51
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, De-la-Peña C, Loyola-Vargas VM. Signaling Overview of Plant Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:77. [PMID: 30792725 PMCID: PMC6375091 DOI: 10.3389/fpls.2019.00077] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a means by which plants can regenerate bipolar structures from a somatic cell. During the process of cell differentiation, the explant responds to endogenous stimuli, which trigger the induction of a signaling response and, consequently, modify the gene program of the cell. SE is probably the most studied plant regeneration model, but to date it is the least understood due to the unclear mechanisms that occur at a cellular level. In this review, the authors seek to emphasize the importance of signaling on plant SE, highlighting the interactions between the different plant growth regulators (PGR), mainly auxins, cytokinins (CKs), ethylene and abscisic acid (ABA), during the induction of SE. The role of signaling is examined from the start of cell differentiation through the early steps on the embryogenic pathway, as well as its relation to a plant's tolerance of different types of stress. Furthermore, the role of genes encoded to transcription factors (TFs) during the embryogenic process such as the LEAFY COTYLEDON (LEC), WUSCHEL (WUS), BABY BOOM (BBM) and CLAVATA (CLV) genes, Arabinogalactan-proteins (AGPs), APETALA 2 (AP2) and epigenetic factors is discussed.
Collapse
Affiliation(s)
- Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maharshi Ledezma-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Randy N. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Yary L. Juárez-Gómez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Analesa Skeete
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Johny Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
52
|
Li J, Wang M, Li Y, Zhang Q, Lindsey K, Daniell H, Jin S, Zhang X. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:435-450. [PMID: 29999579 PMCID: PMC6335067 DOI: 10.1111/pbi.12988] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 05/20/2023]
Abstract
Plant regeneration via somatic embryogenesis is time-consuming and highly genotype-dependent. The plant somatic embryogenesis process provokes many epigenetics changes including DNA methylation and histone modification. Recently, an elite cotton Jin668, with an extremely high regeneration ability, was developed from its maternal inbred Y668 cultivar using a Successive Regeneration Acclimation (SRA) strategy. To reveal the underlying mechanism of SRA, we carried out a genome-wide single-base resolution methylation analysis for nonembryogenic calluses (NECs), ECs, somatic embryos (SEs) during the somatic embryogenesis procedure and the leaves of regenerated offspring plants. Jin668 (R4) regenerated plants were CHH hypomethylated compared with the R0 regenerated plants of SRA process. The increase in CHH methylation from NEC to EC was demonstrated to be associated with the RNA-dependent DNA methylation (RdDM) and the H3K9me2-dependent pathway. Intriguingly, the hypomethylated CHH differentially methylated regions (DMRs) of promoter activated some hormone-related and WUSCHEL-related homeobox genes during the somatic embryogenesis process. Inhibiting DNA methylation using zebularine treatment in NEC increased the number of embryos. Our multi-omics data provide new insights into the dynamics of DNA methylation during the plant tissue culture and regenerated offspring plants. This study also reveals that induced hypomethylation (SRA) may facilitate the higher plant regeneration ability and optimize maternal genetic cultivar.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yajun Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | | | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
53
|
Pais MS. Somatic Embryogenesis Induction in Woody Species: The Future After OMICs Data Assessment. FRONTIERS IN PLANT SCIENCE 2019; 10:240. [PMID: 30984207 PMCID: PMC6447717 DOI: 10.3389/fpls.2019.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 05/15/2023]
Abstract
Very early somatic embryogenesis has been recognized as a powerful method to propagate plants in vitro. For some woody species and in particular for some coniferous trees, somatic embryogenesis induction has become a routine procedure. For the majority, the application of this technology presents yet many limitations especially due to the genotype, the induction conditions, the number of embryos produced, maturation, and conversion, among other factors that compromise the systematic use of somatic embryogenesis for commercial purposes especially of woody species and forest trees in particular. The advancements obtained on somatic embryogenesis in Arabidopsis and the development of OMIC technologies allowed the characterization of genes and the corresponding proteins that are conserved in woody species. This knowledge will help in understanding the molecular mechanisms underlying the complex regulatory networks that control somatic embryogenesis in woody plants. In this revision, we report on developments of OMICs (genomics, transcriptomics, metabolomics, and proteomics) applied to somatic embryogenesis induction and its contribution for understanding the change of fate giving rise to the expression of somatic embryogenesis competence.
Collapse
|
54
|
Xu J, Yang X, Li B, Chen L, Min L, Zhang X. GhL1L1 affects cell fate specification by regulating GhPIN1-mediated auxin distribution. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:63-74. [PMID: 29754405 PMCID: PMC6330550 DOI: 10.1111/pbi.12947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 05/26/2023]
Abstract
Auxin is as an efficient initiator and regulator of cell fate during somatic embryogenesis (SE), but the molecular mechanisms and regulating networks of this process are not well understood. In this report, we analysed SE process induced by Leafy cotyledon1-like 1 (GhL1L1), a NF-YB subfamily gene specifically expressed in embryonic tissues in cotton. We also identified the target gene of GhL1L1, and its role in auxin distribution and cell fate specification during embryonic development was analysed. Overexpression of GhL1L1 accelerated embryonic cell formation, associated with an increased concentration of IAA in embryogenic calluses (ECs) and in the shoot apical meristem, corresponding to altered expression of the auxin transport gene GhPIN1. By contrast, GhL1L1-deficient explants showed retarded embryonic cell formation, and the concentration of IAA was decreased in GhL1L1-deficient ECs. Disruption of auxin distribution accelerated the specification of embryonic cell fate together with regulation of GhPIN1. Furthermore, we showed that PHOSPHATASE 2AA2 (GhPP2AA2) was activated by GhL1L1 through targeting the G-box of its promoter, hence regulating the activity of GhPIN1 protein. Our results indicate that GhL1L1 functions as a key regulator in auxin distribution to regulate cell fate specification in cotton and contribute to the understanding of the complex process of SE in plant species.
Collapse
Affiliation(s)
- Jiao Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Baoqi Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Lin Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Ling Min
- College of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
55
|
Wang L, Liu N, Wang T, Li J, Wen T, Yang X, Lindsey K, Zhang X. The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1081-1093. [PMID: 29253187 PMCID: PMC6018973 DOI: 10.1093/jxb/erx475] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/08/2017] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) modulate many biological processes through inactivation of specific mRNA targets such as those encoding transcription factors. A delicate spatial/temporal balance between specific miRNAs and their targets is central to achieving the appropriate biological outcomes. Somatic embryogenesis in cotton (Gossypium hirsutum), which goes through initial cellular dedifferentiation, callus proliferation, and somatic embryo development, is of great importance for both fundamental research and biotechnological applications. In this study, we characterize the function of the GhmiR157a-GhSPL10 miRNA-transcription factor module during somatic embryogenesis in cotton. We show that overexpression of GhSPL10, a target of GhmiR157a, increases free auxin and ethylene content and expression of associated signaling pathways, activates the flavonoid biosynthesis pathway, and promotes initial cellular dedifferentiation and callus proliferation. Inhibition of expression of the flavonoid synthesis gene F3H in GhSPL10 overexpression lines (35S:rSPL10-7) blocked callus initiation, while exogenous application of several types of flavonol promoted callus proliferation, associated with cell cycle-related gene expression. Inhibition of ethylene synthesis by aminoethoxyvinylglycine treatment in the 35S:rSPL10-7 line severely inhibited callus initiation, while activation of ethylene signaling through 1-aminocyclopropane 1-carboxylic acid treatment, EIN2 overexpression, or inhibition of the ethylene negative regulator CTR1 by RNA interference promoted flavonoid-related gene expression and flavonol accumulation. These results show that an up-regulation of ethylene signaling and the activation of flavonoid biosynthesis in GhSPL10 overexpression lines were associated with initial cellular dedifferentiation and callus proliferation. Our results demonstrate the importance of a GhmiR157a-GhSPL10 gene module in regulating somatic embryogenesis via hormonal and flavonoid pathways.
Collapse
Affiliation(s)
- Lichen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Tianyi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Tianwang Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- Correspondence:
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
56
|
da Cunha Soares T, da Silva CRC, Chagas Carvalho JMF, Cavalcanti JJV, de Lima LM, de Albuquerque Melo Filho P, Severino LS, Dos Santos RC. Validating a probe from GhSERK1 gene for selection of cotton genotypes with somatic embryogenic capacity. J Biotechnol 2018; 270:44-50. [PMID: 29427607 DOI: 10.1016/j.jbiotec.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Substantial progress is being reported in the techniques for plant transformation, but successful regeneration of some genotypes remains a challenging step in the attempts to transform some recalcitrant species. GhSERK1 gene is involved on embryo formation, and its overexpression enhances the embryogenic competence. In this study we validate a short GhSERK1 probe in order to identify embryogenic cotton genotypes using RT-qPCR and blotting assays. Cotton genotypes with contrasting somatic embryogenic capacity were tested using in vitro procedures. High expression of transcripts was found in embryogenic genotypes, and the results were confirmed by the RT-PCR-blotting using a non-radioactive probe. The regeneration ability was confirmed in embryogenic genotypes. We confirmed that GhSERK1 can be used as marker for estimating the somatic embryogenesis ability of cotton plants.
Collapse
Affiliation(s)
- Taiza da Cunha Soares
- Post-Graduation in Biotechnology, Renorbio/ Federal Rural University of Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Carliane Rebeca Coelho da Silva
- Post-Graduation in Biotechnology, Renorbio/ Federal Rural University of Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | | | | | - Liziane Maria de Lima
- Biotechnology Laboratory, Embrapa Algodão, Rua Osvaldo Cruz, 1143 - Centenário, 58428-095, Campina Grande, Paraíba, Brazil
| | - Péricles de Albuquerque Melo Filho
- Post-Graduation in Biotechnology, Renorbio/ Federal Rural University of Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Liv Soares Severino
- Biotechnology Laboratory, Embrapa Algodão, Rua Osvaldo Cruz, 1143 - Centenário, 58428-095, Campina Grande, Paraíba, Brazil
| | - Roseane Cavalcanti Dos Santos
- Biotechnology Laboratory, Embrapa Algodão, Rua Osvaldo Cruz, 1143 - Centenário, 58428-095, Campina Grande, Paraíba, Brazil.
| |
Collapse
|
57
|
Ma L, Liu M, Yan Y, Qing C, Zhang X, Zhang Y, Long Y, Wang L, Pan L, Zou C, Li Z, Wang Y, Peng H, Pan G, Jiang Z, Shen Y. Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies. FRONTIERS IN PLANT SCIENCE 2018; 9:561. [PMID: 29755499 PMCID: PMC5933171 DOI: 10.3389/fpls.2018.00561] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/10/2018] [Indexed: 05/04/2023]
Abstract
The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (WOX2) was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.
Collapse
Affiliation(s)
- Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunyan Qing
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yun Long
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoling Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhou Jiang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yaou Shen
| |
Collapse
|
58
|
Zhu HG, Cheng WH, Tian WG, Li YJ, Liu F, Xue F, Zhu QH, Sun YQ, Sun J. iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L. PLANT MOLECULAR BIOLOGY 2018; 96:89-102. [PMID: 29214424 PMCID: PMC5778175 DOI: 10.1007/s11103-017-0681-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/08/2017] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE: iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton. Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryo (SE) using the isobaric tags for relative and absolute quantitation (iTRAQ) technology. In total, 5892 proteins were identified amongst the three samples. The majority of these proteins (93.4%) were found to have catalytic activity, binding activity, transporter activity or structural molecular activity. Of these proteins, 1024 and 858 were differentially expressed in NEC versus EC and EC versus SE, respectively. Compared to NEC, EC had 452 and 572 down- and up-regulated proteins, respectively, and compared to EC, SE had 647 and 221 down- and up-regulated proteins, respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that genetic information transmission, plant hormone transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were the top pathways involved in somatic embryogenesis. Our proteomics results not only confirmed our previous transcriptomic results on the role of the polyamine metabolic pathways and stress responses in cotton somatic embryogenesis, but identified key proteins important for cotton somatic embryogenesis and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.
Collapse
Affiliation(s)
- Hua-Guo Zhu
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Wen-Han Cheng
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
- Jingchu University of Technology, Jingmen, 448000 Hubei China
| | - Wen-Gang Tian
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Yang-Jun Li
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Feng Liu
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Fei Xue
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601 Australia
| | - Yu-Qiang Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| |
Collapse
|
59
|
Aguilar-Hernández V, Loyola-Vargas VM. Advanced Proteomic Approaches to Elucidate Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1658. [PMID: 30524454 PMCID: PMC6262180 DOI: 10.3389/fpls.2018.01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/25/2018] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis (SE) is a cell differentiation process by which a somatic cell changes its genetic program and develops into an embryonic cell. Investigating this process with various explant sources in vitro has allowed us to trace somatic embryo development from germination to plantlets and has led to the generation of new technologies, including genetic transformation, endangered species conservation, and synthetic seed production. A transcriptome data comparison from different stages of the developing somatic embryo has revealed a complex network controlling the somatic cell's fate, suggesting that an interconnected network acts at the protein level. Here, we discuss the current progress on SE using proteomic-based data, focusing on changing patterns of proteins during the establishment of the somatic embryo. Despite the advanced proteomic approaches available so far, deciphering how the somatic embryo is induced is still in its infancy. The new proteomics techniques that lead to the quantification of proteins with different abundances during the induction of SE are opening this area of study for the first time. These quantitative differences can elucidate the different pathways involved in SE induction. We envisage that the application of these proteomic technologies can be pivotal to identifying proteins critical to the process of SE, demonstrating the cellular localization, posttranslational modifications, and turnover protein events required to switch from a somatic cell to a somatic embryo cell and providing new insights into the molecular mechanisms underlying SE. This work will help to develop biotechnological strategies for mass production of quality crop material.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Victor Aguilar-Hernández, orcid.org/0000-0001-8239-4047
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
60
|
Góngora-Castillo E, Nic-Can GI, Galaz-Ávalos RM, Loyola-Vargas VM. Elaboration of Transcriptome During the Induction of Somatic Embryogenesis. Methods Mol Biol 2018; 1815:411-427. [PMID: 29981139 DOI: 10.1007/978-1-4939-8594-4_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Somatic embryogenesis (SE) is one of the most studied developmental processes due to its applications, such as plant micropropagation, transformation, and germplasm conservation. The use of massive techniques of sequencing, as well as the use of subtractive hybridization and macroarrays, has led to the identification of hundreds of genes involved in the SE process. These have been important developments to study the molecular aspects of the progress of SE. With the advent of the new massive techniques for sequencing RNA, it has been possible to see a more complete picture of whole processes. In this chapter we present a technique to handle the elaboration of the transcriptome from the extraction of RNA until the assembly of the complete transcriptome.
Collapse
Affiliation(s)
- Elsa Góngora-Castillo
- CONACYT Research Fellow-Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.
| | - Geovanny I Nic-Can
- CONACYT Research Fellow-Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Rosa M Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
61
|
Chu Z, Chen J, Sun J, Dong Z, Yang X, Wang Y, Xu H, Zhang X, Chen F, Cui D. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:244. [PMID: 29258440 PMCID: PMC5735865 DOI: 10.1186/s12870-017-1204-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/06/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). RESULTS In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which were validated by qRT-PCR, showed a high correlation with the RNA-seq value. CONCLUSIONS This study provides new insights into the role of the transcriptome in embryogenic callus formation in wheat, and will serve as a valuable resource for further studies addressing embryogenic callus formation in plants.
Collapse
Affiliation(s)
- Zongli Chu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Junying Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Junyan Sun
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Zhongdong Dong
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xia Yang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Ying Wang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Haixia Xu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xiaoke Zhang
- Agronomy College, North West Agriculture and Forestry University, Yangling, 712100 China
| | - Feng Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Dangqun Cui
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| |
Collapse
|
62
|
Horstman A, Bemer M, Boutilier K. A transcriptional view on somatic embryogenesis. ACTA ACUST UNITED AC 2017; 4:201-216. [PMID: 29299323 PMCID: PMC5743784 DOI: 10.1002/reg2.91] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Somatic embryogenesis is a form of induced plant cell totipotency where embryos develop from somatic or vegetative cells in the absence of fertilization. Somatic embryogenesis can be induced in vitro by exposing explants to stress or growth regulator treatments. Molecular genetics studies have also shown that ectopic expression of specific embryo‐ and meristem‐expressed transcription factors or loss of certain chromatin‐modifying proteins induces spontaneous somatic embryogenesis. We begin this review with a general description of the major developmental events that define plant somatic embryogenesis and then focus on the transcriptional regulation of this process in the model plant Arabidopsis thaliana (arabidopsis). We describe the different somatic embryogenesis systems developed for arabidopsis and discuss the roles of transcription factors and chromatin modifications in this process. We describe how these somatic embryogenesis factors are interconnected and how their pathways converge at the level of hormones. Furthermore, the similarities between the developmental pathways in hormone‐ and transcription‐factor‐induced tissue culture systems are reviewed in the light of our recent findings on the somatic embryo‐inducing transcription factor BABY BOOM.
Collapse
Affiliation(s)
- Anneke Horstman
- Bioscience Wageningen University and Research Wageningen The Netherlands.,Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Kim Boutilier
- Bioscience Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
63
|
Li X, Liu G, Geng Y, Wu M, Pei W, Zhai H, Zang X, Li X, Zhang J, Yu S, Yu J. A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton. BMC Genomics 2017; 18:815. [PMID: 29061116 PMCID: PMC5654091 DOI: 10.1186/s12864-017-4224-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Small auxin-up RNA (SAUR) gene family is the largest family of early auxin response genes in higher plants, which have been implicated in the regulation of multiple biological processes. However, no comprehensive analysis of SAUR genes has been reported in cotton (Gossypium spp.). Results In the study, we identified 145, 97, 214, and 176 SAUR homologous genes in the sequenced genomes of G. raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. A phylogenetic analysis revealed that the SAUR genes can be classified into 10 groups. A further analysis of chromosomal locations and gene duplications showed that tandem duplication and segmental duplication events contributed to the expansion of the SAUR gene family in cotton. An exon-intron organization and motif analysis revealed the conservation of SAUR-specific domains, and the auxin responsive elements existed in most of the upstream sequences. The expression levels of 16 GhSAUR genes in response to an exogenous application of IAA were determined by a quantitative RT-PCR analysis. The genome-wide RNA-seq data and qRT-PCR analysis of selected SAUR genes in developing fibers revealed their differential expressions. The physical mapping showed that 20 SAUR genes were co-localized with fiber length quantitative trait locus (QTL) hotspots. Single nucleotide polymorphisms (SNPs) were detected for 12 of these 20 genes between G. hirsutum and G. barbadense, but no SNPs were identified between two backcross inbred lines with differing fiber lengths derived from a cross between the two cultivated tetraploids. Conclusions This study provides an important piece of genomic information for the SAUR genes in cotton and lays a solid foundation for elucidating the functions of SAUR genes in auxin signaling pathways to regulate cotton growth. Electronic supplementary material The online version of this article (10.1186/s12864-017-4224-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xihua Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Yanhui Geng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Honghong Zhai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xinshan Zang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xingli Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 88003, USA.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China. .,College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China.
| |
Collapse
|
64
|
Cao A, Zheng Y, Yu Y, Wang X, Shao D, Sun J, Cui B. Comparative Transcriptome Analysis of SE initial dedifferentiation in cotton of different SE capability. Sci Rep 2017; 7:8583. [PMID: 28819177 PMCID: PMC5561258 DOI: 10.1038/s41598-017-08763-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023] Open
Abstract
Somatic embryogenesis (SE) is a critical transition from vegetative to embryogenic growth in higher plants; however, few studies have investigated the mechanism that regulates SE initial differentiation. Most cotton varieties have not undergone regeneration by SE, so only a few varieties can be used in genetic engineering. Here, two varieties of cotton with different SE capabilities (HD, higher differentiation and LD, lower differentiation) were analyzed by high throughout RNA-Seq at the pre-induction stage (0h) and two induction stages (3h and 3d) under callus-induction medium (CIM). About 1150 million clean reads were obtained from 98.21% raw data. Transcriptomic analysis revealed that "protein kinase activity" and "oxidoreductase activity" were highly represented GO terms during the same and different treatment stages among HD and LD. Moreover, several stress-related transcription factors might play important roles in SE initiation. The SE-related regulation genes (SERKs) showed different expression patterns between HD and LD. Furthermore, the complex auxin and ethylene signaling pathway contributes to initiation of differentiation in SE. Thus, our RNA-sequencing of comparative transcriptome analysis will lay a foundation for future studies to better define early somatic formation in cotton with different SE capabilities.
Collapse
Affiliation(s)
- Aiping Cao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Yinying Zheng
- Colleges of Life Science, Shihezi University, Shihezi, China
| | - Yu Yu
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xuwen Wang
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Dongnan Shao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Baiming Cui
- Colleges of Life Science, Shihezi University, Shihezi, China.
| |
Collapse
|
65
|
Ge F, Huang X, Hu H, Zhang Y, Li Z, Zou C, Peng H, Li L, Gao S, Pan G, Shen Y. Endogenous small interfering RNAs associated with maize embryonic callus formation. PLoS One 2017; 12:e0180567. [PMID: 28672003 PMCID: PMC5495461 DOI: 10.1371/journal.pone.0180567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/16/2017] [Indexed: 11/18/2022] Open
Abstract
The induction efficiency of maize embryonic callus is highly dependent on the genotype, and only a few lines possess a high capacity for callus formation. Although certain genes and pathways have been reported to contribute to the regulation of callus induction, to the best of our knowledge, the functions of the small interfering RNAs (siRNAs) involved in this process remain unknown. In this study, we identified 861 differentially expressed siRNAs and 576 target genes in the callus induction process. These target genes were classified into 3 clusters, and their functions involve controlling metalloexopeptidase activity, catalase activity, transcription regulation, and O-methyltransferase activity. In addition, certain genes related to auxin transport and stem cell or meristem development (e.g., PLT5-like, ARF15, SAUR-like, FAS1-like, Fea3, SCL5, and Zmwox2A) were regulated by the differentially expressed siRNAs. Moreover, zma-siR004119-2 directly cleaves the 5' UTR of Homeobox-transcription factor 25, which further leads to the down-regulation of its expression. Twelve 24-nt-siRNAs led to the hyper-methylation of GRMZM2G013465, which further decreases its expression. These results suggest that differentially expressed siRNAs regulate callus formation by controlling the expression of their target genes.
Collapse
Affiliation(s)
- Fei Ge
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xing Huang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Hongmei Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yanling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Zhaoling Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Lujiang Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
66
|
Krishnan SRS, Siril EA. Auxin and nutritional stress coupled somatic embryogenesis in Oldenlandia umbellata L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:471-475. [PMID: 28461734 PMCID: PMC5391357 DOI: 10.1007/s12298-017-0425-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 05/28/2023]
Abstract
Somatic embryos were induced from internodal segment derived callus of Oldenlandia umbellata L., in MS medium supplemented with different concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D). Initially calli were developed from internodes of microshoots inoculated in 2.5 µM NAA supplemented medium. Then calli were transferred to 2,4-D added medium for somatic embryogenesis. Nutritional stress coupled with higher concentration of 2,4-D triggered somatic embryogenesis. Nutritional stress was induced by culturing callus in a fixed amount of medium for a period up to 20 weeks without any external supply of nutrients. Addition of 2.5 µM 2,4-D gave 100% embryogenesis within 16 weeks of incubation. Callus mass bearing somatic embryos were transferred to germination medium facilitated production of in vitro plantlets. MS medium supplemented with 2.5 µM benzyl adenine and 0.5 µM α-naphthalene acetic acid produced 15.33 plants per culture within 4 weeks of culture. Somatic embryo germinated plants were then hardened and transferred to green house.
Collapse
Affiliation(s)
- S. R. Saranya Krishnan
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695 581 India
| | - E. A. Siril
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695 581 India
| |
Collapse
|
67
|
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS, Vaganan MM, Muthusamy M, Sajith KP. Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine. PLANT CELL REPORTS 2017; 36:163-178. [PMID: 27807644 DOI: 10.1007/s00299-016-2067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 05/22/2023]
Abstract
Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. SE in banana is completely genome-dependent and most of the commercial cultivars exhibit recalcitrance. Thus, understanding the molecular basis of embryogenesis in Musa will help to develop strategies for mass production of quality planting material. In this study, differentially expressed proteins between embryogenic calli (EC) and non-embryogenic calli (NEC) with respect to the explant, immature male flower buds (IMFB), of cv. Grand Naine (AAA) were determined using two-dimensional gel electrophoresis (2DE). The 2DE results were validated through qRT-PCR. In total, 65 proteins were identified: 42 were highly expressed and 23 were less expressed in EC compared to NEC and IMFB. qRT-PCR analysis of five candidate proteins, upregulated in EC, were well correlated with expression at transcript level. Further analysis of proteins showed that embryogenesis in banana is associated with the control of oxidative stress. The regulation of ROS scavenging system and protection of protein structure occurred in the presence of heat shock proteins. Alongside, high accumulation of stress-related cationic peroxidase and plant growth hormone-related proteins like indole-3-pyruvate monooxygenase and adenylate isopentenyltransferase in EC revealed the association with the induction of SE.
Collapse
Affiliation(s)
- Marimuthu Kumaravel
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Subbaraya Uma
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India.
| | - Suthanthiram Backiyarani
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Marimuthu Somasundaram Saraswathi
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Muthu Mayil Vaganan
- Crop Protection Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Muthusamy Muthusamy
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Kallu Purayil Sajith
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| |
Collapse
|
68
|
Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, von Arnold S. Transcript profiling for early stages during embryo development in Scots pine. BMC PLANT BIOLOGY 2016; 16:255. [PMID: 27863470 PMCID: PMC5116219 DOI: 10.1186/s12870-016-0939-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Characterization of the expression and function of genes regulating embryo development in conifers is interesting from an evolutionary point of view. However, our knowledge about the regulation of embryo development in conifers is limited. During early embryo development in Pinus species the proembyo goes through a cleavage process, named cleavage polyembryony, giving rise to four embryos. One of these embryos develops to a dominant embryo, which will develop further into a mature, cotyledonary embryo, while the other embryos, the subordinate embryos, are degraded. The main goal of this study has been to identify processes that might be important for regulating the cleavage process and for the development of a dominant embryo. RESULTS RNA samples from embryos and megagametophytes at four early developmental stages during seed development in Pinus sylvestris were subjected to high-throughput sequencing. A total of 6.6 million raw reads was generated, resulting in 121,938 transcripts, out of which 36.106 contained ORFs. 18,638 transcripts were differentially expressed (DETs) in embryos and megagametophytes. GO enrichment analysis of transcripts up-regulated in embryos showed enrichment for different cellular processes, while those up-regulated in megagametophytes were enriched for accumulation of storage material and responses to stress. The highest number of DETs was detected during the initiation of the cleavage process. Transcripts related to embryogenic competence, cell wall modifications, cell division pattern, axis specification and response to hormones and stress were highly abundant and differentially expressed during early embryo development. The abundance of representative DETs was confirmed by qRT-PCR analyses. CONCLUSION Based on the processes identified in the GO enrichment analyses and the expression of the selected transcripts we suggest that (i) processes related to embryogenic competence and cell wall loosening are involved in activating the cleavage process; (ii) apical-basal polarization is strictly regulated in dominant embryos but not in the subordinate embryos; (iii) the transition from the morphogenic phase to the maturation phase is not completed in subordinate embryos. This is the first genome-wide transcript expression profiling of the earliest stages during embryo development in a Pinus species. Our results can serve as a framework for future studies to reveal the functions of identified genes.
Collapse
Affiliation(s)
- Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | - Malin Abrahamsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | - Lieven Sterck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, B-9000 Belgium
| | - Blanca Craven-Bartle
- Department of Molecular Biology and Biochemistry, School of Sciences, Campus de Teatinos, Universidad de Malaga, 29071 Malaga, Spain
| | - Francisco Canovas
- Department of Molecular Biology and Biochemistry, School of Sciences, Campus de Teatinos, Universidad de Malaga, 29071 Malaga, Spain
| | - Sara von Arnold
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
69
|
Bai Q, Hou D, Li L, Cheng Z, Ge W, Liu J, Li X, Mu S, Gao J. Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis). Genome 2016; 60:325-336. [PMID: 28177844 DOI: 10.1139/gen-2016-0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moso bamboo (Phyllostachys edulis) is well known for its rapid shoot growth. Auxin exerts pleiotropic effects on plant growth. The small auxin-up RNA (SAUR) genes are early auxin-responsive genes involved in plant growth. In total, 38 SAUR genes were identified in P. edulis (PheSAUR). A comprehensive overview of the PheSAUR gene family is presented, including the gene structures, phylogeny, and subcellular location predictions. A transcriptome analysis indicated that 37 (except PheSAUR18) of the PheSAUR genes were expressed during shoot growth process and that the PheSAUR genes were differentially expressed. Furthermore, quantitative real-time PCR analysis indicated that all of the PheSAUR genes could be induced in different tissues of seedlings and that 37 (except PheSAUR41) of the PheSAUR genes were up-regulated after indole-3-acetic acid (IAA) treatment. These results reveal a comprehensive overview of the PheSAUR gene family and may pave the way for deciphering their functions during bamboo development.
Collapse
Affiliation(s)
- Qingsong Bai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Dan Hou
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Long Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Wei Ge
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| |
Collapse
|
70
|
Wang W, Li H, Lin X, Zhang F, Fang B, Wang Z. The effect of polar auxin transport on adventitious branches formation in Gracilaria lichenoides in vitro. PHYSIOLOGIA PLANTARUM 2016; 158:356-365. [PMID: 27145892 DOI: 10.1111/ppl.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Seaweed tissue culture (STC) is an important micropropagation tool that has been applied for strain improvement, micropropagation and genetic engineering. Because the mechanisms associated with STC are poorly understood, its application to these organisms lags far behind that of tissue culture propagation of higher plants. Auxin, calcium (Ca2+ ) and hydrogen peroxide (H2 O2 ) fluxes all play key roles during plant growth and development. In this study, we therefore measured indole-3-acetic acid, Ca2+ and H2 O2 fluxes of Gracilaria lichenoides explants during adventitious branches (ABs) formation for the first time using noninvasive micro-test technology. We confirmed that polar auxin transport (PAT) also occurs in the marine red alga G. lichenoides. We additionally found that N-1-naphthylphthalamic acid may suppress auxin efflux via ABCB1 transporters and then inhibit ABs formation from the apical region of G. lichenoides segments. The involvement of Ca2+ and H2 O2 fluxes in PAT-mediated AB formation in G. lichenoides was also investigated. We propose that complex feedback among Ca2+ , H2 O2 and auxin signaling and response systems may occur during ABs polar formation in G. lichenoides explants, similar to that in higher plants. Our results provide innovative insights that should aid future elucidation of mechanisms operative during STC.
Collapse
Affiliation(s)
- Wenlei Wang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huanqin Li
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiangzhi Lin
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Fang Zhang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhaokai Wang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China.
| |
Collapse
|
71
|
Cheng WH, Zhu HG, Tian WG, Zhu SH, Xiong XP, Sun YQ, Zhu QH, Sun J. De novo transcriptome analysis reveals insights into dynamic homeostasis regulation of somatic embryogenesis in upland cotton (G. hirsutum L.). PLANT MOLECULAR BIOLOGY 2016; 92:279-92. [PMID: 27511192 PMCID: PMC5040755 DOI: 10.1007/s11103-016-0511-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/07/2016] [Indexed: 05/22/2023]
Abstract
Plant regeneration via somatic embryogenesis (SE) is the key step for genetic improvement of cotton (Gossypium hirsutum L.) through genetic engineering mediated by Agrobacteria, but the molecular mechanisms underlying SE in cotton is still unclear. Here, RNA-Sequencing was used to analyze the genes expressed during SE and their expression dynamics using RNAs isolated from non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryos (SEs). A total of 101, 670 unigenes were de novo assembled. The genes differentially expressed (DEGs) amongst NEC, EC and SEs were identified, annotated and classified. More DEGs were found between SEs and EC than between EC and NEC. A significant number of DEGs were related to hormone homeostasis, stress and ROS responses, and metabolism of polyamines. To confirm the expression dynamics of selected DEGs involved in various pathways, experiments were set up to investigate the effects of hormones (Indole-3-butytric acid, IBA; Kinetin, KT), polyamines, H2O2 and stresses on SE. Our results showed that exogenous application of IBA and KT positively regulated the development of EC and SEs, and that polyamines and H2O2 promoted the conversion of EC into SEs. Furthermore, we found that low and moderate stress is beneficial for proliferation of EC and SEs formation. Together, our global analysis of transcriptomic dynamics reveals that hormone homeostasis, polyamines, and stress response synergistically regulating SE in cotton.
Collapse
Affiliation(s)
- Wen-Han Cheng
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Hua-Guo Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Wen-Gang Tian
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Shou-Hong Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Xian-Peng Xiong
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| | - Yu-Qiang Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang China
| | - Qian-Hao Zhu
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, 2601 Australia
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang China
| |
Collapse
|
72
|
Wójcik AM, Gaj MD. miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. PLANTA 2016; 244:231-43. [PMID: 27040841 PMCID: PMC4903112 DOI: 10.1007/s00425-016-2505-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
miR393 was found to control embryogenic transition in somatic cells in Arabidopsis via control of the TIR1 and AFB2 auxin receptors genes of the F-box family. miR393 molecules are believed to regulate the expression of the auxin receptors of the TAAR clade. Considering the central role of auxin in the induction of somatic embryogenesis (SE) in plant explants cultured in vitro, the involvement of miR393 in the embryogenic transition of somatic cells has been hypothesised. To verify this assumption, the reporter, overexpressor and mutant lines in genes encoded MIR393 and TIR1/AFB proteins of the F-box family were analysed during SE in Arabidopsis. Expression profiling of MIR393a and MIR393b, mature miR393 and the target genes (TIR1, AFB1, AFB2, AFB3) were investigated in explants undergoing SE. In addition, the embryogenic potential of various genotypes with a modified activity of the MIR393 and TIR1/AFB targets was evaluated. The distinct increase in the accumulation of miR393 that was coupled with a notable down-regulation of TIR1 and AFB2 targets was observed at the early phase of SE induction. Relevant to this observation, the GUS/GFP monitored expression of MIR393, TIR1 and AFB2 transcripts was localised in explant tissue undergoing SE induction. The results suggest the miR393-mediated regulation of TIR1 and AFB2 during embryogenic transition induced in Arabidopsis and a modification of the explant sensitivity to auxin treatment is proposed as underlying this regulatory pathway.
Collapse
Affiliation(s)
- Anna M Wójcik
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
73
|
Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, Lindsey K, Zhang X. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton. Mol Cell Proteomics 2016; 15:2108-24. [PMID: 27073181 PMCID: PMC5083107 DOI: 10.1074/mcp.m115.049338] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 12/02/2022] Open
Abstract
Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling.
Collapse
Affiliation(s)
- Ting Zhou
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiyan Yang
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Kai Guo
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Jinwu Deng
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Jiao Xu
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wenhui Gao
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Keith Lindsey
- §Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Xianlong Zhang
- From the ‡National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China;
| |
Collapse
|
74
|
HUANG XING, BAO YANING, WANG BO, LIU LIJUN, CHEN JIE, DAI LUNJIN, BALOCH SANAULLAH, PENG DINGXIANG. Identification of small auxin-up RNA (SAUR) genes in Urticales plants: mulberry (Morus notabilis), hemp (Cannabis sativa) and ramie (Boehmeria nivea). J Genet 2016; 95:119-29. [DOI: 10.1007/s12041-016-0622-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
75
|
Zhai L, Xu L, Wang Y, Zhu X, Feng H, Li C, Luo X, Everlyne MM, Liu L. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep 2016; 6:21652. [PMID: 26902837 PMCID: PMC4763228 DOI: 10.1038/srep21652] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/28/2016] [Indexed: 11/09/2022] Open
Abstract
Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish.
Collapse
Affiliation(s)
- Lulu Zhai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Haiyang Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chao Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Muleke M. Everlyne
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
76
|
Shi X, Zhang C, Liu Q, Zhang Z, Zheng B, Bao M. De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.). BMC Genomics 2016; 17:26. [PMID: 26727885 PMCID: PMC4700650 DOI: 10.1186/s12864-015-2357-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 09/11/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Somatic embryogenesis is a notable illustration of cell totipotency, by which somatic cells undergo dedifferentiation and then differentiate into somatic embryos. Our previous work demonstrated that pretreatment of immature zygotic embryos with 0.5 M sucrose solution for 72 h efficiently induced somatic embryo initiation in camphor tree. To better understand the molecular basis of somatic embryogenesis induced by osmotic stress, de novo transcriptome sequencing of three tissues of camphor tree (immature zygotic embryos, sucrose-pretreated immature zygotic embryos, and somatic embryos induced from sucrose-pretreated zygotic embryos) were conducted using Illumina Hiseq 2000 platform. RESULTS A total of 30.70 G high quality clean reads were obtained from cDNA libraries of the three samples. The overall de novo assembly of cDNA sequence data generated 205592 transcripts, with an average length of 998 bp. 114229 unigenes (55.56 % of all transcripts) with an average length of 680 bp were annotated with gene descriptions, gene ontology terms or metabolic pathways based on Blastx search against Nr, Nt, Swissprot, GO, COG/KOG, and KEGG databases. CEGMA software identified 237 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, showing a completeness of 95.6 %. A total of 897 genes previously annotated to be potentially involved in somatic embryogenesis were identified. Comparative transcriptome analysis showed that a total of 3335 genes were differentially expressed in the three samples. The differentially expressed genes were divided into six groups based on K-means clustering. Expression level analysis of 52 somatic embryogenesis-related genes indicated a high correlation between RNA-seq and qRT-PCR data. Gene enrichment analysis showed significantly differential expression of genes responding to stress and stimulus. CONCLUSIONS The present work reported a de novo transcriptome assembly and global analysis focused on gene expression changes during initiation and formation of somatic embryos in camphor tree. Differential expression of somatic embryogenesis-related genes indicates that sucrose induced somatic embryogenesis may share or partly share the mechanisms of somatic embryogenesis induced by plant hormones. This study provides comprehensive transcript information and gene expression data for camphor tree. It could also serve as an important platform resource for further functional studies in plant embryogenesis.
Collapse
Affiliation(s)
- Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Cuijie Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Qinhong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
77
|
Jian H, Lu K, Yang B, Wang T, Zhang L, Zhang A, Wang J, Liu L, Qu C, Li J. Genome-Wide Analysis and Expression Profiling of the SUC and SWEET Gene Families of Sucrose Transporters in Oilseed Rape ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1464. [PMID: 0 PMCID: PMC5039336 DOI: 10.3389/fpls.2016.01464] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/14/2016] [Indexed: 05/18/2023]
Abstract
Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers) and SWEETs (Sugars Will Eventually be Exported Transporters) play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus) genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analyzed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of "ZS11" and the expression of 9 BnSUC and 7 BnSWEET genes in "ZS11" under various conditions, including biotic stress (Sclerotinia sclerotiorum), abiotic stresses (drought, salt and heat), and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin, and salicylic acid). In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape.
Collapse
|
78
|
Min L, Hu Q, Li Y, Xu J, Ma Y, Zhu L, Yang X, Zhang X. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 Network Regulates Somatic Embryogenesis by Regulating Auxin Homeostasis. PLANT PHYSIOLOGY 2015; 169:2805-21. [PMID: 26491146 PMCID: PMC4677921 DOI: 10.1104/pp.15.01480] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/21/2015] [Indexed: 05/19/2023]
Abstract
Somatic embryogenesis (SE) is an efficient tool for the propagation of plant species and also, a useful model for studying the regulatory networks in embryo development. However, the regulatory networks underlying the transition from nonembryogenic callus to somatic embryos during SE remain poorly understood. Here, we describe an upland cotton (Gossypium hirsutum) CASEIN KINASE I gene, GhCKI, which is a unique key regulatory factor that strongly affects SE. Overexpressing GhCKI halted the formation of embryoids and plant regeneration because of a block in the transition from nonembryogenic callus to somatic embryos. In contrast, defective GhCKI in plants facilitated SE. To better understand the mechanism by which GhCKI regulates SE, the regulatory network was analyzed. A direct upstream negative regulator protein, cotton LEAFY COTYLEDON1, was identified to be targeted to a cis-element, CTTTTC, in the promoter of GhCKI. Moreover, GhCKI interacted with and phosphorylated cotton CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF transcription factor15 by coordinately regulating the expression of cotton PHYTOCHROME INTERACTING FACTOR4, finally disrupting auxin homeostasis, which led to increased cell proliferation and aborted somatic embryo formation in GhCKI-overexpressing somatic cells. Our results show a complex process of SE that is negatively regulated by GhCKI through a complex regulatory network.
Collapse
Affiliation(s)
- Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
79
|
Ren H, Gray WM. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. MOLECULAR PLANT 2015; 8:1153-64. [PMID: 25983207 PMCID: PMC5124491 DOI: 10.1016/j.molp.2015.05.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 05/18/2023]
Abstract
The plant hormone auxin regulates numerous aspects of plant growth and development. Early auxin response genes mediate its genomic effects on plant growth and development. Discovered in 1987, small auxin up RNAs (SAURs) are the largest family of early auxin response genes. SAUR functions have remained elusive, however, presumably due to extensive genetic redundancy. However, recent molecular, genetic, biochemical, and genomic studies have implicated SAURs in the regulation of a wide range of cellular, physiological, and developmental processes. Recently, crucial mechanistic insight into SAUR function was provided by the demonstration that SAURs inhibit PP2C.D phosphatases to activate plasma membrane (PM) H(+)-ATPases and promote cell expansion. In addition to auxin, several other hormones and environmental factors also regulate SAUR gene expression. We propose that SAURs are key effector outputs of hormonal and environmental signals that regulate plant growth and development.
Collapse
Affiliation(s)
- Hong Ren
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - William M Gray
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
80
|
Abarca D, Pizarro A, Hernández I, Sánchez C, Solana SP, del Amo A, Carneros E, Díaz-Sala C. The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots. BMC PLANT BIOLOGY 2014; 14:354. [PMID: 25547982 PMCID: PMC4302573 DOI: 10.1186/s12870-014-0354-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/27/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Adventitious rooting is an organogenic process by which roots are induced from differentiated cells other than those specified to develop roots. In forest tree species, age and maturation are barriers to adventitious root formation by stem cuttings. The mechanisms behind the respecification of fully differentiated progenitor cells, which underlies adventitious root formation, are unknown. RESULTS Here, the GRAS gene family in pine is characterized and the expression of a subset of these genes during adventitious rooting is reported. Comparative analyses of protein structures showed that pine GRAS members are conserved compared with their relatives in angiosperms. Relatively high GRAS mRNA levels were measured in non-differentiated proliferating embryogenic cultures and during embryo development. The mRNA levels of putative GRAS family transcription factors, including Pinus radiata's SCARECROW (SCR), PrSCR, and SCARECROW-LIKE (SCL) 6, PrSCL6, were significantly reduced or non-existent in adult tissues that no longer had the capacity to form adventitious roots, but were maintained or induced after the reprogramming of adult cells in rooting-competent tissues. A subset of genes, SHORT-ROOT (PrSHR), PrSCL1, PrSCL2, PrSCL10 and PrSCL12, was also expressed in an auxin-, age- or developmental-dependent manner during adventitious root formation. CONCLUSIONS The GRAS family of pine has been characterized by analyzing protein structures, phylogenetic relationships, conserved motifs and gene expression patterns. Individual genes within each group have acquired different and specialized functions, some of which could be related to the competence and reprogramming of adult cells to form adventitious roots.
Collapse
Affiliation(s)
- Dolores Abarca
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Alberto Pizarro
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Inmaculada Hernández
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Conchi Sánchez
- />Department of Plant Physiology, Instituto de Investigaciones Agrobiológicas de Galicia (CSIC), Apartado 122, 15080 Santiago de Compostela, Spain
| | - Silvia P Solana
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Alicia del Amo
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Elena Carneros
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| | - Carmen Díaz-Sala
- />Department of Life Sciences, University of Alcalá, Ctra. de Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid Spain
| |
Collapse
|
81
|
Zhang Y, Peng L, Wu Y, Shen Y, Wu X, Wang J. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa. PLANT MOLECULAR BIOLOGY 2014; 86:425-42. [PMID: 25214014 DOI: 10.1007/s11103-014-0238-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/12/2014] [Indexed: 05/21/2023]
Abstract
Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|
82
|
Zhou C, Liu L, Li C. Microarray analysis of siberian ginseng cyclic somatic embryogenesis culture systems provides insight into molecular mechanisms of embryogenic cell cluster generation. PLoS One 2014; 9:e94959. [PMID: 24743225 PMCID: PMC3990593 DOI: 10.1371/journal.pone.0094959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/20/2014] [Indexed: 11/23/2022] Open
Abstract
Four systems of cyclic somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus Maxim) were used to study the mechanism of embryonic cell cluster generation. The first, direct somatic embryo induction (DSEI), generates secondary embryos directly from the primary somatic embryos; the second, direct embryogenic cell cluster induction (DEC)), induces embryogenic cell clusters directly from somatic embryos in agar medium. Subsequently, we found that when DEC-derived somatic embryos are transferred to suspension culture or a bioreactor culture, only somatic embryos are induced, and embryogenic cell clusters cannot form. Therefore, these new lines were named DEC cultured by liquid medium (ECS) and DEC cultured by bioreactor (ECB), respectively. Transmission electron microscopy showed that DEC epidermal cells contained a variety of inclusions, distinct from other lines. A cDNA library of DEC was constructed, and 1,948 gene clusters were obtained and used as probes. RNA was prepared from somatic embryos from each of the four lines and hybridized to a microarray. In DEC, 7 genes were specifically upregulated compared with the other three lines, and 4 genes were downregulated. EsXTH1 and EsPLT1, which were among the genes upregulated in DEC, were cloned using the rapid amplification of cDNA ends (RACE). Real-time quantitative PCR showed EsXTH1 was more highly expressed in DEC than in other lines throughout the culture cycle, and EsPLT1 expression in DEC increased as culture duration increased, but remained at a low expression level in other lines. These results suggest that EsXTH1 and EsPLT1 may be the essential genes that play important roles during the induction of embryogenic cell clusters.
Collapse
Affiliation(s)
- Chenguang Zhou
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Likun Liu
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
- * E-mail:
| |
Collapse
|
83
|
Jin F, Hu L, Yuan D, Xu J, Gao W, He L, Yang X, Zhang X. Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:161-73. [PMID: 24112122 DOI: 10.1111/pbi.12123] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 05/18/2023]
Abstract
As a product of asexual reproduction in plants, the somatic embryo (SE) differentiates into a new plantlet via a zygotic embryogenesis-like process. Here, we present the phenotypic and cellular differences between SEs and zygotic embryos (ZEs) revealed by histological section scanning using three parallel development stages of the two types of embryos of cotton (Gossypium hirsutum cv. YZ1), including globular, torpedo and cotyledonary-stages. To identify the molecular characteristics of SE development in cotton, the digital gene expression system was used to profile the genes active during SE and ZE development. A total of 4242 differentially expressed genes (DEGs) were identified in at least one developmental stage. Expression pattern and functional classification analysis based on these DEGs reveals that SE development exhibits a transcriptional activation of stress responses. RT-PCR analysis further confirmed enhanced expression levels of stress-related genes in SEs than in ZEs. Experimental stress treatment, induced by NaCl and ABA, accelerated SE development and increased the transcription of genes related to stress response, in parallel with decelerated proliferation of embryogenic calluses under stress treatment. Our data reveal that SE development involves the activation of stress responses, which we suggest may regulate the balance between cell proliferation and differentiation. These results provide new insight into the molecular mechanisms of SE development and suggest strategies that can be used for regulating the developmental processes of somatic embryogenesis.
Collapse
Affiliation(s)
- Fangyan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
84
|
AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS One 2014; 9:e87502. [PMID: 24498119 PMCID: PMC3909107 DOI: 10.1371/journal.pone.0087502] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/26/2013] [Indexed: 11/19/2022] Open
Abstract
Upland cotton (Gossypium hirsutum) is one of the most recalcitrant species for in vitro plant regeneration through somatic embryogenesis. Callus from only a few cultivars can produce embryogenic callus (EC), but the mechanism is not well elucidated. Here we screened a cultivar, CRI24, with high efficiency of EC produce. The expression of genes relevant to EC production was analyzed between the materials easy to or difficult to produce EC. Quantitative PCR showed that CRI24, which had a 100% EC differentiation rate, had the highest expression of the genes GhLEC1, GhLEC2, and GhFUS3. Three other cultivars, CRI12, CRI41, and Lu28 that formed few ECs expressed these genes only at low levels. Each of the genes involved in auxin transport (GhPIN7) and signaling (GhSHY2) was most highly expressed in CRI24, with low levels in the other three cultivars. WUSCHEL (WUS) is a homeodomain transcription factor that promotes the vegetative-to-embryogenic transition. We thus obtained the calli that ectopically expressed Arabidopsis thaliana Wus (AtWus) in G. hirsutum cultivar CRI12, with a consequent increase of 47.75% in EC differentiation rate compared with 0.61% for the control. Ectopic expression of AtWus in CRI12 resulted in upregulation of GhPIN7, GhSHY2, GhLEC1, GhLEC2, and GhFUS3. AtWus may therefore increase the differentiation potential of cotton callus by triggering the auxin transport and signaling pathways.
Collapse
|
85
|
Díaz-Sala C. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile-adult transition. FRONTIERS IN PLANT SCIENCE 2014; 5:310. [PMID: 25071793 PMCID: PMC4083218 DOI: 10.3389/fpls.2014.00310] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 05/12/2023]
Abstract
Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots, or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signaling pathways or tissue-specific factors underlying the establishment, maintenance, and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity.
Collapse
Affiliation(s)
- Carmen Díaz-Sala
- *Correspondence: Carmen Díaz-Sala, Department of Life Sciences, University of Alcalá, Carretera Madrid–Barcelona Km 33.600, 28805 Alcalá de Henares, Madrid, Spain e-mail:
| |
Collapse
|
86
|
Shen Y, Jiang Z, Lu S, Lin H, Gao S, Peng H, Yuan G, Liu L, Zhang Z, Zhao M, Rong T, Pan G. Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem Biophys Res Commun 2013; 441:425-30. [PMID: 24183719 DOI: 10.1016/j.bbrc.2013.10.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022]
Abstract
Genetic transformation of maize is highly dependent on the development of embryonic calli from the dedifferentiated immature embryo. To better understand the regulatory mechanism of immature embryo dedifferentiation, we generated four small RNA and degradome libraries from samples representing the major stages of dedifferentiation. More than 186 million raw reads of small RNA and degradome sequence data were generated. We detected 102 known miRNAs belonging to 23 miRNA families. In total, we identified 51, 70 and 63 differentially expressed miRNAs (DEMs) in the stage I, II, III samples, respectively, compared to the control. However, only 6 miRNAs were continually up-regulated by more than fivefold throughout the process of dedifferentiation. A total of 87 genes were identified as the targets of 21 DEM families. This group of targets was enriched in members of four significant pathways including plant hormone signal transduction, antigen processing and presentation, ECM-receptor interaction, and alpha-linolenic acid metabolism. The hormone signal transduction pathway appeared to be particularly significant, involving 21 of the targets. While the targets of the most significant DEMs have been proved to play essential roles in cell dedifferentiation. Our results provide important information regarding the regulatory networks that control immature embryo dedifferentiation in maize.
Collapse
Affiliation(s)
- Yaou Shen
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Xu Z, Zhang C, Zhang X, Liu C, Wu Z, Yang Z, Zhou K, Yang X, Li F. Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:631-42. [PMID: 23710882 DOI: 10.1111/jipb.12073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/15/2013] [Indexed: 05/22/2023]
Abstract
To get a broader view on the molecular mechanisms underlying somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.), global analysis of cotton transcriptome dynamics during SE in different sister lines was performed using RNA-Seq. A total of 204 349 unigenes were detected by de novo assembly of the 214 977 462 Illumina reads. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) measurements were positively correlated with the RNA-Seq results for almost all the tested genes (R(2) = 0.841, correlation was significant at the 0.01 level). Different phytohormone (auxin and cytokinin) concentration ratios in medium and the endogenous content changes of these two phytohormones at two stages in different sister lines suggested the roles of auxin and cytokinin during cotton SE. On the basis of global gene regulation of phytohormone-related genes, numerous genes from all the differentially expressed transcripts were involved in auxin and cytokinin biosynthesis and signal transduction pathways. Analyses of differentially expressed genes that were involved in these pathways revealed the substantial changes in gene type and abundance between two sister lines. Isolation, cloning and silencing/overexpressing the genes that revealed remarkable up- or down-expression during cotton SE were important. Furthermore, auxin and cytokinin play a primary role in SE, but potential cross-talk with each other or other factors remains unclear.
Collapse
Affiliation(s)
- Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agriculture Sciences, Anyang, 455000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
He L, Yang X, Wang L, Zhu L, Zhou T, Deng J, Zhang X. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun 2013; 435:209-15. [PMID: 23660187 DOI: 10.1016/j.bbrc.2013.04.080] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Plant CIPKs were specific Ser/Thr protein kinases, which were activated through interaction with calcineurin B-like protein (CBL) containing four EF hands for Ca(2+) binding. The CBL/CIPK complexes play an important role in signal transduction in biotic and abiotic stresses, as well as developmental processes. Here a Ser/Thr protein kinase gene (defined as GhCIPK6), which was isolated from RNA-Seq profile during cotton somatic embryogenesis in our previous research was characterized. The GhCIPK6 gene contains an ORF of 1296 bp that putatively encodes a polypeptide of 431 amino acids with a predicted molecular mass of 48.46 kDa and isoelectric point of 9.12. Sequence alignment analysis confirmed that GhCIPK6 has no intron, and it was homologous to AtCIPK6. Expression analysis of the GhCIPK6 suggested that they might function in diverse tissues, including styles and anthers but not fibers. In addition, expression of the GhCIPK6 gene was induced by salt, drought and ABA treatments. Overexpression of GhCIPK6 significantly enhances the tolerance to salt, drought and ABA stresses in transgenic Arabidopsis, indicating that GhCIPK6 acts as a positive regulator in response to salt and drought stress, and is supposed to be a potential candidate gene to improve stress tolerance by genetic manipulation in cotton and other crops.
Collapse
Affiliation(s)
- Liangrong He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
89
|
Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F, Pannetier C. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. PLANT CELL REPORTS 2013; 32:675-86. [PMID: 23543366 DOI: 10.1007/s00299-013-1402-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 05/23/2023]
Abstract
This work shows that overexpression of the WUS gene from Arabidopsis enhanced the expression of embryogenic competence and triggered organogenesis from some cells of the regenerated embryo-like structures. Agrobacterium-mediated genetic transformation of cotton was described in the late 1980s, but is still time consuming and largely genotype dependant due to poor regeneration. To help solve this bottleneck, we over-expressed the WUSCHEL (WUS) gene, a homeobox transcription factor cloned in Arabidopsis thaliana, known to stimulate organogenesis and/or somatic embryogenesis in Arabidopsis tissues cultured in vitro. The AtWUS gene alone, and AtWUS gene fused to the GFP marker were compared to the GFP gene alone and to an empty construct used as a control. Somatic embryogenesis was improved in WUS expressed calli, as the percentage of explants giving rise to embryogenic tissues was significantly higher (×3) when WUS gene was over-expressed than in the control. An interesting result was that WUS embryogenic lines evolved in green embryo-like structures giving rise to ectopic organogenesis never observed in any of our previous transformation experiments. Using our standard in vitro culture protocol, the overexpression of AtWUS in tissues of a recalcitrant variety did not result in the production of regenerated plants. This achievement will still require the optimization of other non-genetic factors, such as the balance of exogenous phytohormones. However, our results suggest that targeted expression of the WUS gene is a promising strategy to improve gene transfer in recalcitrant cotton cultivars.
Collapse
Affiliation(s)
- O Bouchabké-Coussa
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, 78000, Versailles, France
| | | | | | | | | | | | | |
Collapse
|
90
|
Yang X, Wang L, Yuan D, Lindsey K, Zhang X. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1521-36. [PMID: 23382553 PMCID: PMC3617824 DOI: 10.1093/jxb/ert013] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding ~21 nucleotide RNAs that regulate gene expression at the transcriptional and post-transcriptional levels in plants and animals. They play an important role in development, abiotic stress, and pathogen responses. miRNAs with their targets have been widely studied in model plants, but limited knowledge is available on the small RNA population of cotton (Gossypium hirsutum)-an important economic crop, and global identification of related targets through degradome sequencing has not been developed previously. In this study, small RNAs and their targets were identified during cotton somatic embryogenesis (SE) through high-throughput small RNA and degradome sequencing, comparing seedling hypocotyl and embryogenic callus (EC) of G. hirsutum YZ1. A total of 36 known miRNA families were found to be differentially expressed, of which 19 miRNA families were represented by 29 precursors. Twenty-five novel miRNAs were identified. A total of 234 transcripts in EC and 322 transcripts in control (CK) were found to be the targets of 23 and 30 known miRNA families, respectively, and 16 transcripts were targeted by eight novel miRNAs. Interestingly, four trans-acting small interfering RNAs (tas3-siRNAs) were also found in degradome libraries, three of which perfectly matched their precursors. Several targets were further validated via RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM 5'-RACE). The profiling of the miRNAs and their target genes provides new information on the miRNAs network during cotton SE.
Collapse
Affiliation(s)
- Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- These authors contributed equally to this work
| | - Lichen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- These authors contributed equally to this work
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Keith Lindsey
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|