51
|
Exogenous Albumin Is Crucial for Pig Sperm to Elicit In Vitro Capacitation Whereas Bicarbonate Only Modulates Its Efficiency. BIOLOGY 2021; 10:biology10111105. [PMID: 34827098 PMCID: PMC8615011 DOI: 10.3390/biology10111105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary In this work, we addressed if the presence of exogenous bicarbonate required for pig sperm capacitation, which is a necessary step to acquire fertilizing ability. While sperm incubated in media without BSA or BSA/bicarbonate did not achieve in vitro capacitation, those incubated with BSA reached that status under any bicarbonate concentration, even when bicarbonate was absent. Interestingly, there were differences related to the concentration of bicarbonate, since sperm incubated in media with BSA and with no bicarbonate or 5 mM bicarbonate showed lower overall efficiency in achieving in vitro capacitation than those incubated in the presence of BSA and higher concentration of bicarbonate. Additionally, at the end of the experiment, sperm incubated in the presence of BSA and 38 mM bicarbonate showed lower motility and plasma membrane integrity than those incubated in media with BSA and lower concentrations of bicarbonate. In conclusion, BSA is crucial in for pig sperm to elicit in vitro capacitation and trigger the subsequent progesterone-induced acrosome exocytosis. In contrast, although exogenous bicarbonate does not appear to be indispensable, it shortens the time needed to reach that capacitated status. Abstract This work sought to address whether the presence of exogenous bicarbonate is required for pig sperm to elicit in vitro capacitation and further progesterone-induced acrosome exocytosis. For this purpose, sperm were either incubated in a standard in vitro capacitation medium or a similar medium with different concentrations of bicarbonate (either 0 mM, 5 mM, 15 mM or 38 mM) and BSA (either 0 mg/mL or 5 mg/mL). The achievement of in vitro capacitation and progesterone-induced acrosomal exocytosis was tested through the analysis of sperm motility, plasma membrane integrity and lipid disorder, acrosome exocytosis, intracellular calcium levels, mitochondria membrane potential, O2 consumption rate and the activities of both glycogen synthase kinase 3 alpha (GSK3α) and protein kinase A (PKA). While sperm incubated in media without BSA or BSA/bicarbonate, they did not achieve in vitro capacitation; those incubated in media with BSA achieved the capacitated status under any bicarbonate concentration, even when bicarbonate was absent. Moreover, there were differences related to the concentration of bicarbonate, since sperm incubated in media with BSA and with no bicarbonate or 5 mM bicarbonate showed lower overall efficiency in achieving in vitro capacitation than those incubated in the presence of BSA and 15 mM or 38 mM bicarbonate. Additionally, at the end of the experiment, sperm incubated in the presence of BSA and 38 mM bicarbonate showed significantly (p < 0.05) lower values of motility and plasma membrane integrity than those incubated in media with BSA and lower concentrations of bicarbonate. In conclusion, BSA is instrumental for pig sperm to elicit in vitro capacitation and trigger the subsequent progesterone-induced acrosome exocytosis. Furthermore, while exogenous bicarbonate does not seem to be essential to launch sperm capacitation, it does modulate its efficiency.
Collapse
|
52
|
Li N, Kang H, Peng Z, Wang HF, Weng SQ, Zeng XH. Physiologically detectable bisphenol A impairs human sperm functions by reducing protein-tyrosine phosphorylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112418. [PMID: 34146982 DOI: 10.1016/j.ecoenv.2021.112418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a widely used plastic monomer and plasticizer, is detectable in blood, urine and semen of a healthy people, with concentrations ranging from 0.1 nM to 10 nM. It has been shown that in vitro exposure of BPA as low as 0.001 nM could significantly inhibited mouse sperm motility and acrosome reaction. However, it is still unclear whether BPA at those physiologically detectable concentration affects human sperm. METHODS The effects of different concentrations of BPA (0, 10-3, 10-2, 10-1, 10, 103 nM) on sperm functions were examined, including human sperm viability, kinematic parameters, hyperactivation and capacitation. RESULTS BPA caused a remarkable decline in human sperm viability, motility and progressive motility, hyperactivation, capacitation and progesterone-induced acrosome reaction. Mechanism studies showed that BPA could suppress the protein tyrosine phosphorylation level of human sperm, but had no effect on sperm calcium signaling. CONCLUSIONS Physiologically detectable concentrations of BPA may impair human sperm functions via suppressing protein tyrosine phosphorylation of human sperm, implying that environmental pollution of BPA might be a factor contributing to male infertility.
Collapse
Affiliation(s)
- Na Li
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China; Laboratory Department, Affiliated Reproductive Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330031, PR China
| | - Hang Kang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hua-Feng Wang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shi-Qi Weng
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
53
|
Bryan ER, Redgrove KA, Mooney AR, Mihalas BP, Sutherland JM, Carey AJ, Armitage CW, Trim LK, Kollipara A, Mulvey PBM, Palframan E, Trollope G, Bogoevski K, McLachlan R, McLaughlin EA, Beagley KW. Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development†. Biol Reprod 2021; 102:888-901. [PMID: 31965142 PMCID: PMC7124966 DOI: 10.1093/biolre/ioz229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/28/2019] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison R Mooney
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Bettina P Mihalas
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Jessie M Sutherland
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Charles W Armitage
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia.,Peter Goher Department of Immunobiology, King's College London, London, United Kingdom
| | - Logan K Trim
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Avinash Kollipara
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Peter B M Mulvey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Ella Palframan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Gemma Trollope
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kristofor Bogoevski
- Scientific Services, Histology Services, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Robert McLachlan
- Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,School of Science, Western Sydney University, Richmond, New South Wales, Australia.,School of Life Sciences, The University of Auckland, Auckland, New Zealand
| | - Kenneth W Beagley
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| |
Collapse
|
54
|
Reynoso S, Castillo V, Katkar GD, Lopez-Sanchez I, Taheri S, Espinoza C, Rohena C, Sahoo D, Gagneux P, Ghosh P. GIV/Girdin, a non-receptor modulator for Gαi/s, regulates spatiotemporal signaling during sperm capacitation and is required for male fertility. eLife 2021; 10:69160. [PMID: 34409938 PMCID: PMC8376251 DOI: 10.7554/elife.69160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.
Collapse
Affiliation(s)
- Sequoyah Reynoso
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States
| | - Celia Espinoza
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Cristina Rohena
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, United States
| | - Pascal Gagneux
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Veterans Affairs Medical Center, Washington DC, United States
| |
Collapse
|
55
|
Couto-Santos F, Viana AGDA, Souza ACF, Dutra AADA, Mendes TADO, Ferreira ATDS, Aguilar JEP, Oliveira LL, Machado-Neves M. Prepubertal arsenic exposure alters phosphoproteins profile, quality, and fertility of epididymal spermatozoa in sexually mature rats. Toxicology 2021; 460:152886. [PMID: 34352348 DOI: 10.1016/j.tox.2021.152886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/20/2022]
Abstract
Arsenic intoxication affects male reproductive parameters of prepubertal rats. Besides, morphological and functional alterations in their testis and epididymis may remain after withdrawal of arsenic insult, causing potential impairment in male fertility during adulthood. In this study, we aimed at analyzing the effect of prepubertal arsenic exposure on the fecundity of epididymal sperm from sexually mature Wistar rats, assessing fertility indexes, sperm parameters, and sperm phosphoproteins content. Male pups on postnatal day (PND) 21 received filtered water (controls, n = 10) and 10 mg L-1 arsenite (n = 10) daily for 30 days. From PND52 to PND81, rats from both groups received filtered water. During this period, the males mated with non-exposed females between PND72 and PND75. Our results showed that sexually mature rats presented low sperm production, epididymal sperm count, motility, and quality after prepubertal arsenic exposure. These findings possibly contributed to the low fertility potential and high preimplantation loss. Epididymal sperm proteome detected 268 proteins, which 170 were found in animals from both control and arsenic groups, 27 proteins were detected only in control animals and 71 proteins only in arsenic-exposed rats. In these animals, SPATA 18 and other five proteins were upregulated, whereas keratin type II cytoskeletal 1 was downregulated (q < 0.1). The results of KEGG pathway analysis demonstrated an enrichment of pathways related to dopaminergic response, adrenergic signaling, protein degradation, and oocyte meiosis in arsenic-exposed animals. Moreover, 26 proteins were identified by phosphoproteomic with different phosphorylation pattern in animals from both groups, but SPATA18 was phosphorylated only in arsenic-exposed animals. We concluded that prepubertal exposure to arsenic is deleterious to sperm quality and male fertility, altering the sperm phosphoproteins profile.
Collapse
Affiliation(s)
- Felipe Couto-Santos
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Arabela Guedes de Azevedo Viana
- Programa de Pós-Graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Ana Cláudia Ferreira Souza
- Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, BR-465, Km 7, 23897-000, Seropédica, Rio de Janeiro, Brazil.
| | - Alexandre Augusto de Assis Dutra
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rua Cruzeiro 1, Jardim São Paulo, 39803-371, Teófilo Otoni, Minas Gerais, Brazil.
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Bioquímca e Biologia Molecular, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | - Jonas Enrique Perales Aguilar
- Laboratório de Toxinologia/Plataforma de Proteômica, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-900, Rio de Janeiro, Brazil.
| | - Leandro Licursi Oliveira
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Mariana Machado-Neves
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil; Programa de Pós-Graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
56
|
Mondal S, Bandyopadhyay A. Bisphenol A and male murine reproductive system: finding a link between plasticizer and compromised health. Toxicol Sci 2021; 183:241-252. [PMID: 34320211 DOI: 10.1093/toxsci/kfab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global burden of male infertility is rising at an alarming rate affecting the lives of millions in terms of physical, emotional and societal perspectives. Among several existing endocrine disrupting chemicals, bisphenol A (BPA) has been reported by many to inflict male reproductive toxicity in different experimental models, especially in mice. This review article critically discusses the overall reproductive toxicity of BPA with a special note to its ubiquitous existence, contamination route, effects on the reproductive system and toxicity mechanisms in male mice. Disturbed redox status in germ cells and spermatozoa plays a pivotal role in BPA induced male reproductive toxicity. In this context, the involvement of mitochondria and endoplasmic reticulum is also of grave importance. Induction of caspase-dependent apoptosis is the extreme consequence that leads to deterioration of cellular parameters. Besides the oxidative cellular and histoarchitectural damages, perturbed endocrine regulation, subsequent impaired hormonal and cellular genesis program, epigenetic alterations and inflammation cumulatively reflect poor sperm quality leading to compromised reproduction. Moreover, several key issues have also been highlighted that, if addressed, will strengthen our understanding of BPA mediated male reproductive toxicity.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt College Dhimarkheda (Rani Durgawati Vishwavidyalaya), Madhya Pradesh, Katni, 483332, India
| | - Arindam Bandyopadhyay
- Department of Zoology, Govt Shyam Sundar Agrawal College (Rani Durgawati Vishwavidyalaya), Madhya Pradesh, Sihora, Jabalpur, 483225, India
| |
Collapse
|
57
|
Kumar A, Singh G, A J, Kumar P, V A, Bala R, Verma N, Sharma RK. IGF-1 supplementation in semen affects mitochondrial functional and calcium status of buffalo sperm following cryopreservation. Anim Reprod Sci 2021; 231:106783. [PMID: 34091430 DOI: 10.1016/j.anireprosci.2021.106783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
This study was designed to examine the effects of seminal insulin-like growth factor-1 (IGF-1) supplementation on structural and functional properties of buffalo sperm post cryopreservation. Semen ejaculates from buffalo bulls (n = 6) were proportioned into four aliquots and diluted with egg yolk-based extender. Prior to equilibration, IGF-1 was added to extender as four treatments: group IGF0 (no supplementation), IGF150 (150 ng/mL), IGF250 (250 ng/mL) and IGF350 (350 ng/mL). The extended semen was transferred into 0.25 mL mini-straws, equilibrated (4 °C at 4 h), and cryopreserved. Total sperm motility was greater (P < 0.05) when there was the IGF150 treatment compared with values for other groups. Furthermore, with the IGF150 treatment there was the least and greatest (P < 0.05) mitochondrial superoxide status and membrane potential, respectively. Similarly, with the IGF150 treatment there was a greater (P < 0.05) sperm membrane integrity with a lesser (P < 0.05) calcium status compared to values for the other groups. In conclusion, seminal IGF-1 supplementation affects the structural and functional properties of buffalo sperm following cryopreservation.
Collapse
Affiliation(s)
- Amit Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India; Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Gyan Singh
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Jerome A
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India.
| | - Pradeep Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Arjun V
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India; Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Renu Bala
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Nisha Verma
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - R K Sharma
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| |
Collapse
|
58
|
Kinetic Study of 17α-Estradiol Activity in Comparison with 17β-Estradiol and 17α-Ethynylestradiol. Catalysts 2021. [DOI: 10.3390/catal11050634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
17α-estradiol (αE2), an endogenous stereoisomer of the hormone 17β-estradiol (E2), is capable of binding to estrogen receptors (ER). We aimed to mathematically describe, using experimental data, the possible interactions between αE2 and sperm ER during the process of sperm capacitation and to develop a kinetic model. The goal was to compare the suggested kinetic model with previously published results of ER interactions with E2 and 17α-ethynylestradiol (EE2). The HPLC-MS/MS method was developed to monitor the changes of αE2 concentration during capacitation. The calculated relative concentrations Bt were used for kinetic analysis. Rate constants k and molar ratio n were optimized and used for the construction of theoretical B(t) curves. Modifications in αE2–ER interactions were discovered during comparison with models for E2 and EE2. These new interactions displayed autocatalytic formation of an unstable adduct between the hormone and the cytoplasmic receptors. αE2 accumulates between the plasma membrane lipid bilayer with increasing potential, and when the critical level is reached, αE2 penetrates through the inner layer of the plasma membrane into the cytoplasm. It then rapidly reacts with the ER and creates an unstable adduct. The revealed dynamics of αE2–ER action may contribute to understanding tissue rejuvenation and the cancer-related physiology of αE2 signaling.
Collapse
|
59
|
Wen Z, Lei Z, Tian E, Wang Y, Zhong Y, Ge RS. Inhibition of human sperm motility and capacitation by ziram is mediated by decreasing tyrosine protein kinase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112281. [PMID: 33984659 DOI: 10.1016/j.ecoenv.2021.112281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Many endocrine disruptors may interfere with sperm motility, hyperactivation, and capacitation, thereby leading to male infertility. In the current study, we screened 14 endocrine disruptors, including plant ingredients, cigarette ingredients, minerals, insecticides and fungicides, plastics, and plasticizers, to inhibit human sperm motility and forward motility. Only ziram, a dithiocarbamate fungicide, can effectively inhibit sperm motility, forward motility, hyperactivation, capacitation, and spontaneous acrosome reaction of normal human spermatozoa. Its half maximum inhibitory concentration (IC50) values were less than 4 μM. Ziram also inhibited sperm motility and forward motility of asthenozoospermia spermatozoa and IC50 values were about 6-8 μM. In addition, ziram inhibited normal sperm motility, calcium influx, reactive oxygen species, and mitochondrial membrane potential at 2.5 and/or 5 μM, with IC50 values exceeding 100 μM, although it did not affect sperm DNA fragmentation up to 5 μM. Ziram-mediated inhibition of sperm motility and forward motility was irreversible. Forskolin, 8Br-cAMP, pentoxifylline, progesterone, vitamin E, and A23187 cannot prevent ziram-mediated inhibition of sperm motility and forward motility. Further studies have shown that ziram inhibited the level of tyrosine protein kinase with an IC50 value of about 10 μM, without affecting p21-activated kinase 4, and it caused damage to the mitochondrial structure of normal spermatozoa at 2.5 and 5 μM. In conclusion, ziram irreversibly inhibits human sperm motility, forward motility, and capacitation by reducing the level of tyrosine protein kinase and damaging the ultrastructure of mitochondria.
Collapse
Affiliation(s)
- Zina Wen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zhen Lei
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital and Chengdu Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Erpo Tian
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital and Chengdu Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ying Zhong
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital and Chengdu Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
60
|
Gallardi D, Xue X, Mercier E, Mills T, Lefebvre F, Rise ML, Murray HM. RNA-seq analysis of the mantle transcriptome from Mytilus edulis during a seasonal spawning event in deep and shallow water culture sites on the northeast coast of Newfoundland, Canada. Mar Genomics 2021; 60:100865. [PMID: 33933383 DOI: 10.1016/j.margen.2021.100865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
The blue mussel (Mytilus edulis) has global commercial and ecological importance both in wild and cultured conditions. However there is a qualitative and quantitative lack of knowledge of the molecular mechanisms associated with its reproductive physiology, especially with reference to environmental interactions. Here we initiated a transcriptomic analysis (RNA-sequencing (RNA-seq)) of the mantle from both sexes sampled during a seasonal spawning event and from two culture depths (shallow-5 m; deep- 15 m). Mantle libraries were produced from 3 males and 3 females sampled from each of two shallow sites and two deep sites for a total of 12 replicate male and 12 replicate female libraries (24 total libraries). Overall a total of 2.3 billion raw 100 base reads with an average of 96.5 million reads/library were obtained and assembled into 296,118 transcripts with an average length of 568 bp. Overall, 315 transcripts from male libraries and 25 from female libraries were found to be upregulated in deep water as compared to shallow (edgeR adjusted p value ≤ 0.05). Conversely, 126 transcripts from male libraries and 135 from female libraries were found to be significantly downregulated at the same depth. Thirteen transcripts were selected for qPCR validation based on importance in reproduction, antimicrobial defense and metabolism. Of these, 9 RNA-seq identified transcripts were shown by qPCR to be differentially expressed between groups: 2 were upregulated in deep compared with shallow water (dhx38, mt-co1), 2 were upregulated for female compared with male mantle (pias2, mapkap1) and 6 genes (fndc3a, acbd3, klhl10, ccnb3, armc4, mt-co1) showed to be upregulated in males compared to females. The majority of qPCR studied transcripts were identified as involved in gamete development based on the UniProt database. This study further characterizes the importance of the mantle transcriptome during reproductive activities of M. edulis.
Collapse
Affiliation(s)
- Daria Gallardi
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Eloi Mercier
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Terry Mills
- Norlantic Processors Limited, P.O. Box 381, Botwood, NL A0H 1E0, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics - Montreal Node, McGill University and Genome Quebec Innovation Center, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Harry M Murray
- Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St. John's, NL A1C 5X1, Canada
| |
Collapse
|
61
|
Rahman MS, Pang WK, Ryu DY, Park YJ, Pang MG. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum Reprod 2021; 35:1740-1752. [PMID: 32644108 DOI: 10.1093/humrep/deaa139] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does paternal exposure to bisphenol A (BPA) affect the fertility of male offspring in mice in future generations? SUMMARY ANSWER Paternal exposure to BPA adversely affects spermatogenesis, several important sperm functions and DNA methylation patterns in spermatozoa, which have both multigenerational (in F0 and F1) and partial transgenerational (mainly noticed in F2, but F3) impacts on the fertility of the offspring. WHAT IS KNOWN ALREADY BPA, a synthetic endocrine disruptor, is used extensively to manufacture polycarbonate plastics and epoxy resins. Growing evidence suggests that exposure to BPA during the developmental stages results in atypical reproductive phenotypes that could persist for generations to come. STUDY DESIGN, SIZE, DURATION CD-1 male mice (F0) were treated with BPA (5 or 50 mg/kg body weight per day (bw/day)) or ethinylestradiol (EE) (0.4 μg/kg bw/day) for 6 weeks. Control mice were treated with vehicle (corn oil) only. The treated male mice were bred with untreated female mice to produce first filial generation (F1 offspring). The F2 and F3 offspring were produced similarly, without further exposure to BPA. PARTICIPANTS/MATERIALS, SETTING, METHODS Histological changes in the testis along with functional, biochemical and epigenetic (DNA methylation) properties of spermatozoa were investigated. Subsequently, each parameter of the F0-F3 generations was compared between BPA-treated mice and control mice. MAIN RESULTS AND THE ROLE OF CHANCE Paternal BPA exposure disrupted spermatogenesis by decreasing the size and number of testicular seminiferous epithelial cells, which eventually led to a decline in the total sperm count of F0-F2 offspring (P < 0.05). We further showed that a high BPA dose decreased sperm motility in F0-F2 males by mediating the overproduction of reactive oxygen species (F0-F1) and decreasing intracellular ATP (F0-F2) in spermatozoa (P < 0.05). These changes in spermatozoa were associated with altered global DNA methylation patterns in the spermatozoa of F0-F3 males (P < 0.05). Furthermore, we noticed that BPA compromised sperm fertility in mice from the F0-F2 (in the both dose groups) and F3 generations (in the high-dose group only). The overall reproductive toxicity of BPA was equivalent to or higher (high dose) than that of the tested dose of EE. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Further research is required to determine the variables (e.g. lowest BPA dose) that are capable of producing changes in sperm function and fertility in future generations. WIDER IMPLICATIONS OF THE FINDINGS These results may shed light on how occupational exposure to BPA can affect offspring fertility in humans. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2018R1A6A1A03025159). M.S.R. was supported by Korea Research Fellowship Program through the NRF funded by the Ministry of Science and ICT (Grant No. 2017H1D3A1A02013844). There are no competing interests.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
62
|
Sáez-Espinosa P, López-Huedo A, Robles-Gómez L, Huerta-Retamal N, Aizpurua J, Gómez-Torres MJ. Characterization of Human Spermatic Subpopulations by ConA-Binding Sites and Tyrosine Phosphorylation during in vitro Capacitation and Acrosome Reaction. Cells Tissues Organs 2021; 210:1-9. [PMID: 33873194 DOI: 10.1159/000513275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/20/2020] [Indexed: 11/19/2022] Open
Abstract
Spermatozoa capacitation is a time-dependent physiological process essential for acquiring the fertilizing capacity. In this context, reorganization of spermatozoa surface sugars and tyrosine phosphorylation are some of the most important biochemical changes involved in capacitation. However, the relationship between these 2 biomarkers remains poorly defined. By cytofluorescence we simultaneously characterized the head concanavalin A (ConA)-binding sites and the flagellar tyrosine phosphorylation before capacitation, during different capacitation times (1 and 4 h), and after acrosome reaction induction in human spermatozoa. The results showed a strong connection between ConA-label patterns and tyrosine phosphorylation according to the spermatozoa capacitation time and acrosomal status. Specifically, the spermatozoa subpopulation with phosphotyrosine presented proper sugar location (label in acrosomal and postacrosomal region) just after 1 h of capacitation, while cells without phosphotyrosine needed 4 h to do it. Moreover, after induction of spermatozoa acrosome reaction, phosphorylation was significantly correlated (p < 0.05) with the relocation of ConA-binding residues to the equatorial region, regardless of capacitation time. Overall, these observations provide novel insights regarding spermatozoa subpopulations based on essential physiological events like capacitation and acrosome reaction, which could have potential implications in the improvement of spermatozoa selection techniques.
Collapse
Affiliation(s)
- Paula Sáez-Espinosa
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Alba López-Huedo
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Laura Robles-Gómez
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Natalia Huerta-Retamal
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Jon Aizpurua
- IVF Spain, Reproductive Medicine, Alicante, Spain.,Human Fertility Cathedra, University of Alicante, Alicante, Spain
| | - María José Gómez-Torres
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain.,Human Fertility Cathedra, University of Alicante, Alicante, Spain
| |
Collapse
|
63
|
Amjad S, Rahman MS, Pang WK, Ryu DY, Adegoke EO, Park YJ, Pang MG. Effects of phthalates on the functions and fertility of mouse spermatozoa. Toxicology 2021; 454:152746. [PMID: 33711355 DOI: 10.1016/j.tox.2021.152746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022]
Abstract
Phthalates are common environmental pollutants that are presumed to negatively impact male fertility including animals and humans. Particularly, these potential xenoestrogens may alter male fertility by binding to specific sperm receptors. Although several studies have characterized the toxic effects of single phthalates, epidemiological studies indicate that humans are typically exposed to phthalate mixtures. Here, we tested an environmental-related phthalate combination composed of 21 % di(2-ethylhexyl) phthalate, 15 % diisononyl phthalate, 8% diisobutyl phthalate, 15 % dibutyl phthalate, 35 % diethyl phthalate, and 5% benzylbutyl phthalate. Specifically, the effects of short-term exposure (90 min) to various concentrations (1, 10, 100, and 500 μg/mL) of this phthalate mixture on several important sperm processes, oocyte fertilization, and embryo production were assessed. All phthalate concentrations significantly decreased sperm motility and hyperactivity by compromising the sperm's ability to generate ATP. Additionally, short-term phthalate exposure (>10 μg/mL) also induced abnormal capacitation and the acrosome reaction by upregulating protein tyrosine phosphorylation via a protein kinase-A-dependent pathway. Furthermore, phthalate exposure (particularly at doses exceeding 10 μg/mL) significantly affected fertilization and early embryonic development. Together, our findings indicate that the studied phthalate mixtures adversely affected sperm motility, capacitation, and acrosome reaction, which resulted in poor fertilization rates and repressed embryonic development. Moreover, the lowest-observed-adverse-effect dose of the phthalate mixture tested can be assumed to be < 1 μg/mL in vitro.
Collapse
Affiliation(s)
- Shehreen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
64
|
Gómez-Torres MJ, Huerta-Retamal N, Robles-Gómez L, Sáez-Espinosa P, Aizpurua J, Avilés M, Romero A. Arylsulfatase A Remodeling during Human Sperm In Vitro Capacitation Using Field Emission Scanning Electron Microscopy (FE-SEM). Cells 2021; 10:cells10020222. [PMID: 33498624 PMCID: PMC7912702 DOI: 10.3390/cells10020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
Capacitation drives sperm biophysical and biochemical changes for sperm-oocyte interactions. It is a well-known fact that the molecular complex arylsulfatase A (ARSA), hyaluronidase sperm adhesion molecule 1 (SPAM1), and heat shock protein 2 (HSPA2) plays a significant role in sperm-zona pellucida (ZP) binding. However, the time-dependent capacitation effects on the sperm surface ARSA presence and specific topographic distributions remain to be elucidated. Here, we quantified the ARSA density and specific membrane domain locations before (US) and after in vitro capacitation (one and four hours; CS1-CS4) in human sperm using high-resolution field emission scanning electron microscopy (FE-SEM) and immunogold labeling. Our results showed a significant and progressive capacitation-mediated increase of labeled spermatozoa from the US (37%) to CS4 (100%) physiological conditions. In addition, surface mapping revealed a close relationship between the ARSA residues and their acrosomal repositioning. Compared with the ARSA surface heterogeneous distribution found in US, the CS1-4 conditions exhibited clustering on the peri-acrosomal region, showing that time-dependent capacitation also induced a ARSA residue dramatic translocation on sperm surfaces. Our findings provide novel insights into the molecular remodeling events preceding sperm-oocyte interactions.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain; (N.H.-R.); (L.R.-G.); (P.S.-E.); (A.R.)
- Cátedra Human Fertility, Universidad de Alicante, 03080 Alicante, Spain;
- Correspondence: ; Tel.: +34-965-90-38-78
| | - Natalia Huerta-Retamal
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain; (N.H.-R.); (L.R.-G.); (P.S.-E.); (A.R.)
| | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain; (N.H.-R.); (L.R.-G.); (P.S.-E.); (A.R.)
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain; (N.H.-R.); (L.R.-G.); (P.S.-E.); (A.R.)
| | - Jon Aizpurua
- Cátedra Human Fertility, Universidad de Alicante, 03080 Alicante, Spain;
- IVF Spain, Medicina Reproductiva, 03540 Alicante, Spain
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Universidad de Murcia, Instituto Murciano de Investigación Sociosanitaria (IMIB), 30003 Murcia, Spain;
| | - Alejandro Romero
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain; (N.H.-R.); (L.R.-G.); (P.S.-E.); (A.R.)
| |
Collapse
|
65
|
Sun X, Chen W, Weng S, Pan T, Hu X, Wang F, Xia T, Chen H, Luo T. Effects of the environmental endocrine disruptors di-2-ethylhexyl phthalate and mono-2-ethylhexyl phthalate on human sperm function in vitro. Reprod Fertil Dev 2021; 32:629-636. [PMID: 32027815 DOI: 10.1071/rd19164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Di-2-ethylhexyl phthalate (DEHP), a plastic-derived, endocrine-disrupting chemical, has been shown to exhibit male reproductive toxicity. However, its effects on human mature spermatozoa are largely unknown. In this study we investigated the invitro effects of DEHP and mono-2-ethylhexyl phthalate (MEHP; the main metabolite of DEHP) on sperm function and the mechanisms involved. Human spermatozoa were exposed to phthalates invitro at the doses that cover the concentrations detected in human semen: 20nM-8 μM DEHP, 1nM-20 μM MEHP or a mixture of 20nM-8 μM DEHP and 1nM-20 μM MEHP. DEHP and MEHP, alone or in combination, had no effect on the viability, membrane integrity, motility, homeostasis of reactive oxygen species or mitochondrial activity of human spermatozoa. Interestingly, 1nM-20 μM MEHP and combinations of 20nM-8 μM DEHP and 1nM-20 μM MEHP enhanced penetration ability, hyperactivation and the spontaneous acrosome reaction of human spermatozoa, and increased intracellular free Ca2+ concentrations ([Ca2+]i) and tyrosine phosphorylation, two key signalling pathways that regulate sperm function. The findings of this study suggest that invitro exposure to MEHP metabolised from DEHP affects human sperm function by inducing increases in sperm [Ca2+]i and tyrosine phosphorylation, which adds to our understanding of the effects of DEHP on male reproduction.
Collapse
Affiliation(s)
- Xinyi Sun
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Wenqiong Chen
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Shiqi Weng
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Tingting Pan
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Xiaonian Hu
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Tianxinyu Xia
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, 318/81 Avenue, Nanchang, Jiangxi 330006, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Corresponding author.
| |
Collapse
|
66
|
Huerta-Retamal N, Sáez-Espinosa P, Robles-Gómez L, Romero A, Aizpurua J, Gómez-Torres MJ. [Localization of Arylsulfatase A during in vitro incubation of human spermatozoa in capacitation media]. Rev Int Androl 2020; 19:129-136. [PMID: 33342716 DOI: 10.1016/j.androl.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/19/2020] [Accepted: 08/08/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine the localization and distribution of the ArylsulfataseA receptor (ARSA) in human spermatozoa before and after their incubation in capacitation medium for 1 and 4hours. MATERIAL AND METHODS Semen samples were obtained from five normozoospermic donors. Capacitation was by swim-up technique using capacitation medium for 1 and 4hours. Localization of the ARSA receptor was assessed by indirect immunofluorescence using confocal microscopy. A minimum of 200cells were observed in each physiological condition. RESULTS Before incubation, no representative pattern was observed among the cells positive for this biomarker (8.61%). This percentage increased significantly after incubation in the capacitation medium for 1 and 4hours (61.86% and 63.38% respectively). A majority pattern was observed among the capacitated cells, with intense labelling in the acrosomal region (27.11% and 28.20% after 1 and 4hours respectively). It should be noted that the pattern corresponding to fluorescence at the level of the periacrosomal region was not observed in the spermatozoa prior to incubation. Only after incubation in capacitation medium for 1 and 4hours, 9.13% and 12.78% of cells with such distribution were detected. CONCLUSIONS In vitro capacitation, regardless of time, favours the immunolocalization of ARSA in the cephalic region of the spermatozoa. The most representative subpopulation after this process was the one in which ARSA was intensely and homogeneously distributed in the acrosome region, involved in primary gamete recognition.
Collapse
Affiliation(s)
| | | | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, Alicante, España
| | - Alejandro Romero
- Departamento de Biotecnología, Universidad de Alicante, Alicante, España
| | - Jon Aizpurua
- IVF Spain, Medicina Reproductiva, Alicante, España; Cátedra Human Fertility, Universidad de Alicante, Alicante, España
| | - María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, Alicante, España; Cátedra Human Fertility, Universidad de Alicante, Alicante, España.
| |
Collapse
|
67
|
Park YJ, Kwon KJ, Song WH, Pang WK, Ryu DY, Saidur Rahman M, Pang MG. New technique of sex preselection for increasing female ratio in boar sperm model. Reprod Domest Anim 2020; 56:333-341. [PMID: 33249659 DOI: 10.1111/rda.13870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 12/01/2022]
Abstract
In this study, we tried to optimize the porcine semen extender conditions to maximize the differences between live X chromosome-bearing (X) spermatozoa and to Y chromosome-bearing (Y) spermatozoa without a decline in the fertility rate at different pH conditions during storage. We observed the viability of X and Y boar spermatozoa in acidic (pH 6.2), original (pH 7.2), and alkaline condition (pH 8.2) for 5 days to investigate the effect of storage conditions on the X to Y spermatozoa ratio. The functional parameters of spermatozoa were also examined to evaluate sperm quality. Sperm motility was preserved at pH 7.2 and pH 6.2 for 3 days, while sperm motility at pH 8.2 decreased significantly after 2 days. Non-capacitated spermatozoa increased while capacitated spermatozoa decreased during storage. Sperm viability decreased significantly duration-dependent under all pH conditions, but there was no significant difference during storage at pH 6.2 and 7.2. The X: Y ratio of live spermatozoa in acidic condition was maximized (1.2:1) without affecting the sperm function and fertility-related protein expression after 2 days compared to original conditions. Moreover, insemination of sows using acidic extender increased the number of female pups on days 1 and 2 of preservation. These results indicate that the production of female offspring may increase when acidic BTS is used for 2 days without affecting the success rate of AI. Above all, this method is simple and economical compared to other methods.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Ki-Jin Kwon
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Won-Hee Song
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| |
Collapse
|
68
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
69
|
Huerta-Retamal N, Sáez-Espinosa P, Robles-Gómez L, Avilés M, Romero A, Aizpurua J, Gómez-Torres MJ. Human sperm chaperone HSPA2 distribution during in vitro capacitation. J Reprod Immunol 2020; 143:103246. [PMID: 33246276 DOI: 10.1016/j.jri.2020.103246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022]
Abstract
Human fertilization success depends on the ability of the spermatozoa to undergo capacitation. Even though this process can be conducted in vitro, the optimal time for a sperm cell to complete capacitation in vitro is still under discussion due to the lack of proper capacitation biomarkers. Here, we evaluated the influence of in vitro capacitation time on HSPA2 distribution over human sperm head testing this chaperone as a potential capacitation biomarker. The chaperone was assessed in human spermatozoa from 16 normozoospermic donors using indirect immunofluorescence in uncapacitated, one and four-hour capacitated spermatozoa. The percentage of HSPA2 immunofluorescent cells before and after one hour of capacitation did not differ significantly. However, after four hours of capacitation, we observed a significantly higher percentage of HSPA2 labelled cells. In fluorescent cells analysed before capacitation, we could not identify a predominant distribution pattern. Meanwhile, after capacitation, most sperm showed a highly labelled equatorial band accompanied by a homogeneous fluorescence throughout the acrosomal region. Our findings suggest that HSPA2 needs more than one hour of in vitro capacitation for being correctly distributed in the anterior region of the sperm head. In conclusion, the present study provides solid evidences for the utility of HSPA2 as a biomarker of human sperm in vitro capacitation. Due to its importance during egg-sperm recognition, the use of HSPA2 as a biomarker before an artificial reproduction technique may be suggested, in addition to a longer capacitation time during sperm preparation.
Collapse
Affiliation(s)
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain
| | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain
| | - Manuel Avilés
- Departamento de Biología celular e Histología, Universidad de Murcia, Instituto Murciano de Investigación Sociosanitaria (IMIB-Arrixaca), Murcia, 30003, Spain
| | - Alejandro Romero
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain
| | - Jon Aizpurua
- IVF Spain, Medicina Reproductiva, Alicante, 03540, Spain; Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain
| | - María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, Alicante, 03690, Spain; Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
70
|
Oseguera-López I, Pérez-Cerezales S, Ortiz-Sánchez PB, Mondragon-Payne O, Sánchez-Sánchez R, Jiménez-Morales I, Fierro R, González-Márquez H. Perfluorooctane Sulfonate (PFOS) and Perfluorohexane Sulfonate (PFHxS) Alters Protein Phosphorylation, Increase ROS Levels and DNA Fragmentation during In Vitro Capacitation of Boar Spermatozoa. Animals (Basel) 2020; 10:ani10101934. [PMID: 33096732 PMCID: PMC7588980 DOI: 10.3390/ani10101934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Perfluorinated compounds are synthetic chemicals, with a wide variety of applications like firefighting foams, food packaging, additives in paper and fabrics to avoid dyes. Perfluorooctane sulfonate and perfluorohexane sulfonate are globally distributed, and contaminates air, water, food, and dust, have toxic effects and bioaccumulate. Significant levels of these compounds have found in blood serum, breast milk, and semen of occupationally exposed and unexposed people, as well as in blood serum and organs of the domestic, farm, and wild animals. The present study seeks to analyze the toxic effects and possible alterations caused by the presence of these compounds in boar sperm during the in vitro capacitation, due to their toxicity, worldwide distribution, and lack of information in spermatozoa physiology during pre-fertilization processes. Abstract Perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) are toxic and bioaccumulative, included in the Stockholm Convention’s list as persistent organic pollutants. Due to their toxicity, worldwide distribution, and lack of information in spermatozoa physiology during pre-fertilization processes, the present study seeks to analyze the toxic effects and possible alterations caused by the presence of these compounds in boar sperm during the in vitro capacitation. The spermatozoa capacitation was performed in supplemented TALP-Hepes media and mean lethal concentration values of 460.55 μM for PFOS, and 1930.60 μM for PFHxS were obtained. Results by chlortetracycline staining showed that intracellular Ca2+ patterns bound to membrane proteins were scarcely affected by PFOS. The spontaneous acrosome reaction determined by FITC-PNA was significantly reduced by PFOS and slightly increased by PFHxS. Both toxic compounds significantly alter the normal capacitation process from 30 min of exposure. An increase in ROS production was observed by flow cytometry and considerable DNA fragmentation by the comet assay. The immunocytochemistry showed a decrease of tyrosine phosphorylation in proteins of the equatorial and acrosomal zone of the spermatozoa head. In conclusion, PFOS and PFHxS have toxic effects on the sperm, causing mortality and altering vital parameters for proper sperm capacitation.
Collapse
Affiliation(s)
- Iván Oseguera-López
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (I.O.-L.); (P.B.O.-S.)
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (S.P.-C.); (R.S.-S.)
| | - Paola Berenice Ortiz-Sánchez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (I.O.-L.); (P.B.O.-S.)
| | - Oscar Mondragon-Payne
- Maestría en Biología Experimental, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| | - Raúl Sánchez-Sánchez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (S.P.-C.); (R.S.-S.)
| | - Irma Jiménez-Morales
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
| | - Reyna Fierro
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (I.J.-M.); (R.F.)
- Correspondence: ; Tel.: +52-55-5804-6557
| |
Collapse
|
71
|
Phosphoproteomics and Bioinformatics Analyses Reveal Key Roles of GSK-3 and AKAP4 in Mouse Sperm Capacitation. Int J Mol Sci 2020; 21:ijms21197283. [PMID: 33023073 PMCID: PMC7582274 DOI: 10.3390/ijms21197283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation can induce signal transduction to change sperm motility patterns during sperm capacitation. However, changes in the phosphorylation of sperm proteins in mice are still incompletely understood. Here, capacitation-related phosphorylation in mouse sperms were firstly investigated by label-free quantitative (LFQ) phosphoproteomics coupled with bioinformatics analysis using ingenuity pathway analysis (IPA) methods such as canonical pathway, upstream regulator, and network analysis. Among 1632 phosphopeptides identified at serine, threonine, and tyrosine residues, 1050 novel phosphosites, corresponding to 402 proteins, were reported. Gene heatmaps for IPA canonical pathways showed a novel role for GSK-3 in GP6 signaling pathways associated with capacitation for 60 min. At the same time, the reduction of the abundant isoform-specific GSK-3α expression was shown by western blot (WB) while the LFQ pY of this isoform slightly decreased and then increased. The combined results from WB and LFQ methods explain the less inhibitory phosphorylation of GSK-3α during capacitation and also support the predicted increases in its activity. In addition, pAKAP4 increased at the Y156 site but decreased at the Y811 site in a capacitated state, even though IPA network analysis and WB analysis for overall pAKAP revealed upregulated trends. The potential roles of GSK-3 and AKAP4 in fertility are discussed.
Collapse
|
72
|
Sáez-Espinosa P, Ferrández-Rives M, Huerta-Retamal N, Robles-Gómez L, Aizpurua J, Romero A, Gómez-Torres MJ. Proper cytoskeleton α-tubulin distribution is concomitant to tyrosine phosphorylation during in vitro capacitation and acrosomal reaction in human spermatozoa. Cytoskeleton (Hoboken) 2020; 77:333-341. [PMID: 32875747 DOI: 10.1002/cm.21631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
Spermatozoa motility is a key parameter during the fertilization process. In this context, spermatozoa tyrosine protein phosphorylation and an appropriate cytoskeleton α-tubulin distribution are some of the most important physiological events involved in motility. However, the relationship between these two biomarkers remains poorly defined. Here, we characterized simultaneously by immunocytochemistry the α-tubulin (TUBA4A) distribution and the tyrosine phosphorylation at flagellum before capacitation, during different capacitation times (1 and 4 hr), and after acrosome reaction induction in human spermatozoa. We found that the absence of spermatozoa phosphorylation in tyrosine residues positively and significantly correlated (p < 0.05) with the terminal piece α-tubulin flagellar distribution in all physiological conditions. Conversely, we observed a positive significant correlation (p < 0.01) between phosphorylated spermatozoa and continuous α-tubulin distribution in spermatozoa flagellum, independently of the physiological condition. Similarly, the subpopulation of spermatozoa with tyrosine phosphorylated and continuous α-tubulin increases with longer capacitation times and after the acrosome reaction induction. Overall, these findings provide novel insights into the post-transcriptional physiological events associated to α-tubulin and the tyrosine phosphorylation during fertilization, which present potential implications for the improvement of spermatozoa selection methods.
Collapse
Affiliation(s)
| | | | | | | | - Jon Aizpurua
- Reproductive Medicine, IVF Spain, Alicante, Spain
| | - Alejandro Romero
- Department of Biotechnology, University of Alicante, Alicante, Spain
| | - María José Gómez-Torres
- Department of Biotechnology, University of Alicante, Alicante, Spain.,Reproductive Medicine, IVF Spain, Alicante, Spain.,Cathedra of Human Fertility, University de Alicante, Alicante, Spain
| |
Collapse
|
73
|
Bunsueb S, Tangsrisakda N, Wu ATH, Iamsaard S. Localization (and profiles) of tyrosinephosphorylated proteins in female reproductive organs of adult rats. Clin Exp Reprod Med 2020; 47:180-185. [PMID: 32911588 PMCID: PMC7482952 DOI: 10.5653/cerm.2020.03573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/01/2020] [Indexed: 11/06/2022] Open
Abstract
Objective Tyrosine phosphorylation is an essential process in many biological systems, including the male reproductive system. The presence of tyrosine-phosphorylated (TyrPho) proteins has been well documented in male reproductive organs, but research in fertile females is still limited. Methods The ovary, oviduct, and uterus of adult female Sprague-Dawley rats in the estrus phase were used to localize TyrPho proteins using an immunohistochemical technique. These proteins were separated and their expression patterns were examined by sodium dodecyl sulfatepolyacrylamide gel electrophoresis and Western blot analysis, respectively. Results TyrPho proteins were localized in the cytoplasm of the oocyte except the antral fluid; in the granulosa cells, theca cells, and stromal cells of the ovary; at the apical surface of oviductal epithelial cells; and in the basal epithelium and submucosa of the uterine wall. Moreover, we found that 72-, 43-, and 28-kDa TyrPho proteins were localized in the ovary, while 170-, 55-, and 43-kDa proteins were localized in the oviduct. In the uterus, we detected four major bands, corresponding to 61-, 55-, 54-, and 43-kDa TyrPho proteins. Conclusion Given that these TyrPho proteins were found in major reproductive organs in the estrus phase, these proteins may play important roles in female fertility.
Collapse
Affiliation(s)
- Sudtida Bunsueb
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nareelak Tangsrisakda
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| | - Alexander T H Wu
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
74
|
Ogneva IV, Usik MA, Burtseva MV, Biryukov NS, Zhdankina YS, Sychev VN, Orlov OI. Drosophila melanogaster Sperm under Simulated Microgravity and a Hypomagnetic Field: Motility and Cell Respiration. Int J Mol Sci 2020; 21:ijms21175985. [PMID: 32825268 PMCID: PMC7503777 DOI: 10.3390/ijms21175985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
The role of the Earth's gravitational and magnetic fields in the evolution and maintenance of normal processes of various animal species remains unclear. The aim of this work was to determine the effect of simulated microgravity and hypomagnetic conditions for 1, 3, and 6 h on the sperm motility of the fruit fly Drosophila melanogaster. In addition to the usual diet, the groups were administered oral essential phospholipids at a dosage of 500 mg/kg in medium. The speed of the sperm tails was determined by video recording and analysis of the obtained video files, protein content by western blotting, and cell respiration by polarography. The results indicated an increase in the speed of movement of the sperm tails after 6 h in simulated microgravity. The levels of proteins that form the axoneme of the sperm tail did not change, but cellular respiration was altered. A similar effect occurred with the administration of essential phospholipids. These results may be due to a change in the level of phosphorylation of motor proteins. Exposure to hypomagnetic conditions led to a decrease in motility after 6 h against a background of a decrease in the rate of cellular respiration due to complex I of the respiratory chain. This effect was not observed in the flies that received essential phospholipids. However, after 1 h under hypomagnetic conditions, the rate of cellular respiration also increased due to complex I, including that in the sperm of flies receiving essential phospholipids.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-4991956398; Fax: +7-4991952253
| | - Maria A. Usik
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Maria V. Burtseva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Yuliya S. Zhdankina
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
- Department of Medical and Biological Physics, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir N. Sychev
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| | - Oleg I. Orlov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, 123007 Moscow, Russia; (M.A.U.); (M.V.B.); (N.S.B.); (Y.S.Z.); (V.N.S.); (O.I.O.)
| |
Collapse
|
75
|
Carrageta DF, Guerra-Carvalho B, Sousa M, Barros A, Oliveira PF, Monteiro MP, Alves MG. Mitochondrial Activation and Reactive Oxygen-Species Overproduction during Sperm Capacitation are Independent of Glucose Stimuli. Antioxidants (Basel) 2020; 9:antiox9080750. [PMID: 32823893 PMCID: PMC7464989 DOI: 10.3390/antiox9080750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa capacitation is a complex process that requires specific ionic and energetic conditions to support biochemical alterations leading to motility hyperactivation. However, human sperm capacitation is still poorly understood. Herein, we studied the effects of glucose on human sperm capacitation. Healthy men seminal samples (n = 55) were submitted to a density gradient centrifugation and incubated in capacitating conditions in the absence or presence of increasing glucose concentrations (0, 5.5, 11, and 22 mM). Viability and total motility were accessed. Phosphotyrosine levels were measured. Mitochondrial activity and endogenous ROS production were evaluated. Oxidative stress-induced damage was analyzed. Culture media was collected and analyzed by 1H-NMR. Our results show that glucose is essential for human sperm capacitation and motility. Notably, we observed that mitochondrial activity increased even in the absence of glucose. This increased mitochondrial activity was followed by a ROS overproduction, although no oxidative stress-induced damage was detected. Our results show that glucose is essential for capacitation but mitochondrial activation is independent from its stimuli. ROS overproduction may take part on a finely regulated signaling pathway that modulates or even activates capacitation. Taken together, our results constitute a paradigm shift on human sperm capacitation physiology.
Collapse
Affiliation(s)
- David F. Carrageta
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (D.F.C.); (B.G.-C.); (M.S.)
| | - Bárbara Guerra-Carvalho
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (D.F.C.); (B.G.-C.); (M.S.)
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (D.F.C.); (B.G.-C.); (M.S.)
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, 4100-012 Porto, Portugal;
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mariana P. Monteiro
- Clinical and Experimental Endocrinology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - Marco G. Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (D.F.C.); (B.G.-C.); (M.S.)
- Correspondence: ; Tel.: +351-220-428-000
| |
Collapse
|
76
|
Elango K, Kumaresan A, Sharma A, Nag P, Prakash MA, Sinha MK, Manimaran A, Peter ESKJ, Jeyakumar S, Selvaraju S, Ramesha KP, Datta TK. Sub-fertility in crossbred bulls: deciphering testicular level transcriptomic alterations between zebu (Bos indicus) and crossbred (Bos taurus x Bos indicus) bulls. BMC Genomics 2020; 21:502. [PMID: 32693775 PMCID: PMC7372791 DOI: 10.1186/s12864-020-06907-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The incidence of poor semen quality and sub-fertility/infertility is higher in crossbred as compared to Zebu males. Several attempts have been made to understand the possible reasons for higher incidence of fertility problems in crossbred males, at sperm phenotype, proteome and genome level but with variable results. Since the quality of the ejaculated spermatozoa is determined by the testicular environment, assessing the testicular transcriptome between these breeds would help in identifying the possible mechanisms associated with infertility in crossbred bulls. However, such information is not available. We performed global transcriptomic profiling of testicular tissue from crossbred and Zebu bulls using Agilent Bos taurus GXP 8X60k AMADID: 29411 array. To the best of our knowledge, this is the first study comparing the testicular mRNAs between crossbred and Zebu bulls. RESULTS Out of the 14,419 transcripts detected in bovine testis, 1466 were differentially expressed between crossbred and Zebu bulls, in which 1038 were upregulated and 428 were downregulated in crossbred bulls. PI4KB and DPY19L2 genes, reported to be involved in sperm capacitation and acrosome formation respectively, were among the top 10 downregulated transcripts in crossbred testis. Genes involved in ubiquitination and proteolysis were upregulated, while genes involved in cell proliferation, stem cell differentiation, stem cell population maintenance, steroidogenesis, WNT signalling, protein localization to plasma membrane, endocannabinoid signalling, heparin binding, cAMP metabolism and GABA receptor activity were downregulated in crossbred testis. Among the 10 genes validated using qPCR, expression of CCNYL, SOX2, MSMB, SPATA7, TNP1, TNP2 and CRISP2 followed the same trend as observed in microarray analysis with SPATA7 being significantly downregulated and transition proteins (TNP1, TNP2) being significantly upregulated in crossbred bulls. CONCLUSIONS Abundant proteolysis by ubiquitination and downregulation of WNT signaling, cell proliferation, differentiation and steroidogenesis might be associated with higher incidence of poor semen quality and/or sub-fertility/infertility in crossbred bulls as compared to Zebu bulls. Downregulation of SPATA7 (Spermatogenesis Associated 7) and upregulation of transition proteins (TNP1 and TNP2) in crossbred bull testis might be associated with impaired spermatogenesis processes including improper chromatin compaction in crossbred bulls.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ayyasamy Manimaran
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sakthivel Jeyakumar
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sellappan Selvaraju
- Reproductive physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Kerekoppa P Ramesha
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
77
|
Cheng YM, Hu XN, Peng Z, Pan TT, Wang F, Chen HY, Chen WQ, Zhang Y, Zeng XH, Luo T. Lysine glutarylation in human sperm is associated with progressive motility. Hum Reprod 2020; 34:1186-1194. [PMID: 31194865 DOI: 10.1093/humrep/dez068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/14/2019] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Is there a role for lysine glutarylation (Kglu), a newly identified protein post-translational modification (PTM), in human sperm? SUMMARY ANSWER Kglu occurs in several proteins located in the tail of human sperm, and it was reduced in asthenozoospermic (A) men and positively correlated with progressive motility of human sperm, indicating its important role in maintaining sperm motility. WHAT IS KNOWN ALREADY Since mature sperm are almost transcriptionally silent, PTM is regarded as an important pathway in regulating sperm function. However, only phosphorylation has been extensively studied in mature sperm to date. Protein lysine modification (PLM), a hot spot of PTMs, was rarely studied except for a few reports on lysine methylation and acetylation. As a newly identified PLM, Kglu has not been well characterized, especially in mature sperm. STUDY DESIGN, SIZE, DURATION Sperm samples were obtained from normozoospermic (N) men and A men who visited the reproductive medical center between February 2016 and January 2018. In total, 61 N men and 59 A men were recruited to participate in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS Kglu was examined by immunoblotting and immunofluorescence assays using a previously qualified pan-anti-glutaryllysine antibody that recognizes glutaryllysine in a wide range of sequence contexts (both in histones and non-histone substrates) but not the structurally similar malonyllysine and succinyllysine. The immunofluorescence assay was imaged using laser scanning confocal microscopy and super-resolution structured illumination microscopy. Sperm motility parameters were examined by computer-assisted sperm analysis. MAIN RESULTS AND THE ROLE OF CHANCE Kglu occurs in several proteins (20-150 kDa) located in the tail of human sperm, especially in the middle piece and the latter part of the principal piece. Sperm Kglu was modulated by regulatory systems (enzymes and glutaryl-CoA) similar to those in HeLa cells. The mean level of sperm Kglu was significantly reduced in A men compared with N men (P < 0.001) and was positively correlated with progressive motility (P < 0.001). The sodium glutarate-induced elevation of Kglu levels in A men with lower Kglu levels in sperm significantly improved the progressive motility (P < 0.001). Furthermore, the reduced sperm Kglu levels in A men was accompanied by an increase in sperm glutaryl-CoA dehydrogenase (a regulatory enzyme of Kglu). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although the present study indicated the involvement of sperm Kglu in maintaining progressive motility of human sperm, the underlying mechanism needs to be investigated further. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study provide an insight into the novel role of Kglu in human sperm and suggest that abnormality of sperm PLMs may be one of the causes of asthenozoospermia. STUDY FUNDING/COMPETING INTEREST(S) National Natural Science Foundation of China (81 771 644 to T.L.; 31 671 204 to X.Z. and 81 871 207 to H.C.); National Basic Research Program of China (973 Program, 2015CB943003 to X.Z.); Natural Science Foundation of Jiangxi, China (20171ACB21006 and 20161BAB204167 to T.L.; 20165BCB18001 to X.Z.). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Nian Hu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Peng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Ting-Ting Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wen-Qiong Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yu Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xu-Hui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, China.,Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, China.,Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
78
|
Patil SK, Somashekar L, Selvaraju S, Jamuna KV, Parthipan S, Binsila BK, Prasad RV, Ravindra JP. Immuno-histological mapping and functional association of seminal proteins in testis and excurrent ducts with sperm function in buffalo. Reprod Domest Anim 2020; 55:998-1010. [PMID: 32515513 DOI: 10.1111/rda.13742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The region-specific expression of seminal proteins in testis and excurrent duct system determines the quality and function of the spermatozoa. In the present study, localization and expression of some of the seminal proteins such as insulin-like growth factor receptor 1β (IGF-1Rβ), phosphatidylethanolamine-binding protein 4 (PEBP4), α-tubulin and tissue factor pathway inhibitor 2 (TFPI2) were carried out in testis, excurrent duct system and spermatozoa of buffalo. IGF-1Rβ was localized in the cells of the seminiferous tubules of the testis, except in primary spermatocytes. The PEBP4 was localized only in the elongated spermatid, whereas α-tubulin and TFPI2 proteins were localized in all cells of the seminiferous tubule including spermatocyte. In the buffalo spermatozoa, IGF-1Rβ, PEBP4, α-tubulin and TFPI2 were localized in the acrosome region, the post-acrosomal region till the tail end, post-acrosome to the entire tail region and the equatorial region, respectively. The study indicates that IGF-1R, α-tubulin and PEBP4 proteins regulate spermatogenesis, whereas TFPI2 may be involved during the zona binding process of the buffalo spermatozoa.
Collapse
Affiliation(s)
- Sunil Kumar Patil
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Department of Veterinary Anatomy and Histology, Veterinary College, KVAFSU, Bengaluru, India
| | - Lakshminarayana Somashekar
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Kolatalu V Jamuna
- Department of Veterinary Anatomy and Histology, Veterinary College, KVAFSU, Bengaluru, India
| | - Shivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - Janivara Parameshwaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| |
Collapse
|
79
|
Khasin LG, Della Rosa J, Petersen N, Moeller J, Kriegsfeld LJ, Lishko PV. The Impact of Di-2-Ethylhexyl Phthalate on Sperm Fertility. Front Cell Dev Biol 2020; 8:426. [PMID: 32695775 PMCID: PMC7338605 DOI: 10.3389/fcell.2020.00426] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/07/2020] [Indexed: 01/26/2023] Open
Abstract
A growing number of studies point to reduced fertility upon chronic exposure to endocrine-disrupting chemicals (EDCs) such as phthalates and plasticizers. These toxins are ubiquitous and are often found in food and beverage containers, medical devices, as well as in common household and personal care items. Animal studies with EDCs, such as phthalates and bisphenol A have shown a dose-dependent decrease in fertility and embryo toxicity upon chronic exposure. However, limited research has been conducted on the acute effects of these EDCs on male fertility. Here we used a murine model to test the acute effects of four ubiquitous environmental toxins: bisphenol A (BPA), di-2-ethylhexyl phthalate (DEHP), diethyl phthalate (DEP), and dimethyl phthalate (DMP) on sperm fertilizing ability and pre-implantation embryo development. The most potent of these toxins, di-2-ethylhexyl phthalate (DEHP), was further evaluated for its effect on sperm ion channel activity, capacitation status, acrosome reaction and generation of reactive oxygen species (ROS). DEHP demonstrated a profound hazardous effect on sperm fertility by producing an altered capacitation profile, impairing the acrosome reaction, and, interestingly, also increasing ROS production. These results indicate that in addition to its known chronic impact on reproductive potential, DEHP also imposes acute and profound damage to spermatozoa, and thus, represents a significant risk to male fertility.
Collapse
Affiliation(s)
- Liliya Gabelev Khasin
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - John Della Rosa
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Natalie Petersen
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jacob Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, Berkeley, CA, United States
| | - Lance J. Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Polina V. Lishko
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Graduate Group in Endocrinology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
80
|
Park YJ, Rahman MS, Pang WK, Ryu DY, Kim B, Pang MG. Bisphenol A affects the maturation and fertilization competence of spermatozoa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110512. [PMID: 32244115 DOI: 10.1016/j.ecoenv.2020.110512] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Although there are numerous studies on bisphenol A (BPA) on the testis and spermatozoa, the effect of BPA on the physiological link between the testis and maturation of spermatozoa has not been studied. To provide an optimal environment (acidic pH) for sperm maturation in the epididymis, clear cells secrete protons and principal cells reabsorb bicarbonate and the secreted proton. Because of its crucial role in sperm maturation and fertility, functional changes in the epididymis following BPA exposure must be considered to fully understand the mechanisms of BPA on male fertility. Here, we identified the adverse effects of BPA exposure during puberty in male mice. CD-1 male mice were gavaged daily with vehicle (corn oil) and 50 mg BPA/kg-BW for 6 weeks. We determined the changes in epididymis, functional sperm parameters including motility, capacitation status, tyrosine phosphorylation, and fertility-related protein expression and in vitro and in vivo fertility rate following BPA exposure. Expression of vacuolar-type H + -ATPase is necessary for the secretion of protons by clear cells of the caput epididymis and was directly down-regulated following BPA exposure, while there were no changes in the other epithelial cell types in the epididymis. Also, pERK 1/2 signaling pathway was increased significantly in the caput epididymis following BPA exposure. Consequently, the luminal pH slightly increased, resulting in premature capacitation of spermatozoa. Moreover, there was a significant loss of the acrosomal membrane following an increase of protein tyrosine phosphorylation, while PKA activity decreased during sperm capacitation. Fertility-related proteins also showed aberrant expression upon BPA exposure. These modifications resulted in decreased male fertility in vitro and in vivo.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chgroung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chgroung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chgroung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chgroung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Bongki Kim
- Department of Animal Resources Science, Kongju National University, Yesan, Chungnam-do, 32439, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chgroung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
81
|
Řimnáčová H, Štiavnická M, Moravec J, Chemek M, Kolinko Y, García-Álvarez O, Mouton PR, Trejo AMC, Fenclová T, Eretová N, Hošek P, Klein P, Králíčková M, Petr J, Nevoral J. Low doses of Bisphenol S affect post-translational modifications of sperm proteins in male mice. Reprod Biol Endocrinol 2020; 18:56. [PMID: 32466766 PMCID: PMC7254721 DOI: 10.1186/s12958-020-00596-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A in the manufacture of products containing polycarbonates and epoxy resins. However, further studies of BPS exposure are needed for the assessment of health risks to humans. In this study we assessed the potential harmfulness of low-dose BPS on reproduction in male mice. METHODS To simulate human exposure under experimental conditions, 8-week-old outbred ICR male mice received 8 weeks of drinking water containing a broad range of BPS doses [0.001, 1.0, or 100 μg/kg body weight (bw)/day, BPS1-3] or vehicle control. Mice were sacrificed and testicular tissue taken for histological analysis and protein identification by nano-liquid chromatography/mass spectrometry (MS) and sperm collected for immunodetection of acetylated lysine and phosphorylated tyrosine followed by protein characterisation using matrix-assisted laser desorption ionisation time-of-flight MS (MALDI-TOF MS). RESULTS The results indicate that compared to vehicle, 100 μg/kg/day exposure (BPS3) leads to 1) significant histopathology in testicular tissue; and, 2) higher levels of the histone protein γH2AX, a reliable marker of DNA damage. There were fewer mature spermatozoa in the germ layer in the experimental group treated with 1 μg/kg bw (BPS2). Finally, western blot and MALDI-TOF MS studies showed significant alterations in the sperm acetylome and phosphorylome in mice treated with the lowest exposure (0.001 μg/kg/day; BPS1), although the dose is several times lower than what has been published so far. CONCLUSIONS In summary, this range of qualitative and quantitative findings in young male mice raise the possibility that very low doses of BPS may impair mammalian reproduction through epigenetic modifications of sperm proteins.
Collapse
Affiliation(s)
- Hedvika Řimnáčová
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic.
| | - Miriam Štiavnická
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Jiří Moravec
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Marouane Chemek
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, 5000, Monastir, Tunisia
| | - Yaroslav Kolinko
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Olga García-Álvarez
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- SaBio IREC (CSIC-UCLM- JCCM), Albacete, Spain
| | - Peter R Mouton
- SRC Biosciences & University of South Florida, Tampa, FL, USA
| | - Azalia Mariel Carranza Trejo
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Tereza Fenclová
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Nikola Eretová
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Petr Hošek
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Pavel Klein
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Milena Králíčková
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Jan Nevoral
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
82
|
Sharma A, Thaventhiran T, Minhas S, Dhillo WS, Jayasena CN. Kisspeptin and Testicular Function-Is it Necessary? Int J Mol Sci 2020; 21:ijms21082958. [PMID: 32331420 PMCID: PMC7216047 DOI: 10.3390/ijms21082958] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023] Open
Abstract
The role of kisspeptin in stimulating hypothalamic GnRH is undisputed. However, the role of kisspeptin signaling in testicular function is less clear. The testes are essential for male reproduction through their functions of spermatogenesis and steroidogenesis. Our review focused on the current literature investigating the distribution, regulation and effects of kisspeptin and its receptor (KISS1/KISS1R) within the testes of species studied to date. There is substantial evidence of localised KISS1/KISS1R expression and peptide distribution in the testes. However, variability is observed in the testicular cell types expressing KISS1/KISS1R. Evidence is presented for modulation of steroidogenesis and sperm function by kisspeptin signaling. However, the physiological importance of such effects, and whether these are paracrine or endocrine manifestations, remain unclear.
Collapse
Affiliation(s)
- Aditi Sharma
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
| | - Thilipan Thaventhiran
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
| | - Suks Minhas
- Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, Hammersmith, London W6 8RF, UK;
| | - Waljit S. Dhillo
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
- Correspondence:
| |
Collapse
|
83
|
Cheng YM, Peng Z, Chen HY, Pan TT, Hu XN, Wang F, Luo T. Posttranslational lysine 2-hydroxyisobutyrylation of human sperm tail proteins affects motility. Hum Reprod 2020; 35:494-503. [PMID: 32142584 DOI: 10.1093/humrep/dez296] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Does lysine 2-hydroxyisobutyrylation, a newly identified protein posttranslational modification (PTM), occur in human sperm and affect human sperm function? SUMMARY ANSWER Lysine 2-hydroxyisobutyrylation mainly occurs in human sperm tail proteins, and excessive lysine 2-hydroxyisobutyrylation affects human sperm motility. WHAT IS KNOWN ALREADY PTM is regarded as an important pathway in regulating sperm function since mature sperm are almost transcriptionally silent. However, only phosphorylation was extensively studied in mature sperm to date. Lysine 2-hydroxyisobutyrylation, a newly characterised PTM, is broadly conserved in both eukaryotic and prokaryotic cells. Although histone lysine 2-hydroxyisobutyrylation has been shown to be associated with active gene expression in spermatogenic cells, the presence, regulatory elements and function of lysine 2-hydroxyisobutyrylation have not been characterised in mature sperm. STUDY DESIGN, SIZE, DURATION Sperm samples were obtained from normozoospermic men and asthenozoospermic men who visited the reproductive medical centre at Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China, between May 2017 and November 2018. In total, 58 normozoospermic men and 65 asthenozoospermic men were recruited to participate in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS Lysine 2-hydroxyisobutyrylation was examined using immunoblotting and immunofluorescence assays using a previously qualified pan anti-lysine 2-hydroxyisobutyrylation antibody. The immunofluorescence assay was imaged using super-resolution structured illumination microscopy. Sperm viability was examined by using the eosin staining method, and sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm penetration ability was determined by evaluating the ability of the sperm to penetrate a 1% (w/v) methylcellulose solution. The level of intracellular adenosine triphosphate (ATP) was detected using a rapid bioluminescent ATP assay kit. MAIN RESULTS AND THE ROLE OF CHANCE Lysine 2-hydroxyisobutyrylation was present in several proteins (20-100 kDa) mainly located in the tail of human sperm. Sperm lysine 2-hydroxyisobutyrylation was derived from 2-hydroxyisobutyrate (2-Hib) and was regulated by acyltransferase P300 and nicotinamide adenine dinucleotide-dependent lysine deacylase sirtuins. Elevation of sperm lysine 2-hydroxyisobutyrylation by 2-Hib decreased total motility, progressive motility, penetration ability and ATP level of human sperm. Interestingly, the level of sperm lysine 2-hydroxyisobutyrylation was higher in asthenozoospermic men than that in normozoospermic men and was negatively correlated with the progressive motility of human sperm. Furthermore, high levels of lysine 2-hydroxyisobutyrylation in asthenozoospermic men accompanied decreased ATP levels. LIMITATIONS, REASONS FOR CAUTION Although the present study indicated the involvement of sperm lysine 2-hydroxyisobutyrylation in regulating human sperm motility, the underlying mechanism needs to be further illustrated. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study provide insight into the novel role of lysine 2-hydroxyisobutyrylation in human sperm and suggest that abnormality of sperm lysine 2-hydroxyisobutyrylation may be one of the causes for asthenozoospermia. STUDY FUNDING/COMPETING INTEREST(S) National Natural Science Foundation of China (81771644 to T.L. and 81871207 to H.C.); Natural Science Foundation of Jiangxi province (20171ACB21006). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China.,Department of Pharmacy, the First People's Hospital of Yichun City in Jiangxi Province, Yichun 336000, China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, PR China
| | - Ting-Ting Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xiao-Nian Hu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
84
|
Wu H, Gao J, Wang X, Leung TY, Duan YG, Chiu PCN. Platelet-activating factor induces acrosome reaction via the activation of extracellular signal-regulated kinase in human spermatozoa. Andrologia 2020; 52:e13565. [PMID: 32187723 DOI: 10.1111/and.13565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 11/30/2022] Open
Abstract
Platelet-activating factor (PAF) affects capacitation, acrosome reaction and fertilisation potential of spermatozoa. This study investigated the underlying mechanism(s) through which PAF regulated sperm function. Our data demonstrated that PAF dose-dependently induced, whilst lyso-PAF (PAF precursor) showed no effect on acrosome reaction of capacitated human spermatozoa. Treatment with PAF for 90 min enhanced tyrosine phosphorylation and expression of extracellular signal-regulated protein kinases (ERK) 1 and 2 in human spermatozoa. Moreover, pre-treatment with the ERK inhibitor U0126 significantly and dose-dependently suppressed PAF-induced acrosome reaction. Therefore, PAF may be actively involved in the modulation of sperm acrosome reaction by interacting with ERK. The role of PAF in fertilisation warrants further investigation.
Collapse
Affiliation(s)
- Haitao Wu
- Clinic of Reproductive Medicine, Jiangmen Central Hospital, Jiangmen, China
| | - Jing Gao
- Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xia Wang
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tsz Ying Leung
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
85
|
Rossi M, Gonzalez-Castro R, Falomo ME. Effect of Caffeine and Pentoxifylline Added Before or After Cooling on Sperm Characteristics of Stallion Sperm. J Equine Vet Sci 2020; 87:102902. [PMID: 32172905 DOI: 10.1016/j.jevs.2019.102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022]
Abstract
Different additives have been tested in cooled stallion sperm, in order to maintain sperm quality and to ameliorate the decrease in sperm fertility potential. In several species, caffeine and pentoxifylline promote sperm motility by increasing energy production. We evaluate the effects of caffeine and pentoxifylline when added to stallion sperm before or after cooling. Three ejaculates from five stallions each were processed and resuspended in skim milk extender. Caffeine (5 mM), pentoxifylline (3.5 mM), or both additives combined were included to sperm before or after cooling (4°C for 24 hours). Cooled sperm were incubated at 37°C and evaluated at 0, 30, 60, and 120 minutes for motility, morphology, viability (flow cytometry), and membrane functionality (hypo-osmotic swelling test). Results were analyzed by two-factor mixed model for repeated measures and Tukey comparisons. As main effects, the caffeine and pentoxifylline affected significantly motility and kinematic parameters, without interaction between treatment and incubation after cooling. No differences were observed whether the additives were added prior or after cooling. Pentoxifylline added after cooling reduced significantly motility during incubation, but with higher values at 30 minutes. We detected a decrease in morphologically normal sperm (P < .0001), caused by an increase of tail defects (P < .003) in the presence of both additives. Viability and membrane functionality were also significantly impaired by additives. Pentoxifylline when added after cooling improved sperm motility and kinematic parameters for a short period of time. However, sperm characteristic related to fertility potential was compromised after a prolonged exposure to caffeine or pentoxifylline.
Collapse
Affiliation(s)
- Melissa Rossi
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Legnaro (PD), Italy.
| | - Raul Gonzalez-Castro
- Equine Reproduction Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Maria Elena Falomo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Legnaro (PD), Italy
| |
Collapse
|
86
|
Crapster JA, Rack PG, Hellmann ZJ, Le AD, Adams CM, Leib RD, Elias JE, Perrino J, Behr B, Li Y, Lin J, Zeng H, Chen JK. HIPK4 is essential for murine spermiogenesis. eLife 2020; 9:e50209. [PMID: 32163033 PMCID: PMC7067585 DOI: 10.7554/elife.50209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian spermiogenesis is a remarkable cellular transformation, during which round spermatids elongate into chromatin-condensed spermatozoa. The signaling pathways that coordinate this process are not well understood, and we demonstrate here that homeodomain-interacting protein kinase 4 (HIPK4) is essential for spermiogenesis and male fertility in mice. HIPK4 is predominantly expressed in round and early elongating spermatids, and Hipk4 knockout males are sterile, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Hipk4 mutant sperm have reduced oocyte binding and are incompetent for in vitro fertilization, but they can still produce viable offspring via intracytoplasmic sperm injection. Optical and electron microscopy of HIPK4-null male germ cells reveals defects in the filamentous actin (F-actin)-scaffolded acroplaxome during spermatid elongation and abnormal head morphologies in mature spermatozoa. We further observe that HIPK4 overexpression induces branched F-actin structures in cultured fibroblasts and that HIPK4 deficiency alters the subcellular distribution of an F-actin capping protein in the testis, supporting a role for this kinase in cytoskeleton remodeling. Our findings establish HIPK4 as an essential regulator of sperm head shaping and potential target for male contraception.
Collapse
Affiliation(s)
- J Aaron Crapster
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Paul G Rack
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Zane J Hellmann
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Austen D Le
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Joshua E Elias
- Chan Zuckerberg Biohub, Stanford UniversityStanfordUnited States
| | - John Perrino
- Cell Science Imaging Facility, Stanford University School of MedicineStanfordUnited States
| | - Barry Behr
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Stanford University School of MedicineStanfordUnited States
| | - Yanfeng Li
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Jennifer Lin
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Hong Zeng
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Chemistry, Stanford UniversityStanfordUnited States
| |
Collapse
|
87
|
Luo T, Wang F, Weng S, Chen H, Kang H, Wang J, Luo S. Anethole compromises human sperm function by affecting the sperm intracellular calcium concentration and tyrosine phosphorylation. Reprod Toxicol 2020; 93:99-105. [PMID: 32004625 DOI: 10.1016/j.reprotox.2020.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
Anethole is a natural anisole derivative that has been widely used in food and daily chemical industries, agricultural applications and the traditional medicine. It is closely related to aspects of daily life, and humans can easily be exposed to it. Although the reproductive toxicity of anethole was shown in the rat, its effect on human reproduction remains unknown. In this study, we examined the effect of anethole on human sperm in vitro. Different anethole doses (0.1, 1, 10, and 100 μM) were applied to ejaculated human sperm. Fertilization-essential functions, as well as the intracellular calcium concentration ([Ca2+]i) and tyrosine phosphorylation, two vital factors for regulating sperm function, were measured. The results indicated that 10 and 100 μM anethole significantly reduced the motility, hyperactivation, and penetration ability of human sperm (P < 0.05) and inhibited the increase in human sperm functions induced by progesterone, a hormone essential for sperm function activation. Additionally, 10 and 100 μM anethole decreased both basal and progesterone-increased tyrosine phosphorylation, [Ca2+]i, and the current of CATSPER, a cation channel of sperm predominant for Ca2+ influx. These results suggest that anethole inhibits human sperm functions by reducing sperm [Ca2+]i through CATSPER and suppressing tyrosine phosphorylation in vitro, raising the fact that the caution is needed when overtaking anethole.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Shiqi Weng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China
| | - Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jie Wang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Sha Luo
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
88
|
Kinetic Model of the Action of 17α-Ethynylestradiol on the Capacitation of Mouse Sperm, Monitored by HPLC-MS/MS. Catalysts 2020. [DOI: 10.3390/catal10010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
17α-Ethynylestradiol (EE2), a synthetic estrogen used in contraceptive pills, is resistant to hepatic degradation and is excreted in the urine. It is chemically stable and has a negative impact on the endocrine system. The aim of this work was to mathematically describe the possible interaction of EE2 (200, 20, and 2 μg/L) with sperm estrogen receptors during sperm maturation, which is called capacitation. The concentrations of the unbound EE2 remaining in capacitating medium during 180 min of sperm capacitation were determined at 30 min intervals by high performance liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS) and the data obtained (relative concentrations Bt) were subjected to kinetic analysis. The suggested kinetic schema was described by the system of differential equations with the optimization of rate constants used to calculate the theoretical Bt values. Optimal parameters (overall rate constants K1–K5 and molar ratio n) were determined by searching the minimum of absolute values of the difference between theoretical and experimental Bt values. These values were used for the design of the theoretical B(t) curves which fit to experimental points. The proposed kinetic model assumes the formation of an unstable adduct between EE2 and the receptor in cytoplasm, which acts as an autocatalytic agent and gradually decomposes.
Collapse
|
89
|
Rahman MS, Kang KH, Arifuzzaman S, Pang WK, Ryu DY, Song WH, Park YJ, Pang MG. Effect of antioxidants on BPA-induced stress on sperm function in a mouse model. Sci Rep 2019; 9:10584. [PMID: 31332285 PMCID: PMC6646364 DOI: 10.1038/s41598-019-47158-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
In the past few years, bisphenol A, (BPA) an endocrine-disrupting chemical, has received increasing attention because of its detrimental health effects. There is ample evidence to support that BPA interferes with the reproductive health of humans and animals. In spermatozoa, BPA-induced adverse effects are mostly caused by increased oxidative stress. Using an in vitro experimental model, we examined whether antioxidants (glutathione, vitamin C, and vitamin E) have defensive effects against BPA-induced stress in spermatozoa. The results showed that antioxidants inhibit the overproduction of reactive oxygen species (basically cellular peroxides) and increase intracellular ATP levels, thereby preventing motility loss and abnormal acrosome reaction in BPA-exposed spermatozoa. In particular, glutathione and vitamin E reduced the protein kinase A-dependent tyrosine phosphorylation in spermatozoa and, thus, prevented the precocious acrosome reaction from occurring. Furthermore, we found that the compromised fertilisation and early embryo development mediated by BPA-exposed spermatozoa can be improved following their supplementation with glutathione and vitamin E. Based on these findings, we suggest that antioxidants reduce oxidative stress in BPA-exposed spermatozoa, thus preventing detrimental effects on their function and fertility.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Kyu-Ho Kang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Sarder Arifuzzaman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Won-Hee Song
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 456-756, Republic of Korea.
| |
Collapse
|
90
|
Tongpan S, Sukhorum W, Arun S, Sawatphanich T, Iamsaard S. Valproic acid changes the expression of tyrosine‐phosphorylated proteins in rat seminal vesicle. Andrologia 2019; 51:e13303. [DOI: 10.1111/and.13303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Saranya Tongpan
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | | | - Supatcharee Arun
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | - Tarinee Sawatphanich
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
91
|
Urizar-Arenaza I, Osinalde N, Akimov V, Puglia M, Candenas L, Pinto FM, Muñoa-Hoyos I, Gianzo M, Matorras R, Irazusta J, Blagoev B, Subiran N, Kratchmarova I. Phosphoproteomic and Functional Analyses Reveal Sperm-specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol Cell Proteomics 2019; 18:S118-S131. [PMID: 30622161 PMCID: PMC6427232 DOI: 10.1074/mcp.ra118.001133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
G-protein coupled receptors (GPCRs) belong to the seven transmembrane receptor superfamily that transduce signals via G proteins in response to external stimuli to initiate different intracellular signaling pathways which culminate in specific cellular responses. The expression of diverse GPCRs at the plasma membrane of human spermatozoa suggests their involvement in the regulation of sperm fertility. However, the signaling events downstream of many GPCRs in spermatozoa remain uncharacterized. Here, we selected the kappa-opioid receptor (KOR) as a study model and applied phosphoproteomic approach based on TMT labeling and LC-MS/MS analyses. Quantitative coverage of more than 5000 proteins with over 3500 phosphorylation sites revealed changes in the phosphorylation levels of sperm-specific proteins involved in the regulation of the sperm fertility in response to a specific agonist of KOR, U50488H. Further functional studies indicate that KOR could be involved in the regulation of sperm fertile capacity by modulation of calcium channels. Our findings suggest that human spermatozoa possess unique features in the molecular mechanisms downstream of GPCRs which could be key regulators of sperm fertility and improved knowledge of these specific processes may contribute to the development of useful biochemical tools for diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Itziar Urizar-Arenaza
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba, Spain, 01006
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Sevilla, Spain, 41092
| | | | - Iraia Muñoa-Hoyos
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Marta Gianzo
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Roberto Matorras
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Jon Irazusta
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Nerea Subiran
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903;.
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320;.
| |
Collapse
|
92
|
Katte TV, Rajyalakshmi M, Aladakatti RH. Assessment of azadirachtin-A, a neem tetranortritarpinoid, on rat spermatozoa during in vitro capacitation. J Basic Clin Physiol Pharmacol 2019; 29:679-687. [PMID: 29729147 DOI: 10.1515/jbcpp-2017-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/27/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND The exploration of the biological assessment of technical azadirachtin, a tetranortritarpinoid from the neem seed kernel, was reviewed. The present study was, therefore, designed to evaluate the dose-dependent in vitro effects of azadirachtin-A, particularly on the functional studies and determination of molecular events, which are critical in the process of sperm capacitation. METHODS To assess the effects of the azadirachtin-A on the functional studies, sperm capacitation, the total sperm adenosine triphosphate levels, acrosome reaction (AR), the sperm-egg interaction and the determination of molecular events like cyclic adenosine-3',5'-monophosphate and calcium levels, the appropriate volumes of the sperm suspension were added to the medium to a final concentration of 1×106 sperm/mL and incubated in a humidified atmosphere of 5% CO2 in air at 37°C. The increasing quantities 0.5-2.0 mM/mL and the equivalent volumes of 50% dimethyl sulfoxide were added to the control dishes prior to the addition of spermatozoa and then observed at various time-points for motility and other analyses. RESULTS Results revealed the dose- and time-dependent decrease in the functional consequence of capacitation, i.e. the percentage of motile spermatozoa, motility score and sperm motility index, levels of molecular events in spermatozoa, followed by declined spontaneous AR leading to lesser binding of the cauda epididymal sperm to the Zona pellucida. CONCLUSIONS The findings confirm the inhibition of rat sperm motility by blocking some biochemical pathways like energy utilization. They also demonstrate that sperm capacitation is associated with the decrease in AR and that the levels of molecular events in spermatozoa can guide us towards the development of a new male contraceptive constituent.
Collapse
Affiliation(s)
- Teesta V Katte
- Department of Biotechnology, BMS College of Engineering, Bengaluru 560004, Karnataka, India, Phone: +91-080-26622130
| | | | | |
Collapse
|
93
|
Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, Khorram Khorshid HR, Esteves S, Gilany K, Hedayati M, Nobakht F, Akhondi MM, Lakpour N, Sadeghi MR. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet 2019; 36:241-253. [PMID: 30382470 PMCID: PMC6420547 DOI: 10.1007/s10815-018-1350-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction. METHODS Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS < 20), group 2 (n = 38): mild (20 ≤ ROS < 40), group 3 (n = 31): moderate (40 ≤ ROS < 60), and group 4 (n = 43): high (ROS ≥ 60). A comprehensive analysis of SP and semen parameters, including conventional semen characteristics, measurement of total antioxidant capacity (TAC), sperm DNA fragmentation index (DFI), chromatin maturation index (CMI), H19-Igf2 methylation status, and untargeted seminal metabolic profiling using nuclear magnetic resonance spectroscopy (1H-NMR), was carried out. RESULT(S) The methylation status of H19 and Igf2 was significantly different in specimens with high ROS (P < 0.005). Metabolic fingerprinting of these SP samples showed upregulation of trimethylamine N-oxide (P < 0.001) and downregulations of tryptophan (P < 0.05) and tyrosine/tyrosol (P < 0.01). High ROS significantly reduced total sperm motility (P < 0.05), sperm concentration (P < 0.001), and seminal TAC (P < 0.001) but increased CMI and DFI (P < 0.005). ROS levels have a positive correlation with Igf2 methylation (r = 0.19, P < 0.05), DFI (r = 0.40, P < 0.001), CMI (r = 0.39, P < 0.001), and trimethylamine N-oxide (r = 0.45, P < 0.05) and a negative correlation with H19 methylation (r = - 0.20, P < 0.05), tryptophan (r = - 0.45, P < 0.05), sperm motility (r = - 0.20, P < 0.05), sperm viability (r = - 0.23, P < 0.01), and sperm concentration (r = - 0.30, P < 0.001). CONCLUSION(S) Results showed significant correlation between ROS levels and H19-Igf2 gene methylation as well as semen parameters. These findings are critical to identify idiopathic male infertility and its management through assisted reproduction technology (ART).
Collapse
Affiliation(s)
- Mahsa Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Sara Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sulagna Dutta
- Faculty of Dentistry, MAHSA University, 42610, Selangor, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, 42610, Selangor, Malaysia
| | - Hamid Reza Khorram Khorshid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 1985713834, Iran
| | - Sandro Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, 13075-460, Brazil
| | - Kambiz Gilany
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mehdi Hedayati
- Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University for Medical Sciences, Tehran, 1985717413, Iran
| | - Fatemeh Nobakht
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Nishabur, 9314634814, Iran
| | - Mohammad Mehdi Akhondi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran
| | - Niknam Lakpour
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran.
| |
Collapse
|
94
|
Nayak J, Jena SR, Samanta L. Oxidative Stress and Sperm Dysfunction. OXIDANTS, ANTIOXIDANTS AND IMPACT OF THE OXIDATIVE STATUS IN MALE REPRODUCTION 2019:261-275. [DOI: 10.1016/b978-0-12-812501-4.00024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
95
|
Bosakova T, Tockstein A, Sebkova N, Simonik O, Adamusova H, Albrechtova J, Albrecht T, Bosakova Z, Dvorakova-Hortova K. New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling. Int J Mol Sci 2018; 19:ijms19124011. [PMID: 30545117 PMCID: PMC6321110 DOI: 10.3390/ijms19124011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/20/2022] Open
Abstract
17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation—called capacitation—and sperm–egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis. Estradiol increased protein tyrosine phosphorylation, elevated rate of spontaneous acrosome reaction, and altered motility parameters measured Hamilton-Thorne Computer Assisted Semen Analyzer (CASA) in capacitating sperm. To monitor time and concentration dependent binding dynamics of extracellular estradiol, high-performance liquid chromatography with tandem mass spectrometry was used to measure sperm response and data was subjected to kinetic analysis. The kinetic model of estradiol action during sperm maturation shows that estradiol adsorption onto a plasma membrane surface is controlled by Langmuir isotherm. After, when estradiol passes into the cytoplasm, it forms an unstable adduct with cytoplasmic receptors, which display a signalling autocatalytic pattern. This autocatalytic reaction suggests crosstalk between receptor and non-receptor pathways utilized by sperm prior to fertilization.
Collapse
Affiliation(s)
- Tereza Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Antonin Tockstein
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Natasa Sebkova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic.
| | - Hana Adamusova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Jana Albrechtova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Tomas Albrecht
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
| |
Collapse
|
96
|
Arroyo-Salvo C, Sanhueza F, Fuentes F, Treulén F, Arias ME, Cabrera P, Silva M, Felmer R. Effect of human tubal fluid medium and hyperactivation inducers on stallion sperm capacitation and hyperactivation. Reprod Domest Anim 2018; 54:184-194. [DOI: 10.1111/rda.13328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Camila Arroyo-Salvo
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - Francisco Sanhueza
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - Favián Treulén
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
- School of Medical Technology, Faculty of Sciences; Universidad Mayor; Temuco Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
- Department of Animal Production, Faculty of Agriculture and Forestry Sciences; Universidad de La Frontera; Temuco Chile
| | - Paulina Cabrera
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - Mauricio Silva
- Department of Veterinary Sciences and Public Health; Universidad Católica de Temuco; Temuco Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences; Universidad de La Frontera; Temuco Chile
| |
Collapse
|
97
|
Effect of endocrine disruptors on the ratio of X and Y chromosome-bearing live spermatozoa. Reprod Toxicol 2018; 82:10-17. [PMID: 30219569 DOI: 10.1016/j.reprotox.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/07/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Although equal numbers of X and Y spermatozoa are produced during spermatogenesis, the sex chromosome ratio in ejaculated spermatozoa can be altered by exposure to endocrine-disrupting chemicals (EDCs), which can be reflected by altered sex ratios at birth. Here, we hypothesized EDCs affect sperm functions and viability of X and Y chromosome-bearing human spermatozoa. After exposure to genistein (Gen), bisphenol A (BPA), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dibromochloropropane (DBCP), and diazinon (Diaz), we evaluated motility, viability, capacitation, and differential viability of X and Y spermatozoa. All EDCs tested altered sperm viability, motility, and capacitation. Interestingly, the Y/X ratio of live spermatozoa was significantly lower in sperm treated with TCDD, DBCP, and Diaz than control spermatozoa. Our results suggest that some of EDCs have larger effects on the viability of Y spermatozoa than X spermatozoa, implicating that a reduction in Y sperm viability may result in a female-biased sex ratio of offspring at birth.
Collapse
|
98
|
Kumaresan A, Johannisson A, Bergqvist AS. Sperm function during incubation with oestrus oviductal fluid differs in bulls with different fertility. Reprod Fertil Dev 2018; 29:1096-1106. [PMID: 27112984 DOI: 10.1071/rd15474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
Spermatozoa undergo several modifications in the oviduct before acquiring fertilising capacity. Although spermatozoa are exposed to similar conditions in the oviduct, the speed of the response varies with the male and the state of the spermatozoa. We hypothesised that spermatozoa from bulls with different fertility may differ in their ability to respond to oviductal fluid (ODF). Frozen-thawed spermatozoa from four bulls were incubated with oestrus oviductal fluid (OODF) for 6h. Sperm kinematics, tyrosine phosphorylation, phosphorylation patterns, capacitation and acrosome reaction were analysed at hourly intervals. The amplitude of lateral head displacement (ALH) and straightness coefficient (STR) were higher (P<0.05) in bulls with higher fertility compared with those with lower fertility, at 1-4h of incubation. At 4h of incubation and onwards, spermatozoa from bulls with higher fertility showed a lower degree (P<0.05) of tyrosine phosphorylation and higher degree of capacitation and acrosome reaction. At least five tyrosine-phosphorylated sperm proteins were detected in all bulls. However, the expression of two phosphorylated sperm proteins (183 and 109 kDa) was upregulated in bulls with lower fertility. It may be concluded that cryopreserved spermatozoa from high- and low- fertile bulls differ in their ability to respond to OODF. This may help in developing tools for assessing fertility of bulls, once validated in more animals.
Collapse
Affiliation(s)
- A Kumaresan
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| | - A Johannisson
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| | - A-S Bergqvist
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| |
Collapse
|
99
|
Elfassy Y, Bastard JP, McAvoy C, Fellahi S, Dupont J, Levy R. Adipokines in Semen: Physiopathology and Effects on Spermatozoas. Int J Endocrinol 2018; 2018:3906490. [PMID: 29971101 PMCID: PMC6008818 DOI: 10.1155/2018/3906490] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Adipokines are secreted by adipose tissue and could be the link between obesity and infertility. Different studies investigated the involvement of adipokines in reproductive functions but only a few have looked into the male part. This review assesses adipokine functions on male reproductive parameters. Adiponectin seems to have a positive effect on sperm parameters, whereas other adipokines such as resistin or chemerin would have a rather deleterious effect on spermatogenesis. Semen parameters seem to be impacted when resistin and chemerin are increased: indeed, there is a decrease of sperm motility. Sperm morphology is improved when adiponectin is increased. The most studied adipokine, leptin, has a dual effect with a positive effect on sperm at physiological levels and a negative one for high seminal concentrations. Many semen parameters and fertility itself are disturbed according to semen adipokine levels, even if it is not the only interfering element. Taken together, adipokines are found in human and animal semen and most of them or their receptors are expressed in male genital tract. Although the pathophysiological role of adipokines in semen is not clearly elucidated, the adipokines could influence sperm functionality and could be potential biomarkers of male fertility.
Collapse
Affiliation(s)
- Yaelle Elfassy
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Biologie de la Reproduction, Université Pierre et Marie Curie Paris 6, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS_938, Centre de Recherche Saint-Antoine, IHU ICAN, Paris, France
| | - Jean-Philippe Bastard
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS_938, Centre de Recherche Saint-Antoine, IHU ICAN, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, UF Biomarqueurs Inflammatoires et Métaboliques, Service de Biochimie et Hormonologie, Paris, France
| | - Chloe McAvoy
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS_938, Centre de Recherche Saint-Antoine, IHU ICAN, Paris, France
| | - Soraya Fellahi
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS_938, Centre de Recherche Saint-Antoine, IHU ICAN, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, UF Biomarqueurs Inflammatoires et Métaboliques, Service de Biochimie et Hormonologie, Paris, France
| | - Joëlle Dupont
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Rachel Levy
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Biologie de la Reproduction, Université Pierre et Marie Curie Paris 6, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS_938, Centre de Recherche Saint-Antoine, IHU ICAN, Paris, France
| |
Collapse
|
100
|
Skibinski DOF, Ghiselli F, Diz AP, Milani L, Mullins JGL. Structure-Related Differences between Cytochrome Oxidase I Proteins in a Stable Heteroplasmic Mitochondrial System. Genome Biol Evol 2018; 9:3265-3281. [PMID: 29149282 PMCID: PMC5726481 DOI: 10.1093/gbe/evx235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
Many bivalve species have two types of mitochondrial DNA passed independently through the female line (F genome) and male line (M genome). Here we study the cytochrome oxidase I protein in such bivalve species and provide evidence for differences between the F and M proteins in amino acid property values, particularly relating to hydrophobicity and helicity. The magnitude of these differences varies between different regions of the protein and the change from the ancestor is most marked in the M protein. The observed changes occur in parallel and in the same direction in the different species studied. Two possible causes are considered, first relaxation of purifying selection with drift and second positive selection. These may operate in different ways in different regions of the protein. Many different amino acid substitutions contribute in a small way to the observed variation, but substitutions involving alanine and serine have a quantitatively large effect. Some of these substitutions are potential targets for phosphorylation and some are close to residues of functional importance in the catalytic mechanism. We propose that the observed changes in the F and M proteins might contribute to functional differences between them relating to ATP production and mitochondrial membrane potential with implications for sperm function.
Collapse
Affiliation(s)
- David O F Skibinski
- Institute of Life Science, Swansea University Medical School, United Kingdom
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Spain
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | | |
Collapse
|