51
|
Abstract
The anterior cingulate cortex (ACC) is activated in both acute and chronic pain. In this Review, we discuss increasing evidence from rodent studies that ACC activation contributes to chronic pain states and describe several forms of synaptic plasticity that may underlie this effect. In particular, one form of long-term potentiation (LTP) in the ACC, which is triggered by the activation of NMDA receptors and expressed by an increase in AMPA-receptor function, sustains the affective component of the pain state. Another form of LTP in the ACC, which is triggered by the activation of kainate receptors and expressed by an increase in glutamate release, may contribute to pain-related anxiety.
Collapse
|
52
|
Increased N-Ethylmaleimide-Sensitive Factor Expression in Amygdala and Perirhinal Cortex during Habituation of Taste Neophobia. Neural Plast 2015; 2016:2726745. [PMID: 26839712 PMCID: PMC4709763 DOI: 10.1155/2016/2726745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
Interactions between GluR2 and N-ethylmaleimide-sensitive factor (NSF) mediate AMPA receptors trafficking. This might be linked with molecular mechanisms related with memory formation. Previous research has shown basolateral amygdala (BLA) dependent activity changes in the perirhinal cortex (PRh) during the formation of taste memory. In the present experiments we investigate both the behavioral performance and the expression profile of NSF and GluR2 genes in several brain areas, including PRh, BLA, and hippocampus. Twenty-one naïve male Wistar rats were exposed to a saccharin solution (0.4%) during the first (novel), the second (Familiar I), and the sixth presentation (Familiar II). Total RNA was extracted and gene expression was measured by quantitative PCR (qPCR) using TaqMan gene expression assays. In addition the expression of the synaptic plasticity related immediate early genes, Homer 1 and Narp, was also assessed. We have found increased expression of NSF gene in BLA and PRh in Group Familiar I in comparison with Familiar II. No changes in the expression of GluR2, Homer 1, and Narp genes were found. The results suggest the relevance of a potential network in the temporal lobe for taste recognition memory and open new possibilities for understanding the molecular mechanisms mediating the impact of sensory experience on brain circuit function.
Collapse
|
53
|
Zanca RM, Braren SH, Maloney B, Schrott LM, Luine VN, Serrano PA. Environmental Enrichment Increases Glucocorticoid Receptors and Decreases GluA2 and Protein Kinase M Zeta (PKMζ) Trafficking During Chronic Stress: A Protective Mechanism? Front Behav Neurosci 2015; 9:303. [PMID: 26617502 PMCID: PMC4642137 DOI: 10.3389/fnbeh.2015.00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022] Open
Abstract
Environmental enrichment (EE) housing paradigms have long been shown beneficial for brain function involving neural growth and activity, learning and memory capacity, and for developing stress resiliency. The expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2, which is important for synaptic plasticity and memory, is increased with corticosterone (CORT), undermining synaptic plasticity and memory. Thus, we determined the effect of EE and stress on modulating GluA2 expression in Sprague-Dawley male rats. Several markers were evaluated which include: plasma CORT, the glucocorticoid receptor (GR), GluA2, and the atypical protein kinase M zeta (PKMζ). For 1 week standard-(ST) or EE-housed animals were treated with one of the following four conditions: (1) no stress; (2) acute stress (forced swim test, FST; on day 7); (3) chronic restraint stress (6 h/day for 7 days); and (4) chronic + acute stress (restraint stress 6 h/day for 7 days + FST on day 7). Hippocampi were collected on day 7. Our results show that EE animals had reduced time immobile on the FST across all conditions. After chronic + acute stress EE animals showed increased GR levels with no change in synaptic GluA2/PKMζ. ST-housed animals showed the reverse pattern with decreased GR levels and a significant increase in synaptic GluA2/PKMζ. These results suggest that EE produces an adaptive response to chronic stress allowing for increased GR levels, which lowers neuronal excitability reducing GluA2/PKMζ trafficking. We discuss this EE adaptive response to stress as a potential underlying mechanism that is protective for retaining synaptic plasticity and memory function.
Collapse
Affiliation(s)
- Roseanna M Zanca
- Department of Psychology, Hunter College City University of New York, New York, NY, USA
| | - Stephen H Braren
- Department of Psychology, Hunter College City University of New York, New York, NY, USA
| | - Brigid Maloney
- Department of Psychology, Hunter College City University of New York, New York, NY, USA
| | - Lisa M Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center Shreveport, LA, USA
| | - Victoria N Luine
- Department of Psychology, Hunter College City University of New York, New York, NY, USA ; The Graduate Center of CUNY New York, NY, USA
| | - Peter A Serrano
- Department of Psychology, Hunter College City University of New York, New York, NY, USA ; The Graduate Center of CUNY New York, NY, USA
| |
Collapse
|
54
|
Chow LH, Tao PL, Chen YH, Lin YH, Huang EYK. Angiotensin IV possibly acts through PKMzeta in the hippocampus to regulate cognitive memory in rats. Neuropeptides 2015; 53:1-10. [PMID: 26412453 DOI: 10.1016/j.npep.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/10/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Ang IV is an endogenous peptide generated from the degradation of angiotensin II. Ang IV was found to enhance learning and memory in CNS. PKMzeta was identified to be a fragment of PKCzeta (protein kinase Czeta). Its continuous activation was demonstrated to be correlated with the formation of memory in the hippocampus. Therefore, we investigated whether PKMzeta participates in the effects of Ang IV on memory. We first examined the effect of Ang IV on non-spatial memory/cognition in modified object recognition test in rats. Our data showed that Ang IV could increase the exploration time on novel object. The co-administration of ZIP (PKMzeta inhibitor) with Ang IV significantly blocked the effect by Ang IV. The effects of Ang IV on hippocampal LTP at the CA1 region were also evaluated. Ang IV significantly increased the amplitude and slope of the EPSPs, which was consistent with other reports. Surprisingly, instead of potentiating LTP, Ang IV caused a failed maintenance of LTP. Moreover, there was no quantitative change in PKMzeta induced by Ang IV and/or ZIP after behavioral experiments. Taken together, our data re-confirmed the finding of the positive effect of Ang IV to enhance memory/cognition. The increased strength of EPSPs with Ang IV could also have certain functional relevance. Since the behavioral results suggested the involvement of PKMzeta, we hypothesized that the enhancement of memory/cognition by Ang IV may rely on an increase in PKMzeta activity. Overall, the present study provided important advances in our understanding of the action of Ang IV in the hippocampus.
Collapse
Affiliation(s)
- Lok-Hi Chow
- Department of Pharmacology, National Defense Medical Center, Nei-Hu, 114 Taipei, Taiwan, ROC; Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Department of Anesthesiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Nei-Hu, 114 Taipei, Taiwan, ROC
| | - Yu-Hui Lin
- Department of Pharmacology, National Defense Medical Center, Nei-Hu, 114 Taipei, Taiwan, ROC
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Nei-Hu, 114 Taipei, Taiwan, ROC.
| |
Collapse
|
55
|
Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats. Neural Plast 2015; 2015:847136. [PMID: 26380123 PMCID: PMC4561311 DOI: 10.1155/2015/847136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/12/2015] [Indexed: 01/15/2023] Open
Abstract
Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.
Collapse
|
56
|
Shivarama Shetty M, Gopinadhan S, Sajikumar S. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation. Hippocampus 2015; 26:137-50. [PMID: 26194339 PMCID: PMC5054950 DOI: 10.1002/hipo.22497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/30/2022]
Abstract
Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long‐term plasticity, a cellular correlate of associative long‐term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long‐term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long‐term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5‐receptor‐mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co‐operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal‐regulated kinases‐1 and 2 (ERK1/2) as signal integrators and dose‐sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration‐dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long‐term associative memory in neural networks. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| | - Suma Gopinadhan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
57
|
Balaban PM, Roshchin M, Timoshenko AK, Zuzina AB, Lemak M, Ierusalimsky VN, Aseyev NA, Malyshev AY. Homolog of protein kinase Mζ maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix. Front Cell Neurosci 2015; 9:222. [PMID: 26157359 PMCID: PMC4475826 DOI: 10.3389/fncel.2015.00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/26/2015] [Indexed: 11/25/2022] Open
Abstract
It has been shown that a variety of long-term memories in different regions of the brain and in different species are quickly erased by local inhibition of protein kinase Mζ (PKMζ), a persistently active protein kinase. Using antibodies to mammalian PKMζ, we describe in the present study the localization of immunoreactive molecules in the nervous system of the terrestrial snail Helix lucorum. Presence of a homolog of PKMζ was confirmed with transcriptomics. We have demonstrated in behavioral experiments that contextual fear memory disappeared under a blockade of PKMζ with a selective peptide blocker of PKMζ zeta inhibitory peptide (ZIP), but not with scrambled ZIP. If ZIP was combined with a “reminder” (20 min in noxious context), no impairment of the long-term contextual memory was observed. In electrophysiological experiments we investigated whether PKMζ takes part in the maintenance of long-term facilitation (LTF) in the neural circuit mediating tentacle withdrawal. LTF of excitatory synaptic inputs to premotor interneurons was induced by high-frequency nerve stimulation combined with serotonin bath applications and lasted at least 4 h. We found that bath application of 2 × 10−6 M ZIP at the 90th min after the tetanization reduced the EPSP amplitude to the non-tetanized EPSP values. Applications of the scrambled ZIP peptide at a similar time and concentration didn’t affect the EPSP amplitudes. In order to test whether effects of ZIP are specific to the synapses, we performed experiments with LTF of somatic membrane responses to local glutamate applications. It was shown earlier that serotonin application in such an “artificial synapse” condition elicits LTF of responses to glutamate. It was found that ZIP had no effect on LTF in these conditions, which may be explained by the very low concentration of PKMζ molecules in somata of these identified neurons, as evidenced by immunochemistry. Obtained results suggest that the Helix homolog of PKMζ might be involved in post-induction maintenance of long-term changes in the nervous system of the terrestrial snail.
Collapse
Affiliation(s)
- Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia ; Biology Department, Lomonosov Moscow State University Moscow, Russia
| | - Matvey Roshchin
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia
| | - Alia Kh Timoshenko
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia
| | - Alena B Zuzina
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia ; Biology Department, Lomonosov Moscow State University Moscow, Russia
| | - Maria Lemak
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia
| | - Victor N Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolay A Aseyev
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia
| | - Aleksey Y Malyshev
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
58
|
Cheng N, Hu X, Tian T, Lu W. PKMζ knockdown disrupts post-ischemic long-term potentiation via inhibiting postsynaptic expression of aminomethyl phosphonic acid receptors. J Biomed Res 2015; 29:241-9. [PMID: 26060448 PMCID: PMC4449492 DOI: 10.7555/jbr.28.20140033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/11/2014] [Accepted: 05/07/2014] [Indexed: 11/12/2022] Open
Abstract
Post-ischemic long-term potentiation (i-LTP) is a pathological form of plasticity that was observed in glutamate receptor-mediated neurotransmission after stroke and may exert a detrimental effect via facilitating excitotoxic damage. The mechanism underlying i-LTP, however, remains less understood. By employing electrophysiological recording and immunofluorescence assay on hippocampal slices and cultured neurons, we found that protein kinase Mζ (PKMζ), an atypical protein kinase C isoform, was involved in enhancing aminomethyl phosphonic acid (AMPA) receptor (AMPAR) expression after i-LTP induction. PKMζ knockdown attenuated postsynaptic expression of AMPA receptors and disrupted i-LTP. Consistently, we observed less neuronal death of cultured hippocampal cells with PKMζ knockdown. Meanwhile, these findings indicate that PKMζ plays an important role in i-LTP by regulating postsynaptic expression of AMPA receptors. This work adds new knowledge to the mechanism of i-LTP, and thus is helpful to find the potential target for clinical therapy of ischemic stroke.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoqiao Hu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
59
|
Chen A, Bao C, Tang Y, Luo X, Guo L, Liu B, Lin C. Involvement of protein kinase ζ in the maintenance of hippocampal long-term potentiation in rats with chronic visceral hypersensitivity. J Neurophysiol 2015; 113:3047-55. [PMID: 25761958 PMCID: PMC4455563 DOI: 10.1152/jn.00929.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
The hippocampal long-term potentiation (LTP) was implicated in the formation of visceral hypersensitivity in rats with irritable bowel syndrome in our previous study. Recent studies have shown that protein kinase M ζ (PKMζ) may be responsible for the maintenance of LTP in memory formation. However, it remains unclear whether PKMζ is involved in the visceral hypersensitivity. In this study, a rat model of visceral hypersensitivity was generated by neonatal maternal separation (NMS). The visceral hypersensitivity was assessed by recording responses of the external oblique abdominal muscle to colorectal distension. Our results demonstrated that hippocampal LTP and visceral hypersensitivity were enhanced significantly in rats of NMS. ζ-Pseudosubstrate inhibitory peptide (ZIP) could dose dependently inhibit the maintenance of Cornu Ammonis area 1 LTP in rats of NMS. Furthermore, Western blot data showed that the expression of hippocampal phosphorylated PKMζ (p-PKMζ) significantly increased in rats of NMS. In addition, bilateral intrahippocampal injections of ZIP attenuated the visceral hypersensitivity dose dependently in rats of NMS. The maximal inhibition was observed at 30 min, and significant inhibition lasted for 1.5–2 h after ZIP application. Besides, data from the open-field test and Morris water maze showed that ZIP did not influence the movement and spatial procedural memory in rats of NMS. In conclusion, p-PKMζ might be a critical protein in the maintenance of hippocampal LTP, which could result in visceral hypersensitivity.
Collapse
Affiliation(s)
- Aiqin Chen
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Chengjia Bao
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Ying Tang
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Xiaoqing Luo
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Lixia Guo
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Bin Liu
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Chun Lin
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| |
Collapse
|
60
|
Géranton SM, Tochiki KK. Regulation of Gene Expression and Pain States by Epigenetic Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:147-83. [DOI: 10.1016/bs.pmbts.2014.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Daumas S. [Switch on the light and reactivate the lost memories]. Med Sci (Paris) 2014; 30:1084-6. [PMID: 25537037 DOI: 10.1051/medsci/20143012010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stéphanie Daumas
- Neuroscience Paris Seine (NPS) ; Institut de biologie Paris Seine (IBPS) ; Sorbonne universités ; UPMC UM CR18 ; Inserm U1130 ; CNRS UMR 8246, 9, quai Saint-Bernard, bâtiment B, case 37, 75005 Paris, France
| |
Collapse
|
62
|
Deng Z, Lubinski AJ, Page TL. Zeta inhibitory peptide (ZIP) erases long-term memories in a cockroach. Neurobiol Learn Mem 2014; 118:89-95. [PMID: 25434819 DOI: 10.1016/j.nlm.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
Recent efforts to identify the molecules that are involved in the maintenance of long-term memories in mammals have focused attention on atypical isoforms of protein kinase C (PKC). Inhibition of these kinases by either the general PKC inhibitor, chelerythrine, or the more specific inhibitor, zeta inhibitory peptide (ZIP), can abolish both long-term potentiation in the hippocampus and as well as spatial, fear, appetitive, and sensorimotor memories. These inhibitors can also abolish long-term facilitation and long-term sensitization in the mollusk Aplysia californica. We have extended these results to an insect, the cockroach Leucophaea maderae. We show that systemic injections of either chelerythrine or ZIP erase long-term olfactory memories in the cockroach, but have no effect on memory acquisition during conditioning. We also show that inhibition of either protein kinase A (PKA) or protein synthesis can block memory acquisition but neither has an effect on the memory once it is formed. The results suggest that sustaining memories in insects requires the persistent activity of one or more isoforms of PKC and point to a strong evolutionary conservation of the molecular mechanisms that underlie the persistence of long-term memories in the central nervous system.
Collapse
Affiliation(s)
- Zhouheng Deng
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - Alexander J Lubinski
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - Terry L Page
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
63
|
Santerre JL, Rogow JA, Kolitz EB, Pal R, Landin JD, Gigante ED, Werner DF. Ethanol dose-dependently elicits opposing regulatory effects on hippocampal AMPA receptor GluA2 subunits through a zeta inhibitory peptide-sensitive kinase in adolescent and adult Sprague-Dawley rats. Neuroscience 2014; 280:50-9. [PMID: 25218807 PMCID: PMC4482479 DOI: 10.1016/j.neuroscience.2014.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
AMPA receptor GluA2 subunits are strongly implicated in cognition, and prior work suggests that these subunits may be regulated by atypical protein kinase C (aPKC) isoforms. The present study assessed whether hippocampal and cortical AMPA receptor GluA2 subunit regulation may be an underlying factor in known age-related differences to cognitive-impairing doses of ethanol, and if aPKC isoforms modulate such responses. Hippocampal AMPA receptor GluA2 subunit, protein kinase Mζ (PKMζ), and PKCι/λ expression were elevated during adolescence compared to adults. 1 h following a low-dose (1.0-g/kg) ethanol exposure, hippocampal AMPA receptor GluA2 subunit serine 880 phosphorylation was decreased in adolescents, but was increased in adults. Age-dependent changes in GluA2 subunit phosphorylation were paralleled by alterations in aPKC isoforms, and zeta inhibitory peptide (ZIP) administration prevented ethanol-induced increases in both in adults. Ethanol-induced changes in GluA2 subunit phosphorylation were associated with delayed regulation in synaptosomal GluA2 subunit expression 24 h later. A higher ethanol dose (3.5-g/kg) failed to elicit changes in most measures in the hippocampus at either age. Similar to the hippocampus, analysis of cerebral cortical tissue also revealed age-related declines. However, no demonstrable effects were found following a low-dose ethanol exposure at either age. High-dose ethanol exposure reduced adolescent GluA2 subunit phosphorylation and aPKC isoform expression that were again accompanied by delayed reductions in synaptosomal GluA2 subunit expression. Together, these results suggest that GluA2-containing AMPA receptor modulation by aPKC isoforms is age-, region- and dose-dependently regulated, and may potentially be involved in developmentally regulated ethanol-induced cognitive impairment and other ethanol behaviors.
Collapse
Affiliation(s)
- J L Santerre
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - J A Rogow
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - E B Kolitz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - R Pal
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - J D Landin
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - E D Gigante
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - D F Werner
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA.
| |
Collapse
|
64
|
Jarome TJ, Helmstetter FJ. Protein degradation and protein synthesis in long-term memory formation. Front Mol Neurosci 2014; 7:61. [PMID: 25018696 PMCID: PMC4072070 DOI: 10.3389/fnmol.2014.00061] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Long-term memory (LTM) formation requires transient changes in the activity of intracellular signaling cascades that are thought to regulate new gene transcription and de novo protein synthesis in the brain. Consistent with this, protein synthesis inhibitors impair LTM for a variety of behavioral tasks when infused into the brain around the time of training or following memory retrieval, suggesting that protein synthesis is a critical step in LTM storage in the brain. However, evidence suggests that protein degradation mediated by the ubiquitin-proteasome system (UPS) may also be a critical regulator of LTM formation and stability following retrieval. This requirement for increased protein degradation has been shown in the same brain regions in which protein synthesis is required for LTM storage. Additionally, increases in the phosphorylation of proteins involved in translational control parallel increases in protein polyubiquitination and the increased demand for protein degradation is regulated by intracellular signaling molecules thought to regulate protein synthesis during LTM formation. In some cases inhibiting proteasome activity can rescue memory impairments that result from pharmacological blockade of protein synthesis, suggesting that protein degradation may control the requirement for protein synthesis during the memory storage process. Results such as these suggest that protein degradation and synthesis are both critical for LTM formation and may interact to properly “consolidate” and store memories in the brain. Here, we review the evidence implicating protein synthesis and degradation in LTM storage and highlight the areas of overlap between these two opposing processes. We also discuss evidence suggesting these two processes may interact to properly form and store memories. LTM storage likely requires a coordinated regulation between protein degradation and synthesis at multiple sites in the mammalian brain.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA ; Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| |
Collapse
|
65
|
Naskar S, Wan H, Kemenes G. pT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning. Nat Commun 2014; 5:3967. [PMID: 24875483 PMCID: PMC4048835 DOI: 10.1038/ncomms4967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/25/2014] [Indexed: 12/02/2022] Open
Abstract
The role of CaMKII in learning-induced activation and trafficking of AMPA receptors (AMPARs) is well established. However, the link between the phosphorylation state of CaMKII and the agonist-triggered proteasomal degradation of AMPARs during memory consolidation remains unknown. Here we describe a novel CaMKII-dependent mechanism by which a learning-induced increase in AMPAR levels is stabilized for consolidation of associative long-term memory. Six hours after classical conditioning the levels of both autophosphorylated pT305-CaMKII and GluA1 type AMPAR subunits are significantly elevated in the ganglia containing the learning circuits of the snail Lymnaea stagnalis. CaMKIINtide treatment significantly reduces the learning-induced elevation of both pT305-CaMKII and GluA1 levels and impairs associative long-term memory. Inhibition of proteasomal activity offsets the deleterious effects of CaMKIINtide on both GluA1 levels and long-term memory. These findings suggest that increased levels of pT305-CaMKII play a role in AMPAR dependent memory consolidation by reducing proteasomal degradation of GluA1 receptor subunits.
Collapse
Affiliation(s)
- Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Huimin Wan
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
66
|
Furini CRG, Myskiw JC, Benetti F, Izquierdo I. New frontiers in the study of memory mechanisms. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35:173-7. [PMID: 23904024 DOI: 10.1590/1516-4446-2012-1046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/26/2012] [Indexed: 12/11/2022]
Abstract
We review recent work on three major lines of memory research: a) the possible role of the protein kinase M-zeta (PKMzeta) in memory persistence; b) the processes of "synaptic tagging and capture" in memory formation; c) the modulation of extinction learning, widely used in the psychotherapy of fear memories under the name of "exposure therapy". PKMzeta is a form of protein kinase C (PKC) that apparently remains stimulated for months after the consolidation of a given memory. Synaptic tagging is a mechanism whereby the weak activation of one synapse can tag it with a protein so other synapses in the same cell can reactivate it by producing other proteins that bind to the tag. Extinction, once mistakenly labeled as a form of forgetting, is by itself a form of learning; through it animals can learn to inhibit a response. We now know it can be modulated by neurotransmitters or by synaptic tagging, which should enable better control of its clinical use.
Collapse
Affiliation(s)
- Cristiane R G Furini
- Memory Center, Brain Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
67
|
The "memory kinases": roles of PKC isoforms in signal processing and memory formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:31-59. [PMID: 24484697 DOI: 10.1016/b978-0-12-420170-5.00002-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias.
Collapse
|
68
|
Pandian GN, Taylor RD, Junetha S, Saha A, Anandhakumar C, Vaijayanthi T, Sugiyama H. Alteration of epigenetic program to recover memory and alleviate neurodegeneration: prospects of multi-target molecules. Biomater Sci 2014; 2:1043-1056. [DOI: 10.1039/c4bm00068d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Next-generation sequence-specific small molecules modulating the epigenetic enzymes (DNMT/HDAC) and signalling factors can precisely turn ‘ON’ the multi-gene network in a neural cell.
Collapse
Affiliation(s)
- Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
| | - Rhys D. Taylor
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Syed Junetha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Abhijit Saha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Chandran Anandhakumar
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Thangavel Vaijayanthi
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
- Department of Chemistry
- Graduate School of Science
| |
Collapse
|
69
|
Nonaka M, Fujii H, Kim R, Kawashima T, Okuno H, Bito H. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130150. [PMID: 24298152 DOI: 10.1098/rstb.2013.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected 'inverse' synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, , Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Hernández AI, Oxberry WC, Crary JF, Mirra SS, Sacktor TC. Cellular and subcellular localization of PKMζ. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130140. [PMID: 24298142 DOI: 10.1098/rstb.2013.0140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In contrast to protein kinases that participate in long-term potentiation (LTP) induction and memory consolidation, the autonomously active atypical protein kinase C isoform, protein kinase Mzeta (PKMζ), functions in the core molecular mechanism of LTP maintenance and long-term memory storage. Here, using multiple complementary techniques for light and electron microscopic immunolocalization, we present the first detailed characterization of the cellular and subcellular distribution of PKMζ in rat hippocampus and neocortex. We find that PKMζ is widely expressed in forebrain with prominent immunostaining in hippocampal and neocortical grey matter, and weak label in white matter. In hippocampal and cortical pyramidal cells, PKMζ expression is predominantly somatodendritic, and electron microscopy highlights the kinase at postsynaptic densities and in clusters within spines. In addition, nuclear label and striking punctate immunopositive structures in a paranuclear and dendritic distribution are seen by confocal microscopy, occasionally at dendritic bifurcations. PKMζ immunoreactive granules are observed by electron microscopy in cell bodies and dendrites, including endoplasmic reticulum. The widespread distribution of PKMζ in nuclei, nucleoli and endoplasmic reticulum suggests potential roles of this kinase in cell-wide mechanisms involving gene expression, biogenesis of ribosomes and new protein synthesis. The localization of PKMζ within postsynaptic densities and spines suggests sites where the kinase stores information during LTP maintenance and long-term memory.
Collapse
Affiliation(s)
- A Iván Hernández
- Department of Pathology, State University of New York, Downstate Medical Center, , Brooklyn, NY, USA
| | | | | | | | | |
Collapse
|
71
|
Hardt O, Nader K, Wang YT. GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130141. [PMID: 24298143 DOI: 10.1098/rstb.2013.0141] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.
Collapse
Affiliation(s)
- Oliver Hardt
- Centre for Cognitive and Neural Systems, University of Edinburgh, , Edinburgh, UK
| | | | | |
Collapse
|
72
|
Zhuo M. Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130146. [PMID: 24298148 PMCID: PMC3843878 DOI: 10.1098/rstb.2013.0146] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the primary excitatory transmitter of sensory transmission and perception in the central nervous system. Painful or noxious stimuli from the periphery ‘teach’ humans and animals to avoid potentially dangerous objects or environments, whereas tissue injury itself causes unnecessary chronic pain that can even last for long periods of time. Conventional pain medicines often fail to control chronic pain. Recent neurobiological studies suggest that synaptic plasticity taking place in sensory pathways, from spinal dorsal horn to cortical areas, contributes to chronic pain. Injuries trigger long-term potentiation of synaptic transmission in the spinal cord dorsal horn and anterior cingulate cortex, and such persistent potentiation does not require continuous neuronal activity from the periphery. At the synaptic level, potentiation of excitatory transmission caused by injuries may be mediated by the enhancement of glutamate release from presynaptic terminals and potentiated postsynaptic responses of AMPA receptors. Preventing, ‘erasing’ or reducing such potentiation may serve as a new mechanism to inhibit chronic pain in patients in the future.
Collapse
Affiliation(s)
- Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science, Science and Technology, Xi'an Jiaotong University, , Xi'an 710049, People's Republic of China
| |
Collapse
|
73
|
Kwapis JL, Helmstetter FJ. Does PKM(zeta) maintain memory? Brain Res Bull 2013; 105:36-45. [PMID: 24076105 DOI: 10.1016/j.brainresbull.2013.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/30/2022]
Abstract
Work on the long-term stability of memory has identified a potentially critical role for protein kinase Mzeta (PKMζ) in maintaining established memory. PKMζ, an autonomously active isoform of PKC, is hypothesized to sustain those changes that occurred during memory formation in order to preserve the memory engram over time. Initial studies investigating the role of PKMζ were largely successful in demonstrating a role for the kinase in memory maintenance; disrupting PKMζ activity with ζ-inhibitory peptide (ZIP) was successful in disrupting a variety of established associations in a number of key brain regions. More recent work, however, has questioned both the role of PKMζ in memory maintenance and the effectiveness of ZIP as a specific inhibitor of PKMζ activity. Here, we outline the research both for and against the idea that PKMζ is a memory maintenance mechanism and discuss how these two lines of research can be reconciled. We conclude by proposing a number of studies that would help to clarify the role of PKMζ in memory and define other mechanisms the brain may use to maintain memory.
Collapse
Affiliation(s)
- Janine L Kwapis
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|
74
|
Competing molecular interactions of aPKC isoforms regulate neuronal polarity. Proc Natl Acad Sci U S A 2013; 110:14450-5. [PMID: 23940317 DOI: 10.1073/pnas.1301588110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Atypical protein kinase C (aPKC) isoforms ζ and λ interact with polarity complex protein Par3 and are evolutionarily conserved regulators of cell polarity. Prkcz encodes aPKC-ζ and PKM-ζ, a truncated, neuron-specific alternative transcript, and Prkcl encodes aPKC-λ. Here we show that, in embryonic hippocampal neurons, two aPKC isoforms, aPKC-λ and PKM-ζ, are expressed. The localization of these isoforms is spatially distinct in a polarized neuron. aPKC-λ, as well as Par3, localizes at the presumptive axon, whereas PKM-ζ and Par3 are distributed at non-axon-forming neurites. PKM-ζ competes with aPKC-λ for binding to Par3 and disrupts the aPKC-λ-Par3 complex. Silencing of PKM-ζ or overexpression of aPKC-λ in hippocampal neurons alters neuronal polarity, resulting in neurons with supernumerary axons. In contrast, the overexpression of PKM-ζ prevents axon specification. Our studies suggest a molecular model wherein mutually antagonistic intermolecular competition between aPKC isoforms directs the establishment of neuronal polarity.
Collapse
|
75
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
76
|
Liu MG, Kang SJ, Shi TY, Koga K, Zhang MM, Collingridge GL, Kaang BK, Zhuo M. Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol 2013; 110:505-21. [PMID: 23636718 DOI: 10.1152/jn.01104.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The insular cortex (IC) is widely believed to be an important forebrain structure involved in cognitive and sensory processes such as memory and pain. However, little work has been performed at the cellular level to investigate the synaptic basis of IC-related brain functions. To bridge the gap, the present study was designed to characterize the basic synaptic mechanisms for insular long-term potentiation (LTP). Using a 64-channel recording system, we found that an enduring form of late-phase LTP (L-LTP) could be reliably recorded for at least 3 h in different layers of IC slices after theta burst stimulation. The induction of insular LTP is protein synthesis dependent and requires activation of both GluN2A and GluN2B subunits of the NMDA receptor, L-type voltage-gated calcium channels, and metabotropic glutamate receptor 1. The paired-pulse facilitation ratio was unaffected by insular L-LTP induction, and expression of insular L-LTP required the recruitment of postsynaptic calcium-permeable AMPA receptors. Our results provide the first in vitro report of long-term multichannel recordings of L-LTP in the IC in adult mice and suggest its potential important roles in insula-related memory and chronic pain.
Collapse
Affiliation(s)
- Ming-Gang Liu
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Baker KD, Edwards TM, Rickard NS. The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 2013; 37:1211-39. [PMID: 23639769 DOI: 10.1016/j.neubiorev.2013.04.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/20/2022]
Abstract
Memory processing requires tightly controlled signalling cascades, many of which are dependent upon intracellular calcium (Ca(2+)). Despite this, most work investigating calcium signalling in memory formation has focused on plasma membrane channels and extracellular sources of Ca(2+). The intracellular Ca(2+) release channels, ryanodine receptors (RyRs) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) have a significant capacity to regulate intracellular Ca(2+) signalling. Evidence at both cellular and behavioural levels implicates both RyRs and IP3Rs in synaptic plasticity and memory formation. Pharmacobehavioural experiments using young chicks trained on a single-trial discrimination avoidance task have been particularly useful by demonstrating that RyRs and IP3Rs have distinct roles in memory formation. RyR-dependent Ca(2+) release appears to aid the consolidation of labile memory into a persistent long-term memory trace. In contrast, IP3Rs are required during long-term memory. This review discusses various functions for RyRs and IP3Rs in memory processing, including neuro- and glio-transmitter release, dendritic spine remodelling, facilitating vasodilation, and the regulation of gene transcription and dendritic excitability. Altered Ca(2+) release from intracellular stores also has significant implications for neurodegenerative conditions.
Collapse
Affiliation(s)
- Kathryn D Baker
- School of Psychology and Psychiatry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
78
|
Hardt O, Nader K, Nadel L. Decay happens: the role of active forgetting in memory. Trends Cogn Sci 2013; 17:111-20. [DOI: 10.1016/j.tics.2013.01.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 02/06/2023]
|
79
|
Price TJ, Ghosh S. ZIPping to pain relief: the role (or not) of PKMζ in chronic pain. Mol Pain 2013; 9:6. [PMID: 23433248 PMCID: PMC3621284 DOI: 10.1186/1744-8069-9-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/19/2013] [Indexed: 11/21/2022] Open
Abstract
Chronic pain remains a significant clinical problem despite substantial advances in our understanding of how persistent nociceptor stimulation drives plasticity in the CNS. A major theme that has emerged in this area of work is the strong similarity between plasticity involved in learning and memory in CNS regions such as cortex and hippocampus with mechanisms underlying chronic pain development and maintenance in the spinal dorsal horn and other CNS areas such as anterior cingulate cortex (ACC). We, and others have recently implicated an atypical PKC (aPKC), called PKMζ, in the maintenance of pain plasticity based on biochemical assays and the use of a peptide pseudosubstrate inhibitor called ZIP. These studies indicate remarkable parallels between the potential role of PKMζ as a key molecule for the maintenance of long-term memory and long-term potentiation (LTP) and the maintenance of a chronic pain state. On the other hand, very recent studies have disputed the specificity of ZIP and called into question the role of PKMζ as a memory maintenance molecule. Here we critically review the evidence that PKMζ might represent a new target for the reversal of certain chronic pain states. Furthermore, we consider whether ZIP might have other aPKC or even non-aPKC targets and the significance of such off-target effects for evaluating maintenance mechanisms of chronic pain. We conclude that, current controversies aside, utilization of ZIP as a tool to interrogate maintenance mechanisms of chronic pain and further investigations into the potential role of PKMζ, and other aPKCs, in pain plasticity are likely to lead to further insights with the potential to unravel the enigma that is the disease of chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- Department of Pharmacology, The University of Arizona School of Medicine, Arizona, USA.
| | | |
Collapse
|
80
|
Sanhueza M, Lisman J. The CaMKII/NMDAR complex as a molecular memory. Mol Brain 2013; 6:10. [PMID: 23410178 PMCID: PMC3582596 DOI: 10.1186/1756-6606-6-10] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 01/16/2023] Open
Abstract
CaMKII is a major synaptic protein that is activated during the induction of long-term potentiation (LTP) by the Ca2+ influx through NMDARs. This activation is required for LTP induction, but the role of the kinase in the maintenance of LTP is less clear. Elucidating the mechanisms of maintenance may provide insights into the molecular processes that underlie the stability of stored memories. In this brief review, we will outline the criteria for evaluating an LTP maintenance mechanism. The specific hypothesis evaluated is that LTP is maintained by the complex of activated CaMKII with the NMDAR. The evidence in support of this hypothesis is substantial, but further experiments are required, notably to determine the time course and persistence of complex after LTP induction. Additional work is also required to elucidate how the CaMKII/NMDAR complex produces the structural growth of the synapse that underlies late LTP. It has been proposed by Frey and Morris that late LTP involves the setting of a molecular tag during LTP induction, which subsequently allows the activated synapse to capture the proteins responsible for late LTP. However, the molecular processes by which this leads to the structural growth that underlies late LTP are completely unclear. Based on known binding reactions, we suggest the first molecularly specific version of tag/capture hypothesis: that the CaMKII/NMDAR complex, once formed, serves as a tag, which then leads to a binding cascade involving densin, delta-catenin, and N-cadherin (some of which are newly synthesized). Delta-catenin binds AMPA-binding protein (ABP), leading to the LTP-induced increase in AMPA channel content. The addition of postsynaptic N-cadherin, and the complementary increase on the presynaptic side, leads to a trans-synaptically coordinated increase in synapse size (and more release sites). It is suggested that synaptic strength is stored stably through the combined actions of the CaMKII/NMDAR complex and N-cadherin dimers. These N-cadherin pairs have redundant storage that could provide informational stability in a manner analogous to the base-pairing in DNA.
Collapse
Affiliation(s)
- Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Santiago 7800024, Chile
| | | |
Collapse
|
81
|
Yoon KJ, Lee HR, Jo YS, An K, Jung SY, Jeong MW, Kwon SK, Kim NS, Jeong HW, Ahn SH, Kim KT, Lee K, Kim E, Kim JH, Choi JS, Kaang BK, Kong YY. Mind bomb-1 is an essential modulator of long-term memory and synaptic plasticity via the Notch signaling pathway. Mol Brain 2012; 5:40. [PMID: 23111145 PMCID: PMC3541076 DOI: 10.1186/1756-6606-5-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/20/2012] [Indexed: 12/29/2022] Open
Abstract
Background Notch signaling is well recognized as a key regulator of the neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-1 (Mib1) is an essential positive regulator in the Notch pathway, acting non-autonomously in the signal-sending cells. Therefore, genetic ablation of Mib1 in mature neuron would give valuable insight to understand the cell-to-cell interaction between neurons via Notch signaling for their proper function. Results Here we show that the inactivation of Mib1 in mature neurons in forebrain results in impaired hippocampal dependent spatial memory and contextual fear memory. Consistently, hippocampal slices from Mib1-deficient mice show impaired late-phase, but not early-phase, long-term potentiation and long-term depression without change in basal synaptic transmission at SC-CA1 synapses. Conclusions These data suggest that Mib1-mediated Notch signaling is essential for long-lasting synaptic plasticity and memory formation in the rodent hippocampus.
Collapse
Affiliation(s)
- Ki-Jun Yoon
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1 Silim-dong Gwanak-gu, Seoul 151-747, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|