51
|
Shamaladevi N, Araki S, Lyn DA, Ayyathurai R, Gao J, Lokeshwar VB, Navarrete H, Lokeshwar BL. The andean anticancer herbal product BIRM causes destabilization of androgen receptor and induces caspase-8 mediated-apoptosis in prostate cancer. Oncotarget 2018; 7:84201-84213. [PMID: 27705939 PMCID: PMC5356655 DOI: 10.18632/oncotarget.12393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 09/25/2016] [Indexed: 12/17/2022] Open
Abstract
BIRM is an anticancer herbal formulation from Ecuador. Previous study established its antitumor and antimetastatic activity against prostate cancer models. The activity of BIRM against human prostate cancer (PCa) cells was investigated to uncover its mechanism of antitumor activity. In androgen receptor (AR)-expressing PCa cells BIRM was 2.5-fold (250%) more cytotoxic in presence of androgen (DHT) compared to cells grown in the absence of DHT. In AR-positive cells (LAPC-4 and LNCaP) BIRM caused a dose and time-dependent down-regulation of AR and increased apoptosis. Exposing cells to BIRM did not affect the synthesis of AR and AR promoter activity but increased degradation of AR via proteasome-pathway. BIRM caused destabilization of HSP90-AR association in LAPC-4 cells. It induced apoptosis in PCa cells by activation of caspase-8 via death receptor and FADD-mediated pathways. A synthetic inhibitor of Caspase-8 cleavage (IETD-CHO) aborted BIRM-induced apoptosis. The effect of BIRM on AKT-mediated survival pathway in both AR+ and AR- negative (PC-3 and DU145) showed decreased levels of p-AKTser 473 in all PCa cell lines. BIRM dosed by oral gavage in mice bearing PC-3ML tumors showed selective efficacy on tumor growth; before tumors are established but limited efficacy when treated on existing tumors. Moreover, BIRM inhibited the LNCaP tumor generated by orthotropic implantation into dorsal prostate of nude mice. Partial purification of BIRM by liquid-liquid extraction and further fractionation by HPLC showed 4-fold increased specific activity on PCa cells. These results demonstrate a mechanistic basis of anti-tumor activity of the herbal extract BIRM.
Collapse
Affiliation(s)
- Nagarajarao Shamaladevi
- Departments of Urology and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Shinako Araki
- Departments of Urology and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami FL, USA.,Okayama University Graduate School of Medicine, Okayama, Japan
| | - Dominic A Lyn
- Departments of Urology and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami FL, USA
| | | | - Jie Gao
- Georgia Cancer Center and Department of Medicine, Augusta University, Augusta GA, USA
| | - Vinata B Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta GA, USA
| | - Hugo Navarrete
- Herbarium QCA, Pontificia Universidad Catolica del-Ecuador, Quito, Ecuador
| | - Bal L Lokeshwar
- Georgia Cancer Center and Department of Medicine, Augusta University, Augusta GA, USA
| |
Collapse
|
52
|
Salazar N, Carlson JC, Huang K, Zheng Y, Oderup C, Gross J, Jang AD, Burke TM, Lewén S, Scholz A, Huang S, Nease L, Kosek J, Mittelbronn M, Butcher EC, Tu H, Zabel BA. A Chimeric Antibody against ACKR3/CXCR7 in Combination with TMZ Activates Immune Responses and Extends Survival in Mouse GBM Models. Mol Ther 2018; 26:1354-1365. [PMID: 29606504 PMCID: PMC5993942 DOI: 10.1016/j.ymthe.2018.02.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) is the least treatable type of brain tumor, afflicting over 15,000 people per year in the United States. Patients have a median survival of 16 months, and over 95% die within 5 years. The chemokine receptor ACKR3 is selectively expressed on both GBM cells and tumor-associated blood vessels. High tumor expression of ACKR3 correlates with poor prognosis and potential treatment resistance, making it an attractive therapeutic target. We engineered a single chain FV-human FC-immunoglobulin G1 (IgG1) antibody, X7Ab, to target ACKR3 in human and mouse GBM cells. We used hydrodynamic gene transfer to overexpress the antibody, with efficacy in vivo. X7Ab kills GBM tumor cells and ACKR3-expressing vascular endothelial cells by engaging the cytotoxic activity of natural killer (NK) cells and complement and the phagocytic activity of macrophages. Combining X7Ab with TMZ allows the TMZ dosage to be lowered, without compromising therapeutic efficacy. Mice treated with X7Ab and in combination with TMZ showed significant tumor reduction by MRI and longer survival overall. Brain-tumor-infiltrating leukocyte analysis revealed that X7Ab enhances the activation of M1 macrophages to support anti-tumor immune response in vivo. Targeting ACKR3 with immunotherapeutic monoclonal antibodies (mAbs) in combination with standard of care therapies may prove effective in treating GBM.
Collapse
Affiliation(s)
- Nicole Salazar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Jeffrey C Carlson
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | | | - Yayue Zheng
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Cecilia Oderup
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Julia Gross
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Andrew D Jang
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Thomas M Burke
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Susanna Lewén
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Alexander Scholz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Serina Huang
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Leona Nease
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Jon Kosek
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Michel Mittelbronn
- Institute of Neurology, Edinger Institute, Frankfurt, Germany; Luxembourg Centre of Neuropathology (LCNP), Luxembourg City, Luxembourg; Department of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Eugene C Butcher
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Hua Tu
- LakePharma Inc., Belmont, CA, USA
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA.
| |
Collapse
|
53
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem Pharmacol 2017; 147:128-140. [PMID: 29175422 DOI: 10.1016/j.bcp.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7) has been established to be involved in breast cancer (BCa) progression. However, the role of CXCR7 in different subtype of BCa still remains unclear. Here we note that CXCR7 expression is significantly amplified in Luminal type BCa tissues as compared with Her2 and TNBC types through data-mining in TCGA datasets, and its protein level positively correlates with ERα expression by staining of human BCa tissue. Interestingly, alteration of CXCR7 expression in Luminal type BCa cells is able to modulate the expression of ERα through ubiquitination at post-translational level. Additionally, overexpression of CXCR7 in these cells greatly induces 4-OHT insensitivity in vitro and is associated with earlier recurrence in patients with tamoxifen therapy. Notably, silencing ERα expression potentially rescues the sensitivity of the above cells to 4-OHT, suggesting that elevated level of ERα is responsible for CXCR7-induced 4-OHT insensitivity in Luminal type BCa. Finally, mechanistic analyses show that the reduced BRCA1 (ubiquitin E3 ligase) and elevated OTUB1 (deubiquitinase) expression, which are regulated by CXCR7/ERK1/2 signaling pathway, are responsible for stabilizing ERα protein. In conclusion, our results suggest that targeting CXCR7 may serve as a potential therapeutic strategy for improving the efficacy of BCa patients with tamoxifen therapy.
Collapse
|
55
|
Phattarataratip E, Dhanuthai K. Expression of C-X-C motif chemokine receptors 4 and 7 in salivary gland neoplasms. Arch Oral Biol 2017; 83:136-144. [DOI: 10.1016/j.archoralbio.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
|
56
|
Li XJ, Liu P, Tian WW, Li ZF, Liu BG, Sun JF. Mechanisms of CXCR7 induction in malignant melanoma development. Oncol Lett 2017; 14:4106-4114. [PMID: 28943917 PMCID: PMC5592871 DOI: 10.3892/ol.2017.6720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/23/2017] [Indexed: 01/12/2023] Open
Abstract
Malignant melanoma (MM) is a highly malignant skin tumor. The mechanism of MM pathogenesis and its signaling pathways are not well characterized. C-X-C chemokine receptor type 7 (CXCR7) has been reported to regulate cancer cell invasion. The present study sought to investigate the effects of CXCR7 on MM development. First, CXCR7 expression levels were assessed in the skin tumor tissue of patients with MM. Then, CXCR7 small hairpin RNA was used in M14 melanoma cells in a Transwell culture model and in a transplanted mouse model to test the effects of CXCR7. In addition, immunohistochemistry staining, reverse transcription-quantitative polymerase chain reaction and western blotting were used. The results revealed that CXCR7 expression levels were significantly higher in MM tissue compared with squamous cell carcinoma or basal cell carcinoma tissue. Knocking down CXCR7 in M14 cells significantly inhibited cell migration and invasion in the Transwell culture model. Furthermore, CXCR7 knockdown also significantly reduced the transplanted tumor size, weight and vascular number in the mouse model. It was concluded that CXCR7 interacts with C-X-C motif chemokine ligand 12 to activate the chemokine receptor signaling pathway, and to increase melanoma cell migration, invasion and development.
Collapse
Affiliation(s)
- Xiao-Jing Li
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Pai Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China.,Department of Dermatology, Jiangxi Province Dermatosis Special Hospital, Nanchang, Jiangxi 330000, P.R. China
| | - Wei-Wei Tian
- Department of Dermatology, Jiangxi Province Dermatosis Special Hospital, Nanchang, Jiangxi 330000, P.R. China
| | - Zhi-Feng Li
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Bao-Guo Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Jian-Fang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210042, P.R. China
| |
Collapse
|
57
|
Pang LY, Saunders L, Argyle DJ. Epidermal growth factor receptor activity is elevated in glioma cancer stem cells and is required to maintain chemotherapy and radiation resistance. Oncotarget 2017; 8:72494-72512. [PMID: 29069805 PMCID: PMC5641148 DOI: 10.18632/oncotarget.19868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/06/2017] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma remains among the most aggressive of all human and canine malignancies, displaying high mortality rates and limited treatment options. We propose that given the similarities between canine and human gliomas, such as incidence of occurrence, histopathology, molecular characteristics, and response to therapy, that canine gliomas are a natural model of the human disease. A range of human and canine tumours have been shown to harbor specific subpopulations of cells with stem cell-like properties that initiate and maintain neoplasticity while resisting conventional therapies. Here, we show that both canine and human glioma cell lines contain a small population of cancer stem cells (CSCs), and by molecular profiling highlight the important role of the epidermal growth factor receptor (EGFR) pathway in canine CSCs. EGFR signaling is crucial in the regulation of cancer cell proliferation, migration and survival. To date EGFR-targeted interventions alone have been largely ineffective. Our findings confirm that specifically inhibiting EGFR signaling alone has no significant effect on the viability of CSCs. However inhibition of EGFR did enhance the chemo- and radio-sensitivity of both canine and human glioma CSCs, enabling this resistant, tumourigenic population of cells to be effectively targeted by conventional therapies.
Collapse
Affiliation(s)
- Lisa Y Pang
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - Lauren Saunders
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
| |
Collapse
|
58
|
Inhibition of androgen receptor promotes CXC-chemokine receptor 7-mediated prostate cancer cell survival. Sci Rep 2017; 7:3058. [PMID: 28596572 PMCID: PMC5465216 DOI: 10.1038/s41598-017-02918-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
The atypical C-X-C chemokine receptor 7 (CXCR7) has been implicated in supporting aggressive cancer phenotypes in several cancers including prostate cancer. However, the mechanisms driving overexpression of this receptor in cancer are poorly understood. This study investigates the role of androgen receptor (AR) in regulating CXCR7. Androgen deprivation or AR inhibition significantly increased CXCR7 expression in androgen-responsive prostate cancer cell lines, which was accompanied by enhanced epidermal growth factor receptor (EGFR)-mediated mitogenic signaling, promoting tumor cell survival through an androgen-independent signaling program. Using multiple approaches we demonstrate that AR directly binds to the CXCR7 promoter, suppressing transcription. Clustered regularly interspaced short palindromic repeats (CRISPR) directed Cas9 nuclease-mediated gene editing of CXCR7 revealed that prostate cancer cells depend on CXCR7 for proliferation, survival and clonogenic potential. Loss of CXCR7 expression by CRISPR-Cas9 gene editing resulted in a halt of cell proliferation, severely impaired EGFR signaling and the onset of cellular senescence. Characterization of a mutated CXCR7-expressing LNCaP cell clone showed altered intracellular signaling and reduced spheroid formation potential. Our results demonstrate that CXCR7 is a potential target for adjuvant therapy in combination with androgen deprivation therapy (ADT) to prevent androgen-independent tumor cell survival.
Collapse
|
59
|
Liu XQ, Fourel L, Dalonneau F, Sadir R, Leal S, Lortat-Jacob H, Weidenhaupt M, Albiges-Rizo C, Picart C. Biomaterial-enabled delivery of SDF-1α at the ventral side of breast cancer cells reveals a crosstalk between cell receptors to promote the invasive phenotype. Biomaterials 2017; 127:61-74. [PMID: 28279922 PMCID: PMC5777630 DOI: 10.1016/j.biomaterials.2017.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 12/31/2022]
Abstract
The SDF-1α chemokine (CXCL12) is a potent bioactive chemoattractant known to be involved in hematopoietic stem cell homing and cancer progression. The associated SDF-1α/CXCR4 receptor signaling is a hallmark of aggressive tumors, which can metastasize to distant sites such as lymph nodes, lung and bone. Here, we engineered a biomimetic tumoral niche made of a thin and soft polyelectrolyte film that can retain SDF-1α to present it, in a spatially-controlled manner, at the ventral side of the breast cancer cells. Matrix-bound SDF-1α but not soluble SDF-1α induced a striking increase in cell spreading and migration in a serum-containing medium, which was associated with the formation of lamellipodia and filopodia in MDA-MB231 cells and specifically mediated by CXCR4. Other Knockdown and inhibition experiments revealed that CD44, the major hyaluronan receptor, acted in concert, via a spatial coincidence, to drive a specific matrix-bound SDFα-induced cell response associated with ERK signaling. In contrast, the β1 integrin adhesion receptor played only a minor role on cell polarity. The CXCR4/CD44 mediated cellular response to matrix-bound SDF-1α involved the Rac1 RhoGTPase and was sustained solely in the presence of matrix-bound SDFα, in contrast with the transient signaling observed in response to soluble SDF-1α. Our results highlight that a biomimetic tumoral niche enables to reveal potent cellular effects and so far hidden molecular mechanisms underlying the breast cancer response to chemokines. These results open new insights for the design of future innovative therapies in metastatic cancers, by inhibiting CXCR4-mediated signaling in the tumoral niche via dual targeting of receptors (CXCR4 and CD44) or of associated signaling molecules (CXCR4 and Rac1).
Collapse
Affiliation(s)
- Xi Qiu Liu
- CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; Université Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France; FONDATION ARC, 9 rue Guy Môquet, 94803, Villejuif, France; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Laure Fourel
- Inserm U1209, Université Grenoble Alpes, Institut Albert Bonniot, Site Santé, 38042, Grenoble cedex 9, France; CNRS UMR5309, Institute for Advanced Biosciences, Institut Albert Bonniot, 38700, La Tronche, France
| | - Fabien Dalonneau
- CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; Université Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Rabia Sadir
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, F-38027, Grenoble, France
| | - Salome Leal
- CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; Université Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, F-38027, Grenoble, France
| | - Marianne Weidenhaupt
- CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; Université Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Corinne Albiges-Rizo
- Inserm U1209, Université Grenoble Alpes, Institut Albert Bonniot, Site Santé, 38042, Grenoble cedex 9, France; CNRS UMR5309, Institute for Advanced Biosciences, Institut Albert Bonniot, 38700, La Tronche, France
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; Université Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France.
| |
Collapse
|
60
|
Gu HQ, Zhang ZB, Zhang JW, Wang QQ, Xi XW, He YY. The role of the SDF-1/ CXCR7 axis on the growth and invasion ability of endometrial cancer cells. Arch Gynecol Obstet 2017; 295:987-995. [PMID: 28239742 DOI: 10.1007/s00404-017-4308-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Stroma-derived factor-1 (SDF-1) and its receptor C-X-C chemokine receptor-4 (CXCR4) are involved in human endometrial carcinoma (EC) progression. CXCR7 is another important receptor of SDF-1 and has a higher affinity with SDF-1 compared with that of CXCR4. This paper aims to study the effects of the SDF-1/CXCR7 axis on the growth and invasion ability of EC cells. METHODS CXCR7 expression was evaluated by quantitative RT-PCR, immunohistochemistry, immunocytochemistry and Western blotting in EC cell lines and 30 cases of primary EC tissue from patients. EC cell line proliferation and migration were assessed following knockdown of CXCR7 by MTT and transwell assays. RESULTS The results showed that CXCR7 was highly expressed at both mRNA and protein levels in the EC cells and tissue. siCXCR7 effectively silenced CXCR7 in Ishikawa and AN3CA cells. Treatment with 17β-oestradiol (17β-E2) significantly increased the levels of CXCR7 and SDF-1 in Con, siCon and siCXCR7 treated Ishikawa. siCXCR7 persistently inhibited CXCR7 expression, even in cells treated with 17β-E2. Moreover, in vitro functional analyses, silencing CXCR7 resulted in decreased proliferation in Ishikawa and AN3CA cells. Treatment with 17β-E2 and SDF-1 significantly promoted the growth and migration in siCon treated Ishikawa and AN3CA. Interestingly, in response to 17β-E2 and SDF-1 stimulation, siCXCR7 continuously inhibited the growth and invasion of Ishikawa and AN3CA cells. CONCLUSION Our results indicate that SDF-1/CXCR7 plays a positive role in the proliferation and invasion of EC cells. CXCR7 inhibition treatment may provide a promising strategy for anti-tumour therapy for EC.
Collapse
Affiliation(s)
- Hong-Qin Gu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Bo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Wen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Qian Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Wei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yin-Yan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
61
|
Hao H, Hu S, Chen H, Bu D, Zhu L, Xu C, Chu F, Huo X, Tang Y, Sun X, Ding BS, Liu DP, Hu S, Wang M. Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery. Circulation 2017; 135:1253-1264. [PMID: 28154007 DOI: 10.1161/circulationaha.116.023027] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/24/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genome-wide association studies identified the association of the CXCL12 genetic locus (which encodes the chemokine CXCL12, also known as stromal cell-derived factor 1) with coronary artery disease and myocardial infarction (MI). Unlike CXCR4, the classic receptor for CXCL12, the function of CXCR7 (the most recently identified receptor) in vascular responses to injury and in MI remains unclear. METHODS Tissue expression of CXCR7 was examined in arteries from mice and humans. Mice that harbored floxed CXCR7 and Cdh5-promoter driven CreERT2 were treated with tamoxifen to induce endothelium-restricted deletion of CXCR7. The resulting conditional knockout mice and littermate controls were studied for arterial response to angioplasty wire injury and cardiac response to coronary artery ligation. The role of CXCR7 in endothelial cell proliferation and angiogenesis was determined in vitro with cells from mice and humans. The effects of adenoviral delivery of CXCR7 gene and pharmacological activation of CXCR7 were evaluated in mice subjected to MI. RESULTS Injured arteries from both humans and mice exhibited endothelial CXCR7 expression. Conditional endothelial CXCR7 deletion promoted neointimal formation without altering plasma lipid levels after endothelial injury and exacerbated heart functional impairment after MI, with increased both mortality and infarct sizes. Mechanistically, the exacerbated responses in vascular and cardiac remodeling are attributable to the key role of CXCR7 in promoting endothelial proliferation and angiogenesis. Impressively, the impaired post-MI cardiac remodeling occurred with elevated levels of CXCL12, which was previously thought to mediate cardiac protection by exclusively engaging its cognate receptor, CXCR4. In addition, both CXCR7 gene delivery via left ventricular injection and treatment with a CXCR7 agonist offered cardiac protection after MI. CONCLUSIONS CXCR7 represents a novel regulator of vascular homeostasis that functions in the endothelial compartment with sufficient capacity to affect cardiac function and remodeling after MI. Activation of CXCR7 may have therapeutic potential for clinical restenosis after percutaneous coronary intervention and for heart remodeling after MI.
Collapse
Affiliation(s)
- Huifeng Hao
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Sheng Hu
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Hong Chen
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Dawei Bu
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Liyuan Zhu
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Chuansheng Xu
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Fei Chu
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Xingyu Huo
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Yue Tang
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Xiaogang Sun
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Bi-Sen Ding
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - De-Pei Liu
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Shengshou Hu
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.)
| | - Miao Wang
- From State Key Laboratory of Cardiovascular Disease (H.H., Sheng Hu, D.B., L.Z., C.X., F.C., X.H., Shengshou Hu, M.W.), Animal Experimental Center (Y.T.), Department of Cardiovascular Surgery (X.S., Shengshou Hu), and Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, China (C.X.); Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China (F.C.); Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medicine, New York, NY (B.D.); and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.L.).
| |
Collapse
|
62
|
King J, Mir H, Singh S. Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:113-136. [DOI: 10.1016/bs.pmbts.2017.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
63
|
Wilson GJ, Hewit KD, Pallas KJ, Cairney CJ, Lee KM, Hansell CA, Stein T, Graham GJ. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development 2017; 144:74-82. [PMID: 27888192 PMCID: PMC5278629 DOI: 10.1242/dev.139733] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/07/2016] [Indexed: 02/01/2023]
Abstract
Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2-/- mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes.
Collapse
Affiliation(s)
- Gillian J Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Kay D Hewit
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Kenneth J Pallas
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Claire J Cairney
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kit M Lee
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Christopher A Hansell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Torsten Stein
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| |
Collapse
|
64
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
65
|
Hopkins MM, Liu Z, Meier KE. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells. J Pharmacol Exp Ther 2016; 359:124-33. [PMID: 27474750 PMCID: PMC5034703 DOI: 10.1124/jpet.116.233379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that mediates cellular effects via G protein-coupled receptors (GPCRs). Epidermal growth factor (EGF) is a peptide that acts via a receptor tyrosine kinase. LPA and EGF both induce proliferation of prostate cancer cells and can transactivate each other's receptors. The LPA receptor LPA1 is particularly important for LPA response in human prostate cancer cells. Previous work in our laboratory has demonstrated that free fatty acid 4 (FFA4), a GPCR activated by ω-3 fatty acids, inhibits responses to both LPA and EGF in these cells. One potential mechanism for the inhibition involves negative interactions between FFA4 and LPA1, thereby suppressing responses to EGF that require LPA1 In the current study, we examined the role of LPA1 in mediating EGF and FFA4 agonist responses in two human prostate cancer cell lines, DU145 and PC-3. The results show that an LPA1-selective antagonist inhibits proliferation and migration to both LPA and EGF. Knockdown of LPA1 expression, using silencing RNA, blocks responses to LPA and significantly inhibits responses to EGF. The partial response to EGF that is observed after LPA1 knockdown is not inhibited by FFA4 agonists. Finally, the role of arrestin-3, a GPCR-binding protein that mediates many actions of activated GPCRs, was tested. Knockdown of arrestin-3 completely inhibits responses to both LPA and EGF in prostate cancer cells. Taken together, these results suggest that LPA1 plays a critical role in EGF responses and that FFA4 agonists inhibit proliferation by suppressing positive cross-talk between LPA1 and the EGF receptor.
Collapse
Affiliation(s)
- Mandi M Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Ze Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Kathryn E Meier
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| |
Collapse
|
66
|
Rosanò L, Bagnato A. β-arrestin1 at the cross-road of endothelin-1 signaling in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:121. [PMID: 27473335 PMCID: PMC4966762 DOI: 10.1186/s13046-016-0401-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/15/2022]
Abstract
The advent of targeted therapeutics in human cancer has begun to find novel druggable targets and, in this context, the endothelin-1 receptor (ET-1R), namely ETA receptor (ETAR) and ETB receptor, among the GPCR family represents a class of highly druggable molecules in cancer. ET-1R are aberrantly expressed in human malignancies, potentially representing prognostic factors. Their activation by ligand stimulation initiate signaling cascades activating different downstream effectors, allowing precise control over multiple signaling pathways. ET-1R regulates cell proliferation, survival, motility, cytoskeletal changes, angiogenesis, metastasis as well as drug resistance. The molecular events underlying these responses are the activation of transcriptional factors and coactivators, and downstream genes, acting as key players in tumor growth and progression. ET-1R represent crucial cancer targets that have been exploited for ET-1R therapeutics. Importantly, efforts to explore new information of ETAR in cancer have uncovered that their functions are crucially regulated by multifunctional scaffold protein β-arrestins (β-arrs) which orchestrate the multidimensionality of ETAR signaling into highly regulated and distinct signaling complexes, a property that is highly advantageous for tumor signaling. Moreover, the role of β-arr1 in ET-1 signaling in cancer highlights why the pleiotropic effects of ET-1 and its dynamic signaling are more complex than previously recognized. In order to improve therapeutic strategies that interfere with the widespread effects of ET-1R, it is important to consider antagonists able to turn the receptors “off” selectively controlling β-arr1-dependent signaling, highlighting the possibility that targeting ETAR/β-arr1 may display a large therapeutic window in cancer.
Collapse
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
67
|
YIANG GIOUTENG, CHEN JENNI, LIN PEISHIUAN, LIU HSIAOCHUN, CHEN SHUYING, WEI CHYOUWEI. Combined treatment with vitamin E and gefitinib has synergistic effects to inhibit TGF-β1-induced renal fibroblast proliferation. Mol Med Rep 2016; 13:5372-8. [DOI: 10.3892/mmr.2016.5155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
|
68
|
Billard MJ, Fitzhugh DJ, Parker JS, Brozowski JM, McGinnis MW, Timoshchenko RG, Serafin DS, Lininger R, Klauber-Demore N, Sahagian G, Truong YK, Sassano MF, Serody JS, Tarrant TK. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis. PLoS One 2016; 11:e0152856. [PMID: 27049755 PMCID: PMC4822790 DOI: 10.1371/journal.pone.0152856] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.
Collapse
Affiliation(s)
- Matthew J. Billard
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - David J. Fitzhugh
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Joel S. Parker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, NC 27599, United States of America
| | - Jaime M. Brozowski
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Marcus W. McGinnis
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Roman G. Timoshchenko
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - D. Stephen Serafin
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Ruth Lininger
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, NC 27599, United States of America
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Nancy Klauber-Demore
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, NC 27599, United States of America
- Department of Surgery, Division of Surgical Oncology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Gary Sahagian
- Department of Developmental, Molecular & Chemical Biology, Tufts University, Medford, MA 02155, United States of America
| | - Young K. Truong
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Maria F. Sassano
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, NC 27599, United States of America
- Department of Medicine, Division of Hematology Oncology, University of North Carolina, Chapel Hill NC, 27599, United States of America
| | - Teresa K. Tarrant
- Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, NC 27599, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, United States of America
- * E-mail:
| |
Collapse
|
69
|
Kallifatidis G, Munoz D, Singh RK, Salazar N, Hoy JJ, Lokeshwar BL. β-Arrestin-2 Counters CXCR7-Mediated EGFR Transactivation and Proliferation. Mol Cancer Res 2016; 14:493-503. [PMID: 26921391 DOI: 10.1158/1541-7786.mcr-15-0498] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED The atypical 7-transmembrane chemokine receptor, CXCR7, transactivates the EGFR leading to increased tumor growth in several tumor types. However, the molecular mechanism of CXCR7 ligand-independent EGFR transactivation is unknown. We used cDNA knock-in, RNAi and analysis of mitogenic signaling components in both normal prostate epithelial cells and prostate cancer cells to decipher the proliferation-inducing mechanism of the CXCR7-EGFR interaction. The data demonstrate that CXCR7-induced EGFR transactivation is independent of both the release of cryptic EGFR ligands (e.g., AREG/amphiregulin) and G-protein-coupled receptor signaling. An alternate signaling mechanism involving β-arrestin-2 (ARRB2/β-AR2) was examined by manipulating the levels of β-AR2 and analyzing changes in LNCaP cell growth and phosphorylation of EGFR, ERK1/2, Src, and Akt. Depletion of β-AR2 in LNCaP cells increased proliferation/colony formation and significantly increased activation of Src, phosphorylation of EGFR at Tyr-1110, and phosphorylation/activation of ERK1/2 compared with that with control shRNA. Moreover, β-AR2 depletion downregulated the proliferation suppressor p21. Stimulation of β-AR2-expressing cells with EGF resulted in rapid nuclear translocation of phosphorylated/activated EGFR. Downregulation of β-AR2 enhanced this nuclear translocation. These results demonstrate that β-AR2 is a negative regulator of CXCR7/Src/EGFR-mediated mitogenic signaling. IMPLICATIONS This study reveals that β-AR2 functions as a tumor suppressor, underscoring its clinical importance in regulating CXCR7/EGFR-mediated tumor cell proliferation. Mol Cancer Res; 14(5); 493-503. ©2016 AACR.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- GRU Cancer Center, Augusta University (formerly Georgia Regents University), Augusta, Georgia
| | - Daniel Munoz
- VA Medical Center, Research Service, Miami, Florida
| | | | - Nicole Salazar
- Palo Alto VA Medical Center, Palo Alto, CA. Stanford University School of Medicine, Palo Alto, CA
| | - James J Hoy
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Bal L Lokeshwar
- GRU Cancer Center, Augusta University (formerly Georgia Regents University), Augusta, Georgia. Research Service, Charlie Norwood VA Medical Center, Augusta, Georgia.
| |
Collapse
|
70
|
Massara M, Bonavita O, Mantovani A, Locati M, Bonecchi R. Atypical chemokine receptors in cancer: friends or foes? J Leukoc Biol 2016; 99:927-33. [PMID: 26908826 DOI: 10.1189/jlb.3mr0915-431rr] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/02/2016] [Indexed: 01/23/2023] Open
Abstract
The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Matteo Massara
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano, Italy; and
| | - Ornella Bonavita
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano, Italy; and
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano, Italy; and
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
71
|
Tulotta C, Stefanescu C, Beletkaia E, Bussmann J, Tarbashevich K, Schmidt T, Snaar-Jagalska BE. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis Model Mech 2016; 9:141-53. [PMID: 26744352 PMCID: PMC4770151 DOI: 10.1242/dmm.023275] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. Summary: CXCR4-expressing human tumor cells respond to zebrafish cognate ligands and initiate metastatic events in a zebrafish xenograft model. The CXCR4 antagonist IT1t has promising tumor inhibitory effects.
Collapse
Affiliation(s)
- Claudia Tulotta
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Cristina Stefanescu
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elena Beletkaia
- Physics of Life Processes, Kamerligh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, Leiden 2333 CA, The Netherlands
| | - Jeroen Bussmann
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | - Thomas Schmidt
- Physics of Life Processes, Kamerligh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, Leiden 2333 CA, The Netherlands
| | - B Ewa Snaar-Jagalska
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
72
|
Wang HX, Tao LY, Qi KE, Zhang HY, Feng D, Wei WJ, Kong H, Chen TW, Lin QS, Chen DJ. Role of CXC chemokine receptor type 7 in carcinogenesis and lymph node metastasis of colon cancer. Mol Clin Oncol 2015; 3:1229-1232. [PMID: 26807225 DOI: 10.3892/mco.2015.643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
Abstract
Upregulated expression of the CXC chemokine receptor type 7 (CXCR7) promotes breast, lung and prostate cancer progression and metastasis. However, the role of CXCR7 in colon cancer has not been determined. We hypothesized that increased CXCR7 expression may contribute to human colon cancer occurrence and progression. Reverse transcription quantitative polymerase chain reaction and western blot analysis were performed on 34 malignant and 18 normal colon tissue specimens. The specimens were obtained from 19 male and 15 female patients, with a mean age of 52 years (range, 34-79 years). Of the 34 patients, 20 had lymph node metastases. None of the patients had received adjuvant radiotherapy or chemotherapy prior to surgery. This study demonstrated that CXCR7 levels were significantly higher in colon tumors compared with those in normal colon tissue (P﹤0.01). In addition, lymph node metastatic colon tumors exhibited significantly higher CXCR7 expression compared with non-metastatic tumors (P﹤0.01); however, there were no differences in CXCR7 expression among distinct histopathological types (well-differentiated vs. moderately-to-poorly differentiated adenocarcinoma, P﹥0.01). Therefore, the evidence obtained from the present study supports involvement of the upregulated CXCR7 expression in colon tumorigenesis and lymph node metastasis.
Collapse
Affiliation(s)
- Hong Xian Wang
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Lin Yu Tao
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - K E Qi
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Hao Yun Zhang
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Duo Feng
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Wen Jun Wei
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Heng Kong
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Tian Wen Chen
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Qiu Sheng Lin
- Department of Surgery, Nanshan Affiliated Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Dao Jin Chen
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
73
|
Xiang J, Hurchla MA, Fontana F, Su X, Amend SR, Esser AK, Douglas GJ, Mudalagiriyappa C, Luker KE, Pluard T, Ademuyiwa FO, Romagnoli B, Tuffin G, Chevalier E, Luker GD, Bauer M, Zimmermann J, Aft RL, Dembowsky K, Weilbaecher KN. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer. Mol Cancer Ther 2015; 14:2473-85. [PMID: 26269605 DOI: 10.1158/1535-7163.mct-15-0252] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022]
Abstract
The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases.
Collapse
Affiliation(s)
- Jingyu Xiang
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle A Hurchla
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca Fontana
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri. Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri
| | - Xinming Su
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah R Amend
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Esser
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, Michigan. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan. Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Foluso O Ademuyiwa
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | - Gary D Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, Michigan. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan. Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | - Rebecca L Aft
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Katherine N Weilbaecher
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
74
|
Farooqui M, Bohrer LR, Brady NJ, Chuntova P, Kemp SE, Wardwell CT, Nelson AC, Schwertfeger KL. Epiregulin contributes to breast tumorigenesis through regulating matrix metalloproteinase 1 and promoting cell survival. Mol Cancer 2015. [PMID: 26215578 PMCID: PMC4517352 DOI: 10.1186/s12943-015-0408-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The epidermal growth factor (EGF) family of ligands has been implicated in promoting breast cancer initiation, growth and progression. The contributions of EGF family ligands and their receptors to breast cancer are complex, and the specific mechanisms through which different ligands regulate breast tumor initiation and growth are not well-defined. These studies focus on the EGF family member epiregulin (EREG) as a mediator of early stage breast tumorigenesis. METHODS EREG expression levels were assessed in both cell lines and human samples of ductal carcinoma in situ (DCIS) using quantitative RT-PCR, ELISA and immunohistochemistry. Gene knock-down approaches using shRNA-based strategies were used to determine the requirement of EREG for growth of MCF10DCIS cells in vivo, and for identifying mechanisms through which EREG promotes tumor cell survival. Experiments were performed using a combination of two-dimensional culture, three-dimensional culture and tumor growth in vivo. RESULTS In comparison with other EGF family members, EREG was induced in MCF10DCIS cells compared with MCF10A and MCF10AT cells and its expression was partially regulated by fibroblast growth factor receptor (FGFR) activity. Reduced EREG expression in MCF10DCIS cells led to decreased tumor growth in vivo, which was associated with reduced cell survival. Furthermore, treatment of MCF10A cells with exogenous EREG enhanced cell survival both in three-dimensional culture and in response to chemotherapeutic agents. Examination of EREG-induced signaling pathways demonstrated that EREG promoted survival of MCF10A cells through regulating expression of matrix metalloproteinase-1 (MMP-1). To determine the relevance of these findings in human tumors, samples of DCIS were analyzed for EREG and MMP-1 expression. EREG was induced in DCIS lesions compared to normal breast epithelium, and EREG and MMP-1 were correlated in a subset of DCIS samples. CONCLUSIONS Together, these studies lead to identification of a novel pathway involving EREG and MMP-1 that contributes to the formation of early stage breast cancer. Understanding these complex pathways could ultimately lead to the development of novel biomarkers of neoplastic progression and/or new therapeutic strategies for patients with early stage cancer.
Collapse
Affiliation(s)
- Mariya Farooqui
- Department of Lab Medicine and Pathology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Laura R Bohrer
- Department of Lab Medicine and Pathology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Nicholas J Brady
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pavlina Chuntova
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah E Kemp
- Department of Lab Medicine and Pathology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - C Taylor Wardwell
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew C Nelson
- Department of Lab Medicine and Pathology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|