51
|
Liu M, Zhou K, Li H, Dong X, Tan G, Chai Y, Wang W, Bi X. Potential of serum metabolites for diagnosing post-stroke cognitive impairment. MOLECULAR BIOSYSTEMS 2015; 11:3287-96. [PMID: 26490688 DOI: 10.1039/c5mb00470e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A panel of serum metabolite markers (glutamine, kynurenine, and LysoPC(18:2)) was identified as candidate diagnostic biomarkers for post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Min Liu
- Departments of Physiology
- College of Basic Medicine
- Second Military Medical University
- Shanghai 200433
- China
| | - Kaige Zhou
- Department of Neurology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Hailong Li
- Department of Neurology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Xin Dong
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Guangguo Tan
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Fourth Military Medical University
- Xi'an 710032
- China
| | - Yifeng Chai
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Weizhong Wang
- Departments of Physiology
- College of Basic Medicine
- Second Military Medical University
- Shanghai 200433
- China
| | - Xiaoying Bi
- Department of Neurology
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|
52
|
Brainin M, Tuomilehto J, Heiss WD, Bornstein NM, Bath PMW, Teuschl Y, Richard E, Guekht A, Quinn T. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol 2014; 22:229-38, e13-6. [PMID: 25492161 DOI: 10.1111/ene.12626] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/12/2023]
Abstract
The close relationship between stroke and dementia is an important health issue. Ischaemic stroke can facilitate the onset of vascular dementia as well as aggravate pre-existing cognitive decline. The onset of cognitive decline may become manifest immediately following the onset of ischaemic stroke, but often there is a delay in the development of cognitive decline after a stroke. This delay can be seen as a therapeutic time window allowing interventions to be applied to preserve cognition following stroke. Both neurodegenerative and vascular mechanisms are activated and probably result in overlapping processes within the neurovascular unit. This review focuses on the incidence and prevalence of cognitive decline following stroke, predisposing stroke aetiologies, pre-stroke decline, imaging factors and biomarkers. Outcomes are discussed in relation to timing of assessment and neuropsychological tests used for evaluation of cognitive decline in ischaemic stroke patients. Including such tests in routine evaluations of stroke patients after some weeks or months is recommended. Finally, an outlook on ongoing and planned intervention trials is added and some recommendations for future research are proposed.
Collapse
Affiliation(s)
- M Brainin
- Department for Clinical Neurosciences and Preventive Medicine, Danube University Krems, Krems, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Neuroprotective role of liver growth factor "LGF" in an experimental model of cerebellar ataxia. Int J Mol Sci 2014; 15:19056-73. [PMID: 25338046 PMCID: PMC4227260 DOI: 10.3390/ijms151019056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the survival and differentiation of selected types of neurons. Liver growth factor (LGF) is a hepatic mitogen that shows biological activity in neuroregenerative therapies. We investigate the potential therapeutic activity of LGF in the 3-acetylpiridine (3-AP) rat model of CA. This model of CA consists in the lesion of the inferior olive-induced by 3-AP (40 mg/kg). Ataxic rats were treated with 5 µg/rat LGF or vehicle during 3 weeks, analyzing: (a) motor coordination by using the rota-rod test; and (b) the immunohistochemical and biochemical evolution of several parameters related with the olivo-cerebellar function. Motor coordination improved in 3-AP-lesioned rats that received LGF treatment. LGF up-regulated NeuN and Bcl-2 protein levels in the brainstem, and increased calbindin expression and the number of neurons receiving calbindin-positive projections in the cerebellum. LGF also reduced extracellular glutamate and GABA concentrations and microglia activation in the cerebellum. In view of these results, we propose LGF as a potential therapeutic agent in cerebellar ataxias.
Collapse
|
54
|
André C, Dinel AL, Ferreira G, Layé S, Castanon N. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation. Brain Behav Immun 2014; 41:10-21. [PMID: 24681251 DOI: 10.1016/j.bbi.2014.03.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated conditions and enhances activation of neurobiological mechanisms underlying depression after immune stimulation. They suggest therefore that obesity, and possibly obesity-associated inflammatory priming, may represent a vulnerability state to immune-mediated depressive symptoms.
Collapse
Affiliation(s)
- Caroline André
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Anne-Laure Dinel
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Nathalie Castanon
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France; Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
55
|
Stone TW, Darlington LG. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 2014; 169:1211-27. [PMID: 23647169 DOI: 10.1111/bph.12230] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 02/06/2023] Open
Abstract
Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognized in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition - glutamate and acetylcholine. Since this pathway - the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress, it also stands in a unique position to mediate the effects of environmental factors on cognition and behaviour. Targeting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
56
|
Ihara M, Kalaria RN. Understanding and preventing the development of post-stroke dementia. Expert Rev Neurother 2014; 14:1067-77. [PMID: 25105544 DOI: 10.1586/14737175.2014.947276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Post-stroke dementia (PSD) is a clinical entity but it now appears that most of PSD may be categorized as vascular dementia. The well-established relationship between vascular factors and dementia provides a rationale for the implementation of intervention and prevention efforts. Larger primary prevention trials related to lifestyle factors are warranted in association with dementia. Published clinical trials have not been promising and there is meager information on whether PSD can be prevented through the use of pharmacological agents. Control of vascular disease risk and prevention of recurrent strokes are obviously key to reducing the burden of cognitive decline and dementia after stroke. However, modern imaging and analysis techniques will help to elucidate the mechanism of PSD and establish better treatment.
Collapse
Affiliation(s)
- Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | |
Collapse
|
57
|
Poststroke neuropsychiatric symptoms: relationships with IL-17 and oxidative stress. BIOMED RESEARCH INTERNATIONAL 2014; 2014:245210. [PMID: 25054133 PMCID: PMC4087285 DOI: 10.1155/2014/245210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 11/18/2022]
Abstract
Stroke variably activates interleukin- (IL-) 17 expression, reduces regulatory T cells, and induces oxidative stress, which may support neurodegeneration. Ischemic stroke patients were screened for depressive symptoms (Center for Epidemiological Studies Depression (CES-D)) and cognitive status (Mini Mental State Examination). Proinflammatory cytokines (IL-17, IL-23, and interferon- [IFN-] γ), anti-inflammatory cytokine IL-10, and lipid hydroperoxide (LPH), a measure of oxidative stress, were assayed from fasting serum. Of 47 subjects (age 71.8 ± 14.4 years, 36% female), 19 had depressive symptoms (CES-D ≥ 16), which was associated with poorer cognitive status (F1,46 = 8.44, P = 0.006). IL-17 concentrations did not differ between subjects with and without depressive symptoms (F1,46 = 8.44, P = 0.572); however, IL-17 was associated with poorer cognitive status in subjects with depressive symptoms (F1,46 = 9.29, P = 0.004). In those subjects with depressive symptoms, IL-17 was associated with higher LPH (ρ = 0.518, P = 0.023) and lower IL-10 (ρ = −0.484, P = 0.036), but not in those without. In conclusion, poststroke depressive symptoms may be associated with cognitive vulnerability to IL-17 related pathways, involving an imbalance between proinflammatory and anti-inflammatory activity and increased oxidative stress.
Collapse
|
58
|
Reininghaus EZ, McIntyre RS, Reininghaus B, Geisler S, Bengesser SA, Lackner N, Hecht K, Birner A, Kattnig F, Unterweger R, Kapfhammer HP, Zelzer S, Fuchs D, Mangge H. Tryptophan breakdown is increased in euthymic overweight individuals with bipolar disorder: a preliminary report. Bipolar Disord 2014; 16:432-40. [PMID: 24330408 DOI: 10.1111/bdi.12166] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/27/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Individuals with bipolar disorder (BD) are disproportionately affected by symptoms of being overweight and metabolic syndrome when compared to the general population. The pertinence of this observation is underscored by observations that excess weight is associated with a more complex illness presentation, course, and outcome in BD. We present the first preliminary report of our BIPFAT study, which explored shared hypothesized pathophysiological pathways between being overweight and having BD. METHODS We investigated the tryptophan-kynurenine metabolism pathway as a proxy of dysregulated inflammatory homeostasis in euthymic, overweight individuals with BD (n = 78) compared to healthy controls (n = 156). RESULTS Both blood kynurenine concentrations and the kynurenine to tryptophan ratio [(Kyn:Trp); an estimate of tryptophan breakdown] were significantly higher in the total sample of euthymic patients with BD, with greater increases noted in both parameters in the subsample of overweight patients with BD. When compared to controls, peripheral neopterin concentrations were significantly lower. Within the BD group, there were also significant between-group differences in neopterin concentrations, with higher levels in those who were overweight and in subjects with BD in the later stages of illness compared to earlier stages. CONCLUSIONS Increased tryptophan breakdown, as well as neopterin levels in BD, may be an indirect mediator of immune-mediated inflammation. In BD, this may account for the high prevalence of medical comorbidities and increased mortality. The observation of increased kynurenine levels and Kyn:Trp, and altered circulating neopterin levels provides indirect evidence of increased activity of tryptophan-degrading indoleamine 2,3-dioxygenase in euthymic individuals with BD, underscoring the role of inflammatory mediators as a causative and/or consequent factor. More robust abnormalities in the overweight subsample underscore the additional inflammatory burden of medical comorbidity and suggest a shared pathophysiology as well as a mechanism mediating BD and cardiovascular disease.
Collapse
|
59
|
Activation of the Kynurenine Pathway in the Acute Phase of Stroke and its Role in Fatigue and Depression Following Stroke. J Mol Neurosci 2014; 54:181-7. [DOI: 10.1007/s12031-014-0272-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/24/2014] [Indexed: 12/21/2022]
|
60
|
Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression? J Neural Transm (Vienna) 2014; 121:925-32. [PMID: 24633997 DOI: 10.1007/s00702-014-1187-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammation in physically ill patients is often associated with the development of symptoms of depression. The mechanisms that are responsible for inflammation-associated depression have been elucidated over the last few years. Kynurenine produced from tryptophan in a reaction catabolized by indoleamine 2,3 dioxygenase is transported into the brain where it is metabolized by microglial enzymes into a number of neurotropic compounds including quinolinic acid, an agonist of N-methyl-D-aspartate receptors. Quinolinic acid can synergize with glutamate released by activated microglia. This chain of events opens the possibility to treat inflammation-induced depression using therapies that target the transport of kynurenine through the blood-brain barrier, the production of quinolinic acid and glutamate by activated microglia, or the efflux of glutamate from the brain to the blood.
Collapse
|
61
|
Byakwaga H, Boum Y, Huang Y, Muzoora C, Kembabazi A, Weiser SD, Bennett J, Cao H, Haberer JE, Deeks SG, Bangsberg DR, McCune JM, Martin JN, Hunt PW. The kynurenine pathway of tryptophan catabolism, CD4+ T-cell recovery, and mortality among HIV-infected Ugandans initiating antiretroviral therapy. J Infect Dis 2014; 210:383-91. [PMID: 24585899 DOI: 10.1093/infdis/jiu115] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection-induced indoleamine 2,3-dioxygenase-1 (IDO) expression in activated monocytes and dendritic cells catabolizes tryptophan to kynurenine and other downstream catabolites that inhibit T-cell proliferation and interleukin 17 (IL-17) production. The prognostic significance of this pathway in treated HIV disease is unknown. METHODS We measured systemic IDO activity (calculated as the ratio of plasma levels of kynurenine to tryptophan; hereafter, the "KT ratio") in HIV-infected Ugandans before and during antiretroviral therapy (ART)-mediated viral suppression and its association with the rate of subsequent CD4(+) T-cell count recovery and mortality. RESULTS Among 435 participants, a higher pre-ART KT ratio was associated with a higher plasma virus load (P < .001) and lipopolysaccharide level (P = .018), a lower CD4(+) T-cell count (P < .001), and female sex (P = .047). Through month 12 of ART-mediated viral suppression, the plasma KT ratio decreased by approximately 50% (P < .001). After adjustment for pre-ART CD4(+) T-cell count, virus load, age, and sex, a higher month 12 KT ratio predicted a slower rate of subsequent CD4(+) T-cell count recovery (P = .001). Thirty-nine participants died. After adjustment for pre-ART CD4(+) T-cell count, virus load, body mass index, sex, and age, a higher pre-ART and month 6 KT ratio predicted increased mortality (P ≤ .016). CONCLUSIONS The kynurenine pathway of tryptophan catabolism independently predicts poor CD4(+) T-cell count recovery and increased mortality among HIV-infected Ugandans initiating ART and may be an important target for interventions.
Collapse
Affiliation(s)
- Helen Byakwaga
- Department of Epidemiology and Biostatistics, University of California, San Francisco Faculty of Medicine, Mbarara University of Science and Technology
| | - Yap Boum
- Faculty of Medicine, Mbarara University of Science and Technology Epicentre Mbarara research Base, Uganda
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences
| | - Conrad Muzoora
- Faculty of Medicine, Mbarara University of Science and Technology
| | - Annet Kembabazi
- Faculty of Medicine, Mbarara University of Science and Technology
| | - Sheri D Weiser
- Department of Medicine, University of California, San Francisco
| | - John Bennett
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Huyen Cao
- California Department of Public Health, Richmond, CA
| | - Jessica E Haberer
- Department of Medicine, Harvard Medical School Center for Global Health, Massachusetts General Hospital, Boston, MA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco
| | - David R Bangsberg
- Center for Global Health, Massachusetts General Hospital, Boston, MA Department of Global Health and Populations, Harvard School of Public Health Ragon Institute of MGH, MIT and Harvard
| | - Joseph M McCune
- Department of Medicine, University of California, San Francisco
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Peter W Hunt
- Department of Medicine, University of California, San Francisco
| |
Collapse
|
62
|
Bensimon K, Herrmann N, Swardfager W, Yi H, Black SE, Gao FQ, Snaiderman A, Lanctôt KL. Kynurenine and depressive symptoms in a poststroke population. Neuropsychiatr Dis Treat 2014; 10:1827-35. [PMID: 25285006 PMCID: PMC4181733 DOI: 10.2147/ndt.s65740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Depression is a commonly occurring and persistent sequel of stroke affecting approximately 29% of patients. An immunological hypothesis has been put forward, and synthesis of kynurenine from tryptophan has been proposed to link inflammatory activity with neurotoxicity and neurotransmitter dysfunction. This study assessed the relationship between peripheral blood kynurenine and poststroke depressive symptoms. PATIENTS AND METHODS This was a multisite cross-sectional observational cohort study of patients with ischemic stroke. Depressive symptoms were assessed using the Center for Epidemiological Studies Depression (CES-D) scale and divided into high, medium, and low depressive symptom tertiles. Concentrations of kynurenine and tryptophan were assayed from fasting serum samples, and the kynurenine/tryptophan ratio was compared between tertiles. Serum cytokine concentrations were assayed in a subgroup of patients, and the ratio of proinflammatory (IL-6, IL-18, IFNγ, TNF, IL-1β) to anti-inflammatory (IL-10) cytokines compared. NLM IDENTIFIER NCT00254020. RESULTS In these patients (n=86, 52.3% male, mean age 71.7±14.2 years), there were no differences in kynurenine/tryptophan ratios between CES-D scale tertiles (F 2,76=0.04, P=0.96) controlling for relevant covariates. For cytokines (n=53), serum IL-1β concentrations (F 2,52=3.55, P=0.037) and serum ratios of IL-18/IL-10 (F 2,52=3.30, P=0.046), IFNγ/IL-10 (F 2,52=4.02, P=0.025), and IL-1β/IL-10 (F 2,52=4.34, P=0.019) were elevated in the middle CES-D tertile. Post hoc analyses suggested that serum ratios of IL-18/IL-10 (ρ=0.28, P=0.04), and IL-1β/IL-10 (ρ=0.43, P=0.001), as well as IL-1β (ρ=0.29, P=0.04), were significantly associated with fatigue. CONCLUSION Peripheral kynurenine/tryptophan ratios were not associated with depressive symptoms in a poststroke population. However, in exploratory analyses a proinflammatory bias was identified specifically in patients with mild depressive symptoms and associated with poststroke fatigue, suggesting an avenue for future research.
Collapse
Affiliation(s)
- Kira Bensimon
- Sunnybrook Research Institute, Toronto, ON, Canada ; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Sunnybrook Research Institute, Toronto, ON, Canada ; Faculty of Medicine, University of Toronto, Toronto, ON, Canada ; Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Ottawa, ON, Canada
| | - Walter Swardfager
- Sunnybrook Research Institute, Toronto, ON, Canada ; Faculty of Medicine, University of Toronto, Toronto, ON, Canada ; Toronto Rehabilitations Institute,Toronto, ON, Canada ; Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Ottawa, ON, Canada
| | - Hao Yi
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, Toronto, ON, Canada ; Faculty of Medicine, University of Toronto, Toronto, ON, Canada ; Toronto Rehabilitations Institute,Toronto, ON, Canada ; Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Ottawa, ON, Canada
| | - Fu-Qiang Gao
- Sunnybrook Research Institute, Toronto, ON, Canada ; Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Ottawa, ON, Canada
| | - Abraham Snaiderman
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada ; Toronto Rehabilitations Institute,Toronto, ON, Canada
| | - Krista L Lanctôt
- Sunnybrook Research Institute, Toronto, ON, Canada ; Faculty of Medicine, University of Toronto, Toronto, ON, Canada ; Toronto Rehabilitations Institute,Toronto, ON, Canada ; Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Ottawa, ON, Canada
| |
Collapse
|
63
|
Majláth Z, Toldi J, Vécsei L. The potential role of kynurenines in Alzheimer's disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors. J Neural Transm (Vienna) 2013; 121:881-9. [PMID: 24346138 DOI: 10.1007/s00702-013-1135-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Abstract
The pathomechanism of neurodegenerative disorders still poses a challenge to neuroscientists, and continuous research is under way with the aim of attaining an understanding of the exact background of these devastating diseases. The pathomechanism of Alzheimer's disease (AD) is associated with characteristic neuropathological features such as extracellular amyloid-β and intracellular tau deposition. Glutamate excitotoxicity and neuroinflammation are also factors that are known to contribute to the neurodegenerative process, but a cerebrovascular dysfunction has recently also been implicated in AD. Current therapeutic tools offer moderate symptomatic treatment, but fail to reduce disease progression. The kynurenine pathway (KP) has been implicated in the development of neurodegenerative processes, and alterations in the KP have been demonstrated in both acute and chronic neurological disorders. Kynurenines have been suggested to be involved in the regulation of neurotransmission and in immunological processes. Targeting the KP, therefore, offers a valuable strategic option for the attenuation of glutamatergic excitotoxicity, and for neuroprotection.
Collapse
Affiliation(s)
- Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | |
Collapse
|
64
|
Majláth Z, Tajti J, Vécsei L. Kynurenines and other novel therapeutic strategies in the treatment of dementia. Ther Adv Neurol Disord 2013; 6:386-97. [PMID: 24228074 DOI: 10.1177/1756285613494989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dementia is a common neuropsychological disorder with an increasing incidence. The most prevalent type of dementia is Alzheimer's disease. The underlying pathophysiological features of the cognitive decline are neurodegenerative processes, a cerebrovascular dysfunction and immunological alterations. The therapeutic approaches are still limited, although intensive research is being conducted with the aim of finding neuroprotective strategies. The widely accepted cholinesterase inhibitors and glutamate antagonists did not meet expectations of preventing disease progression, and research is therefore currently focusing on novel targets. Nonsteroidal anti-inflammatory drugs, secretase inhibitors and statins are promising drug candidates for the prevention and management of different forms of dementia. The kynurenine pathway has been associated with various neurodegenerative disorders and cerebrovascular diseases. This pathway is also closely related to neuroinflammatory processes and it has been implicated in the pathomechanisms of certain kinds of dementia. Targeting the kynurenine system may be of therapeutic value in the future.
Collapse
Affiliation(s)
- Zsófia Majláth
- Department of Neurology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
65
|
Ormstad H, Verkerk R, Aass HCD, Amthor KF, Sandvik L. Inflammation-induced catabolism of tryptophan and tyrosine in acute ischemic stroke. J Mol Neurosci 2013; 51:893-902. [PMID: 23990339 DOI: 10.1007/s12031-013-0097-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/12/2013] [Indexed: 01/04/2023]
Abstract
Whether the inflammatory response that accompanies acute ischemic stroke induces the kynurenine pathway is currently a matter of conjecture. Activation of this pathway may disturb active metabolites. The aim of this study was thus to characterize the catabolism of tryptophan and tyrosine in acute ischemic stroke (AIS) patients, and its association with cytokines, C-reactive protein, and glucose. Serum levels of 5-hydroxytryptamine, tryptophan catabolites, and competing amino acids and significant ratios of these were measured in 45 AIS patients and compared to those of 40 control subjects. Furthermore, associations between the serum levels of these biomarkers and serum levels of cytokines, C-reactive protein, and glucose were determined. Significantly lower levels of tryptophan and tyrosine in the stroke group indicate increased tryptophan and tyrosine oxidation in acute ischemic stroke, while significantly lowered tryptophan index and tyrosine index indicate a reduced capacity for the synthesis of 5-hydroxytryptamine and catecholamines in the brain, respectively. Furthermore, our findings indicate that the proinflammatory response in acute ischemic stroke may be responsible for a reduced capacity for the biosynthesis of brain catecholamines and mediate neurotoxic effects. Meanwhile, the anti-inflammatory IL-10 may exert a neuroprotective effect and prevent the putative reduced capacity for 5-hydroxytryptamine synthesis in the brain. These mechanisms may be involved in several sequelae following stroke, such as cognitive impairment, depression, and fatigue.
Collapse
Affiliation(s)
- Heidi Ormstad
- Department of Health Sciences, Buskerud University College, Drammen, Norway,
| | | | | | | | | |
Collapse
|
66
|
Swardfager W, Herrmann N, McIntyre RS, Mazereeuw G, Goldberger K, Cha DS, Schwartz Y, Lanctôt KL. Potential roles of zinc in the pathophysiology and treatment of major depressive disorder. Neurosci Biobehav Rev 2013; 37:911-29. [PMID: 23567517 DOI: 10.1016/j.neubiorev.2013.03.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022]
Abstract
Incomplete response to monoaminergic antidepressants in major depressive disorder (MDD), and the phenomenon of neuroprogression, suggests a need for additional pathophysiological markers and pharmacological targets. Neuronal zinc is concentrated exclusively within glutamatergic neurons, acting as an allosteric modulator of the N-methyl D-aspartate and other receptors that regulate excitatory neurotransmission and neuroplasticity. Zinc-containing neurons form extensive associational circuitry throughout the cortex, amygdala and hippocampus, which subserve mood regulation and cognitive functions. In animal models of depression, zinc is reduced in these circuits, zinc treatment has antidepressant-like effects and dietary zinc insufficiency induces depressive behaviors. Clinically, serum zinc is lower in MDD, which may constitute a state-marker of illness and a risk factor for treatment-resistance. Marginal zinc deficiency in MDD may relate to multiple putative mechanisms underlying core symptomatology and neuroprogression (e.g. immune dysfunction, monoamine metabolism, stress response dysregulation, oxidative/nitrosative stress, neurotrophic deficits, transcriptional/epigenetic regulation of neural networks). Initial randomized trials suggest a benefit of zinc supplementation. In summary, molecular and animal behavioral data support the clinical significance of zinc in the setting of MDD.
Collapse
Affiliation(s)
- Walter Swardfager
- Neuropharmacology Research Group, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.
Collapse
|