, The Netherlands
| | - Geneviève Girard
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Han Rauwerda
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Rob J Dekker
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| |
Collapse
|
54
|
de Sousa TP, Marques DKS, Vitorino CDA, Faria KDC, Braga GDSF, Ferreira DC, Venere PC. Cytogenetic and Molecular Data Support the Occurrence of Three Gymnotus Species (Gymnotiformes: Gymnotidae) Used as Live Bait in Corumbá, Brazil: Implications for Conservation and Management of Professional Fishing. Zebrafish 2017; 14:177-186. [PMID: 28151699 DOI: 10.1089/zeb.2016.1356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In the Pantanal of Mato Grosso do Sul, electric fish (Gymnotus spp.) are the primary source of live bait, accounting for more than three-quarters of total sales. Based on chromosomal and molecular markers, the present study attempted to identify the Gymnotus species used as bait in the region of Corumbá, Mato Grosso do Sul, Brazil. Three species were detected, based on their distinct karyotypes: G. paraguensis (2n = 54), G. sylvius (2n = 40), and G. pantanal (2n = 39-40, X1X2Y/X1X1X2X2), with no evidence being found of interspecific hybrids. All three species presented a single nucleolar organizer regions (NOR) (heterochromatin CMA3+/DAPI-) and pericentromeric heterochromatin in almost all chromosomes, with a few distal and/or interstitial blocks. G. sylvius and G. pantanal had one and two pairs of chromosomes with 5S rDNA sites, respectively, while G. paraguensis had 17 chromosome pairs with these markers. The three species formed well-defined clusters in the DNA barcoding analysis. The integrated analysis of the cytogenetic and DNA barcoding data confirmed that the diversity of Gymnotus species exploited as live bait in the study region has been underestimated. These findings indicate that the markers analyzed represent valuable tools for the conservation and fishery management of the Gymnotus stocks exploited.
Collapse
Affiliation(s)
- Tatiane Pires de Sousa
- 1 Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | | | - Carla de Andrade Vitorino
- 3 Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Karina de Cassia Faria
- 1 Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Gisele da Silva Ferreira Braga
- 3 Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Daniela Cristina Ferreira
- 4 Programa de Pós-graduação em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Paulo Cesar Venere
- 1 Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil .,3 Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil .,4 Programa de Pós-graduação em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| |
Collapse
|
55
|
Bitencourt JA, Sampaio I, Ramos RT, Vicari MR, Affonso PRADM. First Report of Sex Chromosomes in Achiridae (Teleostei: Pleuronectiformes) with Inferences About the Origin of the Multiple X1X1X2X2/X1X2Y System and Dispersal of Ribosomal Genes inAchirus achirus. Zebrafish 2017; 14:90-95. [DOI: 10.1089/zeb.2016.1333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Iracilda Sampaio
- Institute of Coastal Studies, Federal University of Pará, Bragança, Brazil
| | - Robson T.C. Ramos
- Department of Systematics and Ecology, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcelo Ricardo Vicari
- Department of Genetics, Structural and Molecular Biology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | |
Collapse
|
56
|
Ribeiro LB, Moraes Neto A, Artoni RF, Matoso DA, Feldberg E. Chromosomal Mapping of Repetitive Sequences (Rex3, Rex6, and rDNA Genes) in Hybrids Between Colossoma macropomum (Cuvier, 1818) and Piaractus mesopotamicus (Holmberg, 1887). Zebrafish 2017; 14:155-160. [PMID: 28067606 DOI: 10.1089/zeb.2016.1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some species of Characiformes are known for their high economic value, such as Colossoma macropomum and Piaractus mesopotamicus, and are used in aquaculture programs to generate hybrid tambacu (interbreeding of C. macropomum females and P. mesopotamicus males). The present work aimed to investigate the location of the Rex3 and Rex6 transposable elements in the hybrid and in the species, in addition to checking the genomic organization of the 18S and 5S rDNA in tambacu. The diploid number found for the hybrid was equal to 54 chromosomes, with heterochromatic blocks distributed mainly in the centromeric portions. The chromosomal location of the mobile elements Rex3 and Rex6 in C. macropomum, P. mesopotamicus, and in the hybrid between these species enabled knowledge expansion and the generation of data on such mobile elements. In addition, the location of such elements is not related to the distribution of ribosomal DNA sites. The mapping of the 18S rDNA was shown to be effective in cytogenetic identification of the hybrid tambacu, allowing for differentiation from the parent species and from the hybrid between C. macropomum and the other species from Piaractus (P. brachypomus).
Collapse
Affiliation(s)
- Leila Braga Ribeiro
- 1 Centro de Ciências da Saúde, Universidade Federal de Roraima (UFRR) , Boa Vista, Brazil
| | - Americo Moraes Neto
- 2 Programa de Pós-Graduação em Ciência Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Roberto Ferreira Artoni
- 3 Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa (UEPG) , Ponta Grossa, Brazil
| | | | - Eliana Feldberg
- 5 Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA) , Manaus, Brazil
| |
Collapse
|
57
|
Yano CF, Bertollo LAC, Rebordinos L, Merlo MA, Liehr T, Portela-Bens S, Cioffi MDB. Evolutionary Dynamics of rDNAs and U2 Small Nuclear DNAs in Triportheus (Characiformes, Triportheidae): High Variability and Particular Syntenic Organization. Zebrafish 2017; 14:146-154. [PMID: 28051362 DOI: 10.1089/zeb.2016.1351] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multigene families correspond to a group of genes tandemly repeated, showing enormous diversity in both number of units and genomic organization. In fishes, unlike rDNAs that have been well explored in cytogenetic studies, U2 small nuclear RNA (snRNA) genes are poorly investigated concerning their chromosomal localization. All Triportheus species (Characiformes, Triportheidae) studied so far carry a ZZ/ZW sex chromosomes system, where the W chromosome contains a huge 18S rDNA cistron. In some species the syntenic organization of rDNAs on autosomes was also verified. To explore this particular organization, we performed three-color-fluorescence in situ hybridization using 5S, 18S rDNA, and U2 snRNA genes as probes in eight Triportheus species. This work represents the first one analyzing the chromosomal distribution of U2 snRNA genes in genomes of Triportheidae. The variability in number of rDNA clusters, and the divergent syntenies for these three multigene families, put in evidence their evolutionary dynamism, revealing a much more complex organization of these genes than previously supposed for closely related species. Our study also provides additional data on the accumulation of repetitive sequences in the sex-specific chromosome. Besides, the chromosomal organization of U2 snDNAs among fish species is also reviewed.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| | | | - Laureana Rebordinos
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Manuel Alejandro Merlo
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Thomas Liehr
- 3 Jena University Hospital, Friedrich Schiller University , Institute of Human Genetics, Jena, Germany
| | - Silvia Portela-Bens
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Marcelo de Bello Cioffi
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| |
Collapse
|
58
|
da Silva M, Barbosa P, Artoni RF, Feldberg E. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua. Cytogenet Genome Res 2016; 149:297-303. [PMID: 27750255 DOI: 10.1159/000449431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome.
Collapse
Affiliation(s)
- Maelin da Silva
- Programa de Pós Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | | | | | | |
Collapse
|
59
|
Ferreira M, Garcia C, Matoso DA, de Jesus IS, Feldberg E. A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae). Genetica 2016; 144:591-599. [DOI: 10.1007/s10709-016-9927-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
|
60
|
Dion-Côté AM, Symonová R, Lamaze FC, Pelikánová Š, Ráb P, Bernatchez L. Standing chromosomal variation in Lake Whitefish species pairs: the role of historical contingency and relevance for speciation. Mol Ecol 2016; 26:178-192. [PMID: 27545583 DOI: 10.1111/mec.13816] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
The role of chromosome changes in speciation remains a debated topic, although demographic conditions associated with divergence should promote their appearance. We tested a potential relationship between chromosome changes and speciation by studying two Lake Whitefish (Coregonus clupeaformis) lineages that recently colonized postglacial lakes following allopatry. A dwarf limnetic species evolved repeatedly from the normal benthic species, becoming reproductively isolated. Lake Whitefish hybrids experience mitotic and meiotic instability, which may result from structurally divergent chromosomes. Motivated by this observation, we test the hypothesis that chromosome organization differs between Lake Whitefish species pairs using cytogenetics. While chromosome and fundamental numbers are conserved between the species (2n = 80, NF = 98), we observe extensive polymorphism of subtle karyotype traits. We describe intrachromosomal differences associated with heterochromatin and repetitive DNA, and test for parallelism among three sympatric species pairs. Multivariate analyses support the hypothesis that differentiation at the level of subchromosomal markers mostly appeared during allopatry. Yet we find no evidence for parallelism between species pairs among lakes, consistent with colonization effect or postcolonization differentiation. The reported intrachromosomal polymorphisms do not appear to play a central role in driving adaptive divergence between normal and dwarf Lake Whitefish. We discuss how chromosomal differentiation in the Lake Whitefish system may contribute to the destabilization of mitotic and meiotic chromosome segregation in hybrids, as documented previously. The chromosome structures detected here are still difficult to sequence and assemble, demonstrating the value of cytogenetics as a complementary approach to understand the genomic bases of speciation.
Collapse
Affiliation(s)
- Anne-Marie Dion-Côté
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, Québec, Canada, G1V 0A6
| | - Radka Symonová
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, A-5310, Mondsee, Austria
| | - Fabien C Lamaze
- Ontario Institut for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, Ontario, Canada, M5G 0A3
| | - Šárka Pelikánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, vvi, Liběchov, 277 21, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, vvi, Liběchov, 277 21, Czech Republic
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, Québec, Canada, G1V 0A6
| |
Collapse
|
61
|
Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 2016; 23:545-60. [PMID: 26429387 DOI: 10.1007/s10577-015-9490-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jennifer L Anderson
- INRA, Fish Physiology and Genomics (UR1037), Campus de Beaulieu, Rennes, France.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Manfred Schartl
- Department Physiological Chemistry, Biozentrum, University of Wuerzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
62
|
Martinez JF, Lui RL, Traldi JB, Blanco DR, Moreira-Filho O. Comparative Cytogenetics of Hoplerythrinus unitaeniatus (Agassiz, 1829) (Characiformes, Erythrinidae) Species Complex from Different Brazilian Hydrographic Basins. Cytogenet Genome Res 2016; 149:191-200. [PMID: 27522524 DOI: 10.1159/000448153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Chromosomal characteristics of Hoplerythrinus unitaeniatus populations from 5 Brazilian river basins, namely Arinos (Amazonas basin), Araguaia, Paraguai, Alto Paraná, and São Francisco were analyzed by conventional Giemsa staining, C-banding, silver nitrate impregnation, and fluorescence in situ hybridization (FISH) with 18S and 5S rDNA and telomeric sequence (TTAGGG)n probes. The diploid chromosome number was 2n = 48 in representatives of the populations from Paraguai and Alto Paraná River basins and 2n = 52 for those from the Arinos and Araguaia River basins. The São Francisco population had individuals with 2n = 50 and 52 occurring in sympatry. C-banding showed heterochromatic blocks mainly located at interstitial and pericentromeric positions in most of the chromosomes. Silver nitrate impregnation demonstrated simple NORs for representatives from Arinos and Araguaia River populations and multiple NORs for specimens from Paraguai, Alto Paraná, and São Francisco River populations. FISH with 18S and 5S rDNA probes revealed many chromosomes carrying these cistrons, with up to 21 chromosomes bearing 18S rDNA sites (Alto Rio Paraná basin) and up to 12 chromosomes with 5S rDNA sites (Paraguai basin), besides the occurrence of colocalization in all populations. FISH with telomeric sequence (TTAGGG)n detected sites in the terminal portion of the chromosomes in all populations. These data reinforce the idea that H. unitaeniatus is a species complex. Evolutionary and biogeographical aspects of the group in the Neotropical region are discussed.
Collapse
Affiliation(s)
- Juliana F Martinez
- Departamento de Biologia, Universidade Federal de São Carlos, Sorocaba, Brazil
| | | | | | | | | |
Collapse
|
63
|
Rubert M, da Rosa R, Zawadzki CH, Mariotto S, Moreira-Filho O, Giuliano-Caetano L. Chromosome Mapping of 18S Ribosomal RNA Genes in Eleven Hypostomus Species (Siluriformes, Loricariidae): Diversity Analysis of the Sites. Zebrafish 2016; 13:360-8. [PMID: 27192329 DOI: 10.1089/zeb.2016.1279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the chromosomal distribution of 18S ribosomal DNA (rDNA) in different populations of 11 species of Hypostomus collected in important Brazilian basins, namely South Atlantic, Upper Paraná, and Paraguay applying the fluorescence in situ hybridization (FISH). Hypostomus cochliodon, Hypostomus commersoni, Hypostomus hermanni, Hypostomus regani, Hypostomus albopunctatus, Hypostomus paulinus, Hypostomus aff. paulinus, Hypostomus iheringii, and Hypostomus mutucae presented multiple 18S rDNA sites while Hypostomus strigaticeps and Hypostomus nigromaculatus exhibited a single pair of chromosomes with 18S rDNA sites. The studied species presented variations in the number and position of these sites. The results accomplished were similar to those obtained by the analysis of AgNORs, revealing the same interspecific variability. Each species exhibited distinctive patterns of AgNOR and 18S rDNA distribution, which can be considered cytogenetic markers in each species of the genus and help improve the discussions on the phylogeny of the group.
Collapse
Affiliation(s)
- Marceléia Rubert
- 1 Laboratório de Biodiversidade Molecular e Conservação, Universidade Federal de São Carlos , São Carlos, Brazil
| | - Renata da Rosa
- 2 Laboratório de Citogenética Animal, Universidade Estadual de Londrina , Londrina, Brazil
| | - Claudio H Zawadzki
- 3 Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá , Maringá, Brazil
| | - Sandra Mariotto
- 4 Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso (IFMT) , Cuiabá, Brazil
| | - Orlando Moreira-Filho
- 1 Laboratório de Biodiversidade Molecular e Conservação, Universidade Federal de São Carlos , São Carlos, Brazil
| | - Lucia Giuliano-Caetano
- 2 Laboratório de Citogenética Animal, Universidade Estadual de Londrina , Londrina, Brazil
| |
Collapse
|
64
|
Karyoevolution inPotamorhina(Cope, 1878) (Ostariophysi, Curimatidae): Using Repetitive DNA for the Elucidation of Genome Organization. Zebrafish 2016; 13:118-31. [DOI: 10.1089/zeb.2015.1187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
65
|
Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes). Genetica 2016; 144:203-11. [PMID: 26932937 DOI: 10.1007/s10709-016-9890-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
The Dascyllus genus consists of 11 species spread over vast regions of the Indo-Pacific, showing remarkable reductions in the diploid chromosome numbers (2n). The present study analyzed the karyotypes and other chromosomal characteristics of D. trimaculatus (2n = 48; 2st + 46a; NF = 50), D. carneus (2n = 48; 2st + 46a; NF = 50) and D. aruanus (2n = 30; 18m + 2st + 10a; NF = 50) from the Thailand Gulf (Pacific Ocean) and D. melanurus (2n = 48; 2st + 46a; NF = 50) from the Andaman Sea (Indian Ocean), employing conventional cytogenetic analyses and the chromosomal mapping of repetitive DNAs, using 18S and 5S rDNA, telomeric sequences and (CA)15, (GA)15, and (CAA)10 microsatellites as probes. The C-positive heterochromatin was found in the centromeric regions of most chromosomal pairs and 18S rDNA phenotypes were single in all species. However, in D. aruanus (2n = 30), which harbors nine metacentric pairs; the 5S rDNA sites were located in the centromeric region of the shortest one. The mapping of the telomeric sequences in D. aruanus revealed the presence of interstitial telomeric sites (ITS) in the centromeric region of four metacentric pairs, with one of these pairs also displaying an additional ITS in the long arms. Distinct chromosomal markers confirmed the reduction of the 2n by chromosomal fusions, highlighting the precise characterization of these rearrangements by the cytogenetic mapping of the repetitive DNAs.
Collapse
|
66
|
Bueno V, Moresco RM, Konerat JT, Moreira-Filho O, Margarido VP. Instability of Multiple Sex Chromosomes Systems in Fish: The Case of Erythrinus erythrinus (Bloch & Schneider, 1801) (Characiformes, Erythrinidae). Zebrafish 2016; 13:26-32. [DOI: 10.1089/zeb.2015.1138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vanessa Bueno
- Universidade Tecnológica Federal do Paraná, Campus Santa Helena, Santa Helena, Brazil
| | - Rafaela Maria Moresco
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Jocicléia Thums Konerat
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Vladimir Pavan Margarido
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| |
Collapse
|
67
|
Costa GWWFD, Cioffi MDB, Bertollo LAC, Molina WF. The Evolutionary Dynamics of Ribosomal Genes, Histone H3, and Transposable Rex Elements in the Genome of Atlantic Snappers. J Hered 2016; 107:173-80. [PMID: 26792596 DOI: 10.1093/jhered/esv136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/17/2015] [Indexed: 11/12/2022] Open
Abstract
Lutjanidae is a family of primarily marine and carnivorous fishes distributed in the Atlantic, Indian, and Pacific oceans, with enormous economic and ecological importance. In order to better clarify the conservative chromosomal evolution of Lutjanidae, we analyzed the evolutionary dynamics of 5 repetitive DNA classes in 5 Lutjanus and in 1 Ocyurus species from the Western Atlantic. The ribosomal 18S sites were generally located in a single chromosome pair, except for L. jocu and L. alexandrei where they are found in 2 pairs. In turn, the 5S rDNA sites are unique, terminal and nonsyntenic with the 18S rDNA sites. In 3 species analyzed, H3 hisDNA genes were found in 1 chromosomal pair. However, while L. jocu presented 2 H3 sites, O. chrysurus showed a noteworthy dispersion of this gene in almost all chromosomes of the karyotype. Retrotransposons Rex1 and Rex3 do not exhibit any association with the explosive distribution of H3 sequences in O. chrysurus. The low compartmentalization of Rex elements, in addition to the general nondynamic distribution of ribosomal and H3 genes, corroborate the karyotype conservatism in Lutjanidae species, also at the microstructural level. However, some "disturbing evolutionary waves" can break down this conservative scenario, as evidenced by the massive random dispersion of H3 hisDNA in the genome of O. chrysurus. The implication of the genomic expansion of H3 histone genes and their functionality remain unknown, although suggesting that they have higher evolutionary dynamics than previously thought.
Collapse
Affiliation(s)
- Gideão Wagner Werneck Félix da Costa
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo)
| | - Marcelo de Bello Cioffi
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo)
| | - Luiz Antonio Carlos Bertollo
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo)
| | - Wagner Franco Molina
- From the Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59.078-970 Natal, RN, Brasil (Costa and Molina); Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235 13.565-905 São Carlos, SP, Brasil (Cioffi and Bertollo).
| |
Collapse
|
68
|
Maneechot N, Yano CF, Bertollo LAC, Getlekha N, Molina WF, Ditcharoen S, Tengjaroenkul B, Supiwong W, Tanomtong A, de Bello Cioffi M. Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes). Mol Cytogenet 2016; 9:4. [PMID: 26793275 PMCID: PMC4719708 DOI: 10.1186/s13039-016-0215-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The genus Clarias (Clariidae, Siluriformes) contains at least 61 species naturally spread over vast regions of Asia, India and Africa. However, Clarias species have also been introduced in many different countries and represent the most widespread catfishes in the world. These fishes are also known as "walking catfishes" due to their ability to move over land. A large degree of chromosomal variation has been previously found in this family, mainly using conventional cytogenetic investigations, with diploid chromosome numbers ranging between 48 and 100. In this study, we analyzed the karyotype structure and distribution of four repetitive DNA sequences (5S and 18S rDNAs and (CA)15 and (GA)15 microsatellites) in three Clarias species (C. batrachus, C. gariepinus, C. macrocephalus), as well as in a probable natural hybrid of the two latter species from different Thailand river basins. RESULTS Clarias gariepinus and C. macrocephalus had 2n = 56 and 2n = 54, respectively, as well as karyotypes composed mainly by metacentric and submetacentric chromosomes. Their karyotypes differed in the number and location of 5S and 18S rDNA sites and in the degree of microsatellite accumulation. An intermediate chromosomal pattern incorporating those of the parental species was found in the probable hybrid, confirming its interspecific origin. Clarias batrachus had 2n = 104 chromosomes and its karyotype was dominated by mainly acrocentric elements, indicating that unusual multiple centric fissions were involved in its karyotype differentiation. The karyotype of this species presented an unexpected dispersion of ribosomal DNAs, possessing 54 and 12 sites of 5S and 18S rDNAs, respectively, as well as a high accumulation and differential distribution of both microsatellite repeats, representing 'hot spots' for chromosomal rearrangement. CONCLUSION Both conventional and molecular cytogenetic markers were useful tools for demonstrating remarkable evolutionary dynamism and highlighting multiple chromosomal rearrangements and hybridization events correlated with the notable karyotypic diversity of these walking catfishes.
Collapse
Affiliation(s)
- Nuntiya Maneechot
- />Department of Biology, Faculty of Science, Khon Kaen University, Muang District Khon Kaen, Thailand
| | - Cassia Fernanda Yano
- />Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| | | | - Nuntaporn Getlekha
- />Department of Biology, Faculty of Science, Khon Kaen University, Muang District Khon Kaen, Thailand
| | - Wagner Franco Molina
- />Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN Brazil
| | - Sukhonthip Ditcharoen
- />Department of Biology, Faculty of Science, Khon Kaen University, Muang District Khon Kaen, Thailand
| | - Bundit Tengjaroenkul
- />Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Muang, Khon Kaen 40002 Thailand
- />Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen 40002 Thailand
| | - Weerayuth Supiwong
- />Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000 Thailand
| | - Alongklod Tanomtong
- />Department of Biology, Faculty of Science, Khon Kaen University, Muang District Khon Kaen, Thailand
- />Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen 40002 Thailand
| | - Marcelo de Bello Cioffi
- />Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| |
Collapse
|
69
|
Barreto SB, Cioffi MB, Medrado AS, Silva AT, Affonso PRAM, Diniz D. Allopatric chromosomal variation in Nematocharax venustus Weitzman, Menezes & Britski, 1986 (Actinopterygii: Characiformes) based on mapping of repetitive sequences. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20150141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Characiformes is the most cytogenetically studied group of freshwater Actinopterygii, but karyotypical data of several taxa remain unknown. This is the case of Nematocharax , regarded as a monotypic genus and characterized by marked sexual dimorphism. Therefore, we provide the first cytogenetic report of allopatric populations of Nematocharax venustus based on distinct methods of chromosomal banding and fluorescence in situ hybridization (FISH) with repetitive DNA probes (18S and 5S rDNA). The karyotype macrostructure was conserved in all specimens and populations, independently on sex, since they shared a diploid number (2n) of 50 chromosomes divided into 8m+26sm+14st+2a. The heterochromatin was mainly distributed at pericentromeric regions and base-specific fluorochrome staining revealed a single pair bearing GC-rich sites, coincident with nucleolar organizer regions (NORs). On the other hand, interpopulation variation in both number and position of repetitive sequences was observed, particularly in relation to 5S rDNA. Apparently, the short life cycles and restricted dispersal of small characins, such as N. venustus , might have favored the divergence of repetitive DNA among populations, indicating that this species might encompass populations with distinct evolutionary histories, which has important implications for conservation measures.
Collapse
Affiliation(s)
| | | | | | - André T. Silva
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | - Débora Diniz
- Universidade Estadual do Sudoeste da Bahia, Brazil
| |
Collapse
|
70
|
Daniel SN, Penitente M, Silva DMZA, Hashimoto DT, Ferreira DC, Foresti F, Porto-Foresti F. Organization and Chromosomal Distribution of Histone Genes and Transposable Rex Elements in the Genome of Astyanax bockmanni (Teleostei, Characiformes). Cytogenet Genome Res 2015; 146:311-8. [PMID: 26618348 DOI: 10.1159/000441613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
An important feature of eukaryotic organisms is the number of different repetitive DNA sequences in their genome, a feature not observed in prokaryotes. These sequences are considered to be important components for understanding evolutionary mechanisms and the karyotypic differentiation processes. Thus, we aimed to physically map the histone genes and transposable elements of the Rex family in 6 fish populations of Astyanax bockmanni. FISH results using a histone H1 gene probe showed fluorescent clusters in 2 chromosome pairs in all 6 samples analyzed. In contrast, FISH with a histone H3 probe showed conspicuous blocks in 4 chromosomes in 5 of the 6 populations analyzed. The sixth population revealed 7 chromosomes marked with this probe. Probes for the transposable elements Rex1 and Rex6 showed small sites dispersed on most chromosomes of the 6 populations, and the Rex3 element is located in a big block concentrated in only 1 acrocentric chromosome of 2 populations. As for the other populations, a Rex3 probe showed large blocks in more than 1 chromosome. Fish from Alambari and Campo Novo Stream have Rex3 elements dispersed along most of the chromosomes. Additionally, the conspicuous signals of Rex1, Rex3, and Rex6 were identified in the acrocentric B microchromosome of A. bockmanni found only in individuals of the Alambari River. Thus, we believe that different mechanisms drive the spread of repetitive sequences among the populations analyzed, which appear to be organized differently in the genome of A. bockmanni. The presence of transposable elements in the B chromosome also suggests that these sequences could play a role in the origin and maintenance of the supernumerary element in the genome of this species.
Collapse
Affiliation(s)
- Sandro N Daniel
- Departamento de Cix00EA;ncias Biolx00F3;gicas, Faculdade de Cix00EA;ncias, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | | | | | | | | | | | | |
Collapse
|
71
|
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 2015; 15:251. [PMID: 26573692 PMCID: PMC4647339 DOI: 10.1186/s12862-015-0532-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Loaches of the family Nemacheilidae are one of the most speciose elements of Palearctic freshwater ichthyofauna and have undergone rapid ecological adaptations and colonizations. Their cytotaxonomy is largely unexplored; with the impact of cytogenetical changes on this evolutionary diversification still unknown. An extensive cytogenetical survey was performed in 19 nemacheilid species using both conventional (Giemsa staining, C- banding, Ag- and Chromomycin A3/DAPI stainings) and molecular (fluorescence in situ hybridization with 5S rDNA, 45S rDNA, and telomeric (TTAGGG)n probes) methods. A phylogenetic tree of the analysed specimens was constructed based on one mitochondrial (cytochrome b) and two nuclear (RAG1, IRBP) genes. RESULTS Seventeen species showed karyotypes composed of 2n = 50 chromosomes but differentiated by fundamental chromosome number (NF = 68-90). Nemachilichthys ruppelli (2n = 38) and Schistura notostigma (2n = 44-48) displayed reduced 2n with an elevated number of large metacentric chromosomes. Only Schistura fasciolata showed morphologically differentiated sex chromosomes with a multiple system of the XY1Y2 type. Chromomycin A3 (CMA3)- fluorescence revealed interspecific heterogeneity in the distribution of GC-rich heterochromatin including its otherwise very rare association with 5S rDNA sites. The 45S rDNA sites were mostly located on a single chromosome pair contrasting markedly with a pattern of two (Barbatula barbatula, Nemacheilus binotatus, N. ruppelli) to 20 sites (Physoschistura sp.) of 5S rDNA. The cytogenetic changes did not follow the phylogenetic relationships between the samples. A high number of 5S rDNA sites was present in species with small effective population sizes. CONCLUSION Despite a prevailing conservatism of 2n, Nemacheilidae exhibited a remarkable cytogenetic variability on microstructural level. We suggest an important role for pericentric inversions, tandem and centric fusions in nemacheilid karyotype differentiation. Short repetitive sequences, genetic drift, founder effect, as well as the involvement of transposable elements in the dispersion of ribosomal DNA sites, might also have played a role in evolutionary processes such as reproductive isolation. These remarkable dynamics of their genomes qualify river loaches as a model for the study of the cytogenetic background of major evolutionary processes such as radiation, endemism and colonization of a wide range of habitats.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic.
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, A-5310, Mondsee, Austria.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| |
Collapse
|
72
|
Nascimento J, Baldo D, Lourenço LB. First insights on the retroelement Rex1 in the cytogenetics of frogs. Mol Cytogenet 2015; 8:86. [PMID: 26550032 PMCID: PMC4635592 DOI: 10.1186/s13039-015-0189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Background While some transposable elements (TEs) have been found in the sequenced genomes of frog species, detailed studies of these elements have been lacking. In this work, we investigated the occurrence of the Rex1 element, which is widespread in fish, in anurans of the genus Physalaemus. We isolated and characterized the reverse transcriptase (RT)-coding sequences of Rex1 elements of five species of this genus. Results The amino acid sequences deduced from the nucleotide sequences of the isolated fragments allowed us to unambiguously identify regions corresponding to domains 3–7 of RT. Some of the nucleotide sequences isolated from Physlaemus ephippifer and P. albonotatus had internal deletions, suggesting that these fragments are likely not active TEs, despite being derived from a Rex1 element. When hybridized with metaphase chromosomes, Rex1 probes were revealed at the pericentromeric heterochromatic region of the short arm of chromosome 3 of the P. ephippifer karyotype. Neither other heterochromatin sites of the P. ephippifer karyotype nor any chromosomal regions of the karyotypes of P. albonotatus, P. spiniger and P. albifrons were detected with these probes. Conclusions Rex1 elements were found in the genomes of five species of Physalaemus but clustered in only the P. ephippifer karyotype, in contrast to observations in some species of fish, where large chromosomal sites with Rex1 elements are typically present. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0189-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Nascimento
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas São Paulo, Brazil
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, CPA N3300LQF Posadas, Misiones Argentina
| | - Luciana Bolsoni Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, 13083-863 Campinas São Paulo, Brazil
| |
Collapse
|
73
|
Dynamics of Rex3 in the genomes of endangered Iberian Leuciscinae (Teleostei, Cyprinidae) and their natural hybrids. Mol Cytogenet 2015; 8:81. [PMID: 26512297 PMCID: PMC4623273 DOI: 10.1186/s13039-015-0180-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023] Open
Abstract
Background Iberian Leuciscinae are greatly diverse comprising taxa of hybrid origin. With highly conservative karyotypes, Iberian Chondrostoma s.l. have recently demonstrated sub-chromosomal differentiation and rapid genome restructuring in natural hybrids, which was confirmed by ribosomal DNA (rDNA) transposition and/or multiplication. To understand the role of repetitive DNAs in the differentiation of their genomes, a genetic and molecular cytogenetic survey was conducted in Achondrostoma oligolepis, Anaecypris hispanica, Iberochondrostoma lemmingii, I. lusitanicum, Pseudochondrostoma duriense, P. polylepis, Squalius pyrenaicus and hybrids between A. oligolepis x (P. duriense/P. polylepis), representing ‘alburnine’, chondrostomine and Squalius lineages. Results Partial Rex3 sequences evidenced high sequence homology among Leuciscinae (≥98 %) and different fish families (80–95 %) proposing a relatively recent activity of these elements in the species inspected. Low nucleotide substitution rates (<20 %) and intact ORFs suggests that Rex3 may in fact be active in these genomes. The chromosomal distribution of Rex3 retroelement was found highly concentrated at pericentromeric and moderately at subtelomeric blocks, co-localizing with 5S rDNA loci, and correlating with blocks of heterochromatin and C0t-1 DNA. This accumulation was evident in at least 10 chromosome pairs, a pattern that seemed to be shared among the different species, likely pre-dating their divergence. Nevertheless, species-specific clusters were detected in I. lusitanicum, P. duriense, P. polylepis and S. pyrenaicus demonstrating rapid and independent differentiation. Natural hybrids followed the same patterns of accumulation and association with repetitive sequences. An increased number of Rex3 clusters now associating also with translocated 45S rDNA clusters vouched for other genomic rearrangements in hybrids. Rex3 sequence phylogeny did not agree with its hosts’ phylogeny but the observed distribution pattern is congruent with an evolutionary tendency to protect its activity, a robust regulatory system and/or events of horizontal transfer. Conclusions This is the first report directed at retroelement physical mapping in Cyprinidae. It helped outlining conceivable ancestral homologies and recognizing retrotransposon activation in hybrids, being possibly associated with genome diversification within the subfamily. The extensive diversity of Iberian Leuciscinae makes them excellent candidates to explore the processes and mechanisms behind the great plasticity distinguishing vertebrate genomes. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0180-1) contains supplementary material, which is available to authorized users.
Collapse
|
74
|
Roa F, Guerra M. Non-Random Distribution of 5S rDNA Sites and Its Association with 45S rDNA in Plant Chromosomes. Cytogenet Genome Res 2015; 146:243-9. [PMID: 26489031 DOI: 10.1159/000440930] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
5S and 45S rDNA sites are the best mapped chromosome regions in eukaryotic chromosomes. In this work, a database was built gathering information about the position and number of 5S rDNA sites in 784 plant species, aiming to identify patterns of distribution along the chromosomes and its correlation with the position of 45S rDNA sites. Data revealed that in most karyotypes (54.5%, including polyploids) two 5S rDNA sites (a single pair) are present, with 58.7% of all sites occurring in the short arm, mainly in the proximal region. In karyotypes of angiosperms with only 1 pair of sites (single sites) they are mostly found in the proximal region (52.0%), whereas in karyotypes with multiple sites the location varies according to the average chromosome size. Karyotypes with multiple sites and small chromosomes (<3 µm) often display proximal sites, while medium-sized (between 3 and 6 µm) and large chromosomes (>6 µm) more commonly show terminal or interstitial sites. In species with holokinetic chromosomes, the modal value of sites per karyotype was also 2, but they were found mainly in a terminal position. Adjacent 5S and 45S rDNA sites were often found in the short arm, reflecting the preferential distribution of both sites in this arm. The high frequency of genera with at least 1 species with adjacent 5S and 45S sites reveals that this association appeared several times during angiosperm evolution, but it has been maintained only rarely as the dominant array in plant genera.
Collapse
|
75
|
de Oliveira EA, Bertollo LAC, Yano CF, Liehr T, Cioffi MDB. Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species. Mol Cytogenet 2015; 8:56. [PMID: 26225139 PMCID: PMC4518567 DOI: 10.1186/s13039-015-0161-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Erythrinidae fish family contains three genera, Hoplias, Erythrinus and Hoplerythrinus widely distributed in Neotropical region. Remarkably, species from this family are characterized by an extensive karyotype diversity, with 2n ranging from 39 to 54 chromosomes and the occurrence of single and/or multiple sex chromosome systems in some species. However, inside the Hoplias genus, while H. malabaricus was subject of many studies, the cytogenetics of other congeneric species remains poorly explored. In this study, we have investigated chromosomal characteristics of four Hoplias species, namely H. lacerdae, H. brasiliensis, H. intermedius and H. aimara. We used conventional staining techniques (C-banding, Ag-impregnation and CMA3 -fluorescence) as well as fluorescence in situ hybridization (FISH) with minor and major rDNA and microsatellite DNAs as probes in order to analyze the karyotype evolution within the genus. RESULTS All species showed invariably 2n = 50 chromosomes and practically identical karyotypes dominated only by meta- and submetacentric chromosomes, the absence of heteromorphic sex chromosomes, similar pattern of C-positive heterochromatin blocks and homologous Ag-NOR-bearing pairs. The cytogenetic mapping of five repetitive DNA sequences revealed some particular interspecific differences between them. However, the examined chromosomal characteristics indicate that their speciation was not associated with major changes in their karyotypes. CONCLUSION Such conserved karyotypes contrasts with the extensive karyotype diversity that has been observed in other Erythrinidae species, particularly in the congeneric species H. malabaricus. Nevertheless, what forces drive such particularly different modes of karyotype evolution among closely related species? Different life styles, population structure and inner chromosomal characteristics related to similar cases in other vertebrate groups can also account for the contrasting modes of karyotype evolution in Hoplias genus.
Collapse
Affiliation(s)
- Ezequiel Aguiar de Oliveira
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
- />SEDUC-MT, Cuiabá, MT Brazil
| | | | - Cassia Fernanda Yano
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| | - Thomas Liehr
- />Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Marcelo de Bello Cioffi
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| |
Collapse
|
76
|
Cioffi MDB, Bertollo LAC, Villa MA, de Oliveira EA, Tanomtong A, Yano CF, Supiwong W, Chaveerach A. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes). PLoS One 2015; 10:e0130199. [PMID: 26067030 PMCID: PMC4466321 DOI: 10.1371/journal.pone.0130199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Channid fishes, commonly referred to as "snakeheads", are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.
Collapse
Affiliation(s)
- Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Mateo Andres Villa
- Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | | | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Weerayuth Supiwong
- Faculty of applied science and engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai, 43000, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
- Genetics and Environmental Toxicology Research Group, Khon Kaen University, Muang District, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
77
|
Silva FHR, Pieczarka JC, Cardoso AL, da Silva PC, de Oliveira JA, Nagamachi CY. Chromosomal diversity in three species of electric fish (Apteronotidae, Gymnotiformes) from the Amazon Basin. Genet Mol Biol 2014; 37:638-45. [PMID: 25505838 PMCID: PMC4261963 DOI: 10.1590/s1415-47572014005000018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/24/2014] [Indexed: 11/22/2022] Open
Abstract
Cytogenetic studies were carried out on samples of Parapteronotus hasemani, Sternarchogiton preto and Sternarchorhamphus muelleri (Apteronotidae, Gymnotiformes) from the Amazon basin. The first two species exhibited both a 2n = 52 karyotype, but differed in their karyotypic formulae, distribution of constitutive heterochromatin, and chromosomal location of the NOR. The third species, Sternarchorhamphus muelleri, was found to have a 2n = 32 karyotype. In all three species the DAPI and chromomycin A3 staining results were consistent with the C-banding results and nucleolar organizer region (NOR) localization. The 18S rDNA probe confirmed that there was only one pair of ribosomal DNA cistron bearers per species. The telomeric probe did not reveal interstitial telomeric sequences (ITS). The karyotypic differences among these species can be used for taxonomic identification. These data will be useful in future studies of these fishes and help understanding the phylogenetic relationships and chromosomal evolution of the Apteronotidae.
Collapse
Affiliation(s)
| | - Julio Cesar Pieczarka
- Instituto de Ciências Biológicas , Universidade Federal do Pará , Belém, PA , Brazil
| | - Adauto Lima Cardoso
- Instituto de Ciências Biológicas , Universidade Federal do Pará , Belém, PA , Brazil
| | | | | | | |
Collapse
|
78
|
Hodaňová L, Kalous L, Musilová Z. Comparative cytogenetics of Neotropical cichlid fishes (Nannacara, Ivanacara and Cleithracara) indicates evolutionary reduction of diploid chromosome numbers. COMPARATIVE CYTOGENETICS 2014; 8:169-83. [PMID: 25349669 PMCID: PMC4205487 DOI: 10.3897/compcytogen.v8i3.7279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/29/2014] [Indexed: 06/01/2023]
Abstract
A comparative cytogenetic analysis was carried out in five species of a monophyletic clade of neotropical Cichlasomatine cichlids, namely Cleithracara maronii Steindachner, 1881, Ivanacara adoketa (Kullander & Prada-Pedreros, 1993), Nannacara anomala Regan, 1905, N. aureocephalus Allgayer, 1983 and N. taenia Regan, 1912. Karyotypes and other chromosomal characteristics were revealed by CDD banding and mapped onto the phylogenetic hypothesis based on molecular analyses of four genes, namely cyt b, 16S rRNA, S7 and RAG1. The diploid numbers of chromosomes ranged from 44 to 50, karyotypes were composed predominantly of monoarmed chromosomes and one to three pairs of CMA3 signal were observed. The results showed evolutionary reduction in this monophyletic clade and the cytogenetic mechanisms (fissions/fusions) were hypothesized and discussed.
Collapse
Affiliation(s)
- Lucie Hodaňová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zuzana Musilová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics AV CR, Libechov, Czech Republic
- Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
79
|
Porto FE, de Rossi Vieira MM, Barbosa LM, Borin-Carvalho LA, Vicari MR, de Brito Portela-Castro AL, Martins-Santos IC. Chromosomal Polymorphism in Rineloricaria Lanceolata Günther, 1868 (Loricariidae: Loricariinae) of the Paraguay Basin (Mato Grosso do Sul, Brazil): Evidence of Fusions and Their Consequences in the Population. Zebrafish 2014; 11:318-24. [DOI: 10.1089/zeb.2014.0996] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fernanda Errero Porto
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Ligia Magrinelli Barbosa
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Marcelo Ricardo Vicari
- Setor de Ciências Biológicas e da Saúde/Debiogem, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | | | |
Collapse
|
80
|
Kuznetsova IS, Thevasagayam NM, Sridatta PSR, Komissarov AS, Saju JM, Ngoh SY, Jiang J, Shen X, Orbán L. Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome. Front Genet 2014; 5:223. [PMID: 25120555 PMCID: PMC4110674 DOI: 10.3389/fgene.2014.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023] Open
Abstract
As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8–14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates.
Collapse
Affiliation(s)
- Inna S Kuznetsova
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; Institute of Cytology of the Russian Academy of Sciences St-Petersburg, Russia
| | - Natascha M Thevasagayam
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - Prakki S R Sridatta
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - Aleksey S Komissarov
- Institute of Cytology of the Russian Academy of Sciences St-Petersburg, Russia ; Theodosius Dobzhansky Center for Genome Bioinformatics, St Petersburg State University St Petersburg, Russia
| | - Jolly M Saju
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - Si Y Ngoh
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; School of Biological Sciences, Nanyang Technological University Singapore, Republic of Singapore
| | - Junhui Jiang
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; Agri-Food and Veterinary Authority of Singapore Singapore, Republic of Singapore
| | - Xueyan Shen
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - László Orbán
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia Keszthely, Hungary ; Department of Biological Sciences, National University of Singapore Singapore, Republic of Singapore
| |
Collapse
|
81
|
Guo M, Wang S, Su Y, Zhou Y, Liu M, Wang J. Molecular cytogenetic analyses of Epinephelus bruneus and Epinephelus moara (Perciformes, Epinephelidae). PeerJ 2014; 2:e412. [PMID: 24949234 PMCID: PMC4060049 DOI: 10.7717/peerj.412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022] Open
Abstract
Genus Epinephelus (Perciformes, Epinephelidae), commonly known as groupers, are usually difficult in species identification for the lack and/or change of morphological specialization. In this study, molecular cytogenetic analyses were firstly performed to identify the closely related species Epinephelus bruneus and E. moara in this genus. The species-specific differences of both fish species showed in karyotype, chromosomal distribution of nucleolar organizer regions (NORs) and localization of 18S rDNA. The heterochromatin (interstitial C-bands) and distribution pattern of telomere (TTAGGG)n in E. bruneus revealed the chromosomal rearrangements and different karyotypic evolutionary characteristics compared to those in E. moara. The cytogenetic data suggested that the lineages of E. bruneus and E. moara were recently derived within the genus Epinephelus, and E. moara exhibited more plesiomorphic features than E. bruneus. All results confirmed that E. moara, which has long been considered a synonym of E. bruneus, is a distinct species in the family Epinephelidae. In addition, molecular cytogenetic analyses are useful in species differentiation and phylogenetic reconstruction in groupers.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou, Guangdong , PR China ; College of Ocean and Earth Sciences, Xiamen University , Xiamen, Fujian , PR China
| | - Shifeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University , Haikou, Hainan , PR China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University , Xiamen, Fujian , PR China
| | - Yongcan Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University , Haikou, Hainan , PR China
| | - Min Liu
- College of Ocean and Earth Sciences, Xiamen University , Xiamen, Fujian , PR China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University , Xiamen, Fujian , PR China
| |
Collapse
|
82
|
Molecular cytogenetic study of the European bitterling Rhodeus amarus (Teleostei: Cyprinidae: Acheilognathinae). Genetica 2014; 142:141-8. [PMID: 24677088 PMCID: PMC4000624 DOI: 10.1007/s10709-014-9761-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/21/2014] [Indexed: 11/06/2022]
Abstract
The European bitterlings (Rhodeus amarus) from the Eastern locations were cytogenetically examined by conventional and molecular techniques. All analyzed individuals presented invariably the same chromosomal constitution of 2n = 48, with 8 metacentrics + 20 submetacentrics + 20 subtelo-acrocentrics and C-banding positive heterochromatin at the pericentromeric regions in most of the chromosomes. Moreover, some of the chromosomes had short arms entirely built with heterochromatin. GC-rich Ag-NORs (nucleolus organizer regions) were located at the short arms of two submetacentric chromosomes, and the length polymorphism of these regions was found. Multiple location of 28S rDNA sequences with fluorescence in situ hybridization signals was observed on the long and/or short arms of three submetacentric chromosomes including NOR regions and short arms of three to five acrocentric chromosomes in the studied fish. 5S rDNA sites were found on the short arms of two subtelocentric chromosomes, and telomeric repeats were localized at the ends of all chromosomes. Provided results have expanded our knowledge concerning genetic characteristics of the European bitterlings that may be profitable in the conservation programs of this endangered species.
Collapse
|
83
|
Lima-Filho PA, Bertollo LAC, Cioffi MB, Costa GWWF, Molina WF. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies ( Ctenogobius , Gobiidae). Cytogenet Genome Res 2014; 142:197-203. [PMID: 24643007 DOI: 10.1159/000360492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome.
Collapse
Affiliation(s)
- P A Lima-Filho
- Department of Cellular Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | |
Collapse
|
84
|
Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica 2014; 142:119-26. [DOI: 10.1007/s10709-014-9759-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
85
|
Yano CF, Bertollo LAC, Molina WF, Liehr T, Cioffi MDB. Genomic organization of repetitive DNAs and its implications for male karyotype and the neo-Y chromosome differentiation in Erythrinus erythrinus (Characiformes, Erythrinidae). COMPARATIVE CYTOGENETICS 2014; 8:139-51. [PMID: 25147625 PMCID: PMC4137284 DOI: 10.3897/compcytogen.v8i2.7597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/29/2014] [Indexed: 05/19/2023]
Abstract
Studies have demonstrated the effective participation of repetitive DNA sequences in the origin and differentiation of the sex chromosomes in some biological groups. In this study several microsatellites and retrotranposable sequences were cytogenetically mapped in the Erythrinus erythrinus (Bloch & Schneider, 1801) male genome (karyomorph C), focusing on the distribution of these sequences in the sex chromosomes and in the evolutionary processes related to their differentiation. Males of E. erythrinus - karyomorph C - present 2n = 51 chromosomes (7m + 2sm + 6st + 36a), including the X1X2Y sex chromosomes. The C-positive heterochromatin has a predominant localization on the centromeric region of most chromosome pairs, but also in some telomeric regions. The 5S rDNA sites are located in the centromeric region of 27 chromosomes, including 26 acrocentric ones and the metacentric Y chromosome. The retrotransposons Rex 1 and Rex 6 show a dispersed pattern in the karyotype, contrasting with the Rex 3 distribution which is clearly co-localized with all the 27 5S rDNA sites. The microsatellite sequences show a differential distribution, some of them restricted to telomeric and/or interstitial regions and others with a scattered distribution on the chromosomes. However, no preferential accumulation of these elements were observed in the neo-Y chromosome, in contrast to what usually occurs in simple sex chromosome systems.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
- Professor Sênior at Universidade Federal de São Carlos
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
| |
Collapse
|
86
|
Ocalewicz K, Furgala-Selezniow G, Szmyt M, Lisboa R, Kucinski M, Lejk AM, Jankun M. Pericentromeric location of the telomeric DNA sequences on the European grayling chromosomes. Genetica 2013; 141:409-16. [PMID: 24114378 PMCID: PMC3851750 DOI: 10.1007/s10709-013-9740-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/07/2013] [Indexed: 12/03/2022]
Abstract
The chromosomal characteristics, locations and variations of the C-band positive heterochromatin and telomeric DNA sequences were studied in the European grayling karyotype (Thymallus thymallus, Salmonidae) using conventional C-banding, endonucleases digestion banding, silver nitrate (AgNO3), chromomycin A3 and 4′,6-diamidino-2-phenylindole staining techniques as well as fluorescence in situ hybridization (FISH) and primed in situ labelling. Original data on the chromosomal distribution of segments resistant to AluI restriction endonuclease and identification of the C-banded heterochromatin presented here have been used to characterize the grayling karyotype polymorphism. Structural and length polymorphism of the chromosome 21 showing a conspicuous heterochromatin block adjacent to the centromere seems to be the result of the deletion and inversion. Two pairs of nuclear organizer regions (NOR)-bearing chromosomes were found to be polymorphic in size and displaying several distinct forms. FISH with telomeric peptide nucleic acid probe enabled recognition of the conservative telomeric DNA sequences. The karyotype of the thymallid fish is thought to experienced numerous pericentric inversions and internal telomeric sites (ITSs) observed at the pericentromeric regions of the six European grayling metacentric chromosomes are likely relics of the these rearrangements. None of the ITS sites matched either chromosome 21 or NOR bearing chromosomes.
Collapse
Affiliation(s)
- K Ocalewicz
- Department of Ichthyology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-718, Olsztyn, Poland
| | | | | | | | | | | | | |
Collapse
|
87
|
Rebordinos L, Cross I, Merlo A. High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res 2013; 141:103-13. [PMID: 24080995 DOI: 10.1159/000354871] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 5S ribosomal DNA (rDNA) consists of one transcriptional unit of about 120 base pairs, which is separated from the next unit by a non-transcribed spacer (NTS). The coding sequence and the NTS together form a repeat unit which can be found in hundreds to thousands of copies tandemly repeated in the genomes. The NTS regions seem to be subject to rapid evolution. The first general model of evolution of these multigene families was referred to as divergent evolution, based on studies using hemoglobin and myoglobin as model systems. Later studies showed that nucleotide sequences of different multigene family members are more closely related within species than between species. This observation led to a new model of multigene family evolution, termed concerted evolution. Another model of evolution, named the birth-and-death model, has been found to be more suitable to explain the long-term evolution of these multigene families. According to this model, new genes originate by successive duplications, and these new genes are either maintained for a long time or are lost, or else degenerate into pseudogenes. In this review we describe different sources of variability in the 5S rDNA genes observed in several distinct fish species. This variability is mainly referred to NTSs and includes the presence of other multigene families (mainly LINEs, SINEs, non-LTR retrotransposons, and U snRNA families). Different types of microsatellites have also been found to contribute to the increase of variability in this region. Our recent results suggest that horizontal transfer contributes to the increase of diversity in the NTSs of some species. Variability in the 5S rDNA coding region affecting the stability of the structure, but without effects on the function of the 5S rRNA, is also described. Retrotransposons seem to be responsible for the high dynamism of 5S rDNA, while microsatellites acting as recombination hot spots could stabilize a wide variety of unusual DNA structures, affecting DNA replication and enhancing or decreasing promoter activity in gene expression. The relationship between the high variability found at molecular level and the low variability found at chromosomal level is also discussed.
Collapse
Affiliation(s)
- L Rebordinos
- Area de Genética, Facultad de Ciencias del Mar y Ambientales, CEI-Mar, Universidad de Cádiz, Puerto Real, Spain
| | | | | |
Collapse
|
88
|
Chromosomal organization of repetitive DNA sequences in Astyanax bockmanni (Teleostei, Characiformes): dispersive location, association and co-localization in the genome. Genetica 2013; 141:329-36. [DOI: 10.1007/s10709-013-9732-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
89
|
Costa GWWF, Cioffi MB, Bertollo LAC, Molina WF. Transposable elements in fish chromosomes: a study in the marine cobia species. Cytogenet Genome Res 2013; 141:126-32. [PMID: 23969732 DOI: 10.1159/000354309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rachycentron canadum, a unique representative of the Rachycentridae family, has been the subject of considerable biotechnological interest due to its potential use in marine fish farming. This species has undergone extensive research concerning the location of genes and multigene families on its chromosomes. Although most of the genome of some organisms is composed of repeated DNA sequences, aspects of the origin and dispersion of these elements are still largely unknown. The physical mapping of repetitive sequences on the chromosomes of R. canadum proved to be relevant for evolutionary and applied purposes. Therefore, here, we present the mapping by fluorescence in situ hybridization of the transposable element (TE) Tol2, the non-LTR retrotransposons Rex1 and Rex3, together with the 18S and 5S rRNA genes in the chromosome of this species. The Tol2 TE, belonging to the family of hAT transposons, is homogeneously distributed in the euchromatic regions of the chromosomes but with huge colocalization with the 18S rDNA sites. The hybridization signals for Rex1 and Rex3 revealed a semi-arbitrary distribution pattern, presenting differentiated dispersion in euchromatic and heterochromatic regions. Rex1 elements are associated preferentially in heterochromatic regions, while Rex3 shows a scarce distribution in the euchromatic regions of the chromosomes. The colocalization of TEs with 18S and 5S rDNA revealed complex chromosomal regions of repetitive sequences. In addition, the nonpreferential distribution of Rex1 and Rex3 in all heterochromatic regions, as well as the preferential distribution of the Tol2 transposon associated with 18S rDNA sequences, reveals a distinct pattern of organization of TEs in the genome of this species. A heterogeneous chromosomal colonization of TEs may confer different evolutionary rates to the heterochromatic regions of this species.
Collapse
Affiliation(s)
- G W W F Costa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | |
Collapse
|
90
|
Cioffi MB, Liehr T, Trifonov V, Molina WF, Bertollo LAC. Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet Genome Res 2013; 141:186-94. [PMID: 23919986 DOI: 10.1159/000354039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Erythrinidae fish family is an excellent model for analyzing the evolution of sex chromosomes. Different stages of sex chromosome differentiation from homomorphic to highly differentiated ones can be found among the species of this family. Here, whole chromosome painting, together with the cytogenetic mapping of repetitive DNAs, highlighted the evolutionary relationships of the sex chromosomes among different erythrinid species and genera. It was demonstrated that the sex chromosomes can follow distinct evolutionary pathways inside this family. Reciprocal hybridizations with whole sex chromosome probes revealed that different autosomal pairs have evolved as the sex pair, even among closely related species. In addition, distinct origins and different patterns of differentiation were found for the same type of sex chromosome system. These features expose the high plasticity of the sex chromosome evolution in lower vertebrates, in contrast to that occurring in higher ones. A possible role of this sex chromosome turnover in the speciation processes is also discussed.
Collapse
Affiliation(s)
- M B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | | | | |
Collapse
|
91
|
Voltolin TA, Mendonça BB, Ferreira DC, Senhorini JA, Foresti F, Porto-Foresti F. Chromosomal location of retrotransposable REX 1 in the genomes in five Prochilodus (Teleostei: Characiformes. Mob Genet Elements 2013; 3:e25846. [PMID: 24195015 PMCID: PMC3812791 DOI: 10.4161/mge.25846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/13/2013] [Accepted: 07/22/2013] [Indexed: 01/14/2023] Open
Abstract
Transposable elements are repetitive DNA sequences comprising a group of segments able to move and carry sequences within the genome. Studies involving comparative genomics have revealed that most vertebrates have different populations of transposable elements with significant differences among species of the same lineage. Few studies have been conducted in fish, the most diverse group of vertebrates, with the objective to locate different types of transposable elements. Therefore, this study proposed to map the retrotransposable element Rex1 applying Fluorescent in situ Hybridization (FISH) in five species of the genus Prochilodus (Prochilodus argenteus, Prochilodus brevis, Prochilodus costatus, Prochilodus lineatus and Prochilodus nigricans). After the application of the Rex1 probe, scattered markings were found throughout the genome of analyzed species, and also the presence of small clusters located in the centromeric and telomeric regions coincident with the heterochromatin distribution pattern. This was the first description of the retrotransposable element Rex1 in Prochilodus genome seeking for a better understanding of the distribution pattern of these retrotransposons in the genome of teleost fish.
Collapse
Affiliation(s)
- Tatiana Aparecida Voltolin
- Departamento Ciências Biológicas; Faculdade de Ciências; Universidade Estadual Paulista (UNESP); Campus de Bauru; Bauru, São Paulo Brazil
| | | | | | | | | | | |
Collapse
|
92
|
Xu D, Lou B, Bertollo LAC, Cioffi MDB. Chromosomal mapping of microsatellite repeats in the rock bream fish Oplegnathus fasciatus, with emphasis of their distribution in the neo-Y chromosome. Mol Cytogenet 2013; 6:12. [PMID: 23510140 PMCID: PMC3608002 DOI: 10.1186/1755-8166-6-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/13/2013] [Indexed: 02/06/2023] Open
Abstract
Despite the theoretical and experimental progress, our understanding on sex chromosome differentiation is still diagrammatic. The accumulation of repetitive DNA sequences is believed to occur in early stages of such differentiation. As fish species present a wide range of sex chromosome systems they are excellent models to examine the differentiation of these chromosomes. In the present study, the chromosomal distribution of 9 mono-, di- and tri-nucleotide microsatellites were analyzed using fluorescence in situ hybrization (FISH) in rock bream fish (Oplegnathus fasciatus), which is characterized by an X1X2Y sex chromosome system. Generally, the males and females exhibited the same autosomal pattern of distribution for a specific microsatellite probe. The male specific Y chromosome displays a specific amount of distinct microsatellites repeats along both arms. However, the accumulation of these repetitive sequences was not accompanied by a huge heterochromatinization process. The present data provide new insights into the chromosomal constitution of the multiple sex chromosomes and allow further investigations on the true role of the microsatellite repeats in the differentiation process of this sex system.
Collapse
Affiliation(s)
- Dongdong Xu
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | | | | | | |
Collapse
|
93
|
Utsunomia R, Pansonato-Alves JC, Scacchetti PC, Oliveira C, Foresti F. Scattered organization of the histone multigene family and transposable elements in Synbranchus. Genet Mol Biol 2013; 37:30-6. [PMID: 24688288 PMCID: PMC3958323 DOI: 10.1590/s1415-47572014000100007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 11/21/2022] Open
Abstract
The fish species Synbranchus marmoratus is widely distributed throughout the Neotropical region and exhibits a significant karyotype differentiation. However, data concerning the organization and location of the repetitive DNA sequences in the genomes of these karyomorphs are still lacking. In this study we made a physical mapping of the H3 and H4 histone multigene family and the transposable elements Rex1 and Rex3 in the genome of three known S. marmoratus karyomorphs. The results indicated that both histone sequences seem to be linked with one another and are scattered all over the chromosomes of the complement, with a little compartmentalization in one acrocentric pair, which is different from observations in other fish groups. Likewise, the transposable elements Rex1 and Rex3 were also dispersed throughout the genome as small clusters. The data also showed that the histone sites are organized in a differentiated manner in the genomes of S. marmoratus, while the transposable elements Rex1 and Rex3 do not seem to be compartmentalized in this group.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - José Carlos Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Priscilla Cardim Scacchetti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| |
Collapse
|
94
|
Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol 2013; 13:42. [PMID: 23410024 PMCID: PMC3585787 DOI: 10.1186/1471-2148-13-42] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 02/11/2013] [Indexed: 01/07/2023] Open
Abstract
Background Sympatric species pairs are particularly common in freshwater fishes associated with postglacial lakes in northern temperate environments. The nature of divergences between co-occurring sympatric species, factors contributing to reproductive isolation and modes of genome evolution is a much debated topic in evolutionary biology addressed by various experimental tools. To the best of our knowledge, nobody approached this field using molecular cytogenetics. We examined chromosomes and genomes of one postglacial species pair, sympatric European winter-spawning Coregonus albula and the local endemic dwarf-sized spring-spawning C. fontanae, both originating in Lake Stechlin. We have employed molecular cytogenetic tools to identify the genomic differences between the two species of the sympatric pair on the sub-chromosomal level of resolution. Results Fluorescence in situ hybridization (FISH) experiments consistently revealed a distinct variation in the copy number of loci of the major ribosomal DNA (the 45S unit) between C. albula and C. fontanae genomes. In C. fontanae, up to 40 chromosomes were identified to bear a part of the major ribosomal DNA, while in C. albula only 8–10 chromosomes possessed these genes. To determine mechanisms how such extensive genome alternation might have arisen, a PCR screening for retrotransposons from genomic DNA of both species was performed. The amplified retrotransposon Rex1 was used as a probe for FISH mapping onto chromosomes of both species. These experiments showed a clear co-localization of the ribosomal DNA and the retrotransposon Rex1 in a pericentromeric region of one or two acrocentric chromosomes in both species. Conclusion We demonstrated genomic consequences of a rapid ecological speciation on the level undetectable by neither sequence nor karyotype analysis. We provide indirect evidence that ribosomal DNA probably utilized the spreading mechanism of retrotransposons subsequently affecting recombination rates in both genomes, thus, leading to a rapid genome divergence. We attribute these extensive genome re-arrangements associated with speciation event to stress-induced retrotransposons (re)activation. Such causal interplay between genome differentiation, retrotransposons (re)activation and environmental conditions may become a topic to be explored in a broader genomic context in future evolutionary studies.
Collapse
|
95
|
The 5S rDNA High Dynamism in Diplodus sargus is a Transposon-Mediated Mechanism. Comparison with Other Multigene Families and Sparidae Species. J Mol Evol 2013; 76:83-97. [DOI: 10.1007/s00239-013-9541-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/10/2013] [Indexed: 01/27/2023]
|
96
|
Pereira CSA, Ráb P, Collares-Pereira MJ. Chromosomes of European cyprinid fishes: comparative cytogenetics and chromosomal characteristics of ribosomal DNAs in nine Iberian chondrostomine species (Leuciscinae). Genetica 2013; 140:485-95. [PMID: 23329299 DOI: 10.1007/s10709-013-9697-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022]
Abstract
Karyotypes and chromosomal features of both minor and major ribosomal RNA genes (rDNA) were investigated in nine Iberian chondrostomine species by fluorescent in situ hybridization (FISH) with 5S and 45S rDNA probes. All species presented invariably diploid values of 2n = 50 and the characteristic leuciscin karyotype pattern with 6-7 metacentric (m), 15-16 submetacentric (sm) and 3-4 subtelo- to acrocentric (st/a) chromosome pairs. The largest chromosome pair of the set was st/a as typical of Leuciscinae and no heteromorphic chromosomes could be unequivocally associated to sex determination. Achondrostoma occidentale and Pseudochondrostoma willkommii were cytogenetically characterized for the first time while Achondrostoma arcasii and Iberochondrostoma lemmingii were revisited regarding previous karyotype descriptions. Remarkable variability in number and location was observed for both molecular chromosome markers, especially within Achondrostoma and Iberochondrostoma genera. Clusters of 5S rDNA were mostly terminally associated to st/a chromosomes varying from four to eight positive signals, whilst NOR sites directly detected by the 45S rDNA probe were identified in sm chromosomes varying from three to six independent clusters. Frequent population bottlenecks in Mediterranean-type semiarid habitats were hypothesized to explain not only such extensive polymorphism which seems unique among leuciscin cyprinids but also the increased probability of fixation of rDNA translocation events.
Collapse
Affiliation(s)
- Carla Sofia A Pereira
- Faculty of Sciences, Department of Animal Biology, Centre of Environmental Biology, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal.
| | | | | |
Collapse
|
97
|
|
98
|
Rossi AR, Milana V, Hett AK, Tancioni L. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes. Genetica 2012; 140:469-76. [PMID: 23238894 DOI: 10.1007/s10709-012-9695-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
Karyotype and other chromosomal characteristics of the Appenine endemic cyprinid fish, Toscana stream chub Squalius lucumonis, were analysed using conventional banding and FISH with 45S and 5S rDNA probes. The diploid chromosome number (2n = 50) and karyotype characteristics including pericentromeric heterochromatic blocks and GC-rich CMA(3)-positive sites corresponding to both positive Ag-NORs and 45S rDNA loci on the short arms of a single medium-sized submetacentric chromosome pair were consistent with those found in most European leuciscine cyprinids. On other hand, 5S rDNA FISH in the Toscana stream chub and three other Italian leuciscines, S. squalus, Rutilus rubilio and Telestes muticellus, revealed a species-specific hybridization pattern, i.e. signals on four (S. lucumonis), three (S. squalus and R. rubilio) and two (T. muticellus) chromosome pairs. Whereas all the species shared the 5S rDNA loci on the largest subtelocentric chromosome pair, a "leuciscine" cytotaxonomic marker, S. lucumonis showed both classes of rDNA loci tandem aligned on the short arms of chromosome pair No. 12. The present findings suggest that the observed high variability of 5S rDNA loci provides a powerful tool for investigation of karyotype differentiation in karyologically conservative leuciscine fishes.
Collapse
Affiliation(s)
- Anna Rita Rossi
- Department of Biology and Biotechnology C. Darwin, University of Rome La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
99
|
Marquioni V, Bertollo LAC, Diniz D, Cioffi MDB. Comparative chromosomal mapping in Triportheus fish species. Analysis of synteny between ribosomal genes. Micron 2012; 45:129-35. [PMID: 23273577 DOI: 10.1016/j.micron.2012.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
All Triportheus species show the conserved diploid number of 52 chromosomes and a ZZ/ZW sex chromosome system. Previous studies conducted on Triportheus nematurus reported a syntenical location of 18S and 5S sites on this species, in addition to some indications that this condition could be shared by other Triportheus species, possibly constituting a synapomorphy for this genus. In the present study, fluorescence in situ hybridization (FISH) experiments were performed in seven Triportheus species in view of a comparative analysis of the distribution of the 18S and 5S ribosomal DNAs on the chromosomes. The double-FISH experiments have showed that the synteny of the 18S and 5S rDNA genes is not a synapomorphy for the genus, since it is not present in all the species investigated, although it is present in most of them. The findings suggest that the syntenical location of the ribosomal genes is an ancestral trait in Triportheus, which was changed during the course of evolution of this group.
Collapse
Affiliation(s)
- Vinicius Marquioni
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
100
|
Jacobina UP, Vicari MR, Bertollo LAC, Molina WF. Discriminatory profile of rDNA sites and trend for acrocentric chromosome formation in the genus Trachinotus Lacépède, 1801 (Perciformes, Carangidae). COMPARATIVE CYTOGENETICS 2012; 6:359-369. [PMID: 24260676 PMCID: PMC3834577 DOI: 10.3897/compcytogen.v6i4.3062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/29/2012] [Indexed: 06/02/2023]
Abstract
Chromosomal traits have provided valuable information for phylogeny and taxonomy of several fish groups. Three Atlantic Carangidae species of the genus Trachinotus Lacépède, 1801 (Trachinotus goodei Jordan et Evermann, 1896, Trachinotus carolinus (Linnaeus, 1766)and Trachinotus falcatus (Linnaeus, 1758)) were investigated, having 2n=48 chromosomes but different chromosomal arms (FN number), i.e., 52, 56 and 58, respectively, in view of the different number of two-armed chromosomes found in their karyotypes. Thus, Trachinotus goodei, Trachinotus carolinus and Trachinotus falcatus present a progressive distancefrom the probable basal karyotype proposed for Perciformes (2n=48 acrocentrics, FN=48). At first sight, these findings do not agree with the phylogenetic hypothesis based on mitochondrial sequences, where Trachinotus goodei appear as the most derived species, followed by Trachinotus falcatus and Trachinotus carolinus, respectively. However, the chromosomal mapping of ribosomal DNAs was informative for clarifying this apparent conflict. Indeed, the multiple 5S and 18S rDNA sites found in Trachinotus goodei corroborate the most derived condition for this species. In this sense, the occurrence of the unexpected number of two-armed chromosomes and FN value for this species, as well as for Trachinotus carolinus, must be due to additional rounds of acrocentric formation in these species, modifying the macrostructure of their karyotypes.
Collapse
Affiliation(s)
- Uedson Pereira Jacobina
- Department of Cell Biology and Genetics, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59078 – 970, Natal, RN, Brazi
| | - Marcelo Ricardo Vicari
- Department of Structural, Molecular Biology and Genetics, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Luiz Antonio Carlos Bertollo
- Department of Genetics and Evolution, Universidade Federal de São Carlos, Via Washington Luiz, Km 235, 13565 – 905, São Carlos, São Paulo, Brazil
| | - Wagner Franco Molina
- Department of Cell Biology and Genetics, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59078 – 970, Natal, RN, Brazi
| |
Collapse
|