51
|
Yu Z, Liu J, Deng WM, Jiao R. Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cell Mol Life Sci 2015; 72:327-37. [PMID: 25292338 PMCID: PMC11114026 DOI: 10.1007/s00018-014-1748-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
More and more studies have shown chromatin remodelers and histone modifiers play essential roles in regulating developmental patterns by organizing specific chromosomal architecture to establish programmed transcriptional profiles, with implications that histone chaperones execute a coordinating role in these processes. Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved three-subunit protein complex, was identified as a histone chaperone coupled with DNA replication and repair in cultured mammalian cells and yeasts. Interestingly, recent findings indicate CAF-1 may have important regulatory roles during development by interacting with specific transcription factors and epigenetic regulators. In this review, we focus on the essential roles of CAF-1 in regulating heterochromatin organization, asymmetric cell division, and specific signal transduction through epigenetic modulations of the chromatin. In the end, we aim at providing a current image of facets of CAF-1 as a histone chaperone to orchestrate cell proliferation and differentiation during multi-cellular organism development.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295 USA
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| |
Collapse
|
52
|
Lavagnolli T, Gupta P, Hörmanseder E, Mira-Bontenbal H, Dharmalingam G, Carroll T, Gurdon JB, Fisher AG, Merkenschlager M. Initiation and maintenance of pluripotency gene expression in the absence of cohesin. Genes Dev 2015; 29:23-38. [PMID: 25561493 PMCID: PMC4281562 DOI: 10.1101/gad.251835.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
Abstract
Cohesin is implicated in establishing and maintaining pluripotency. Whether this is because of essential cohesin functions in the cell cycle or in gene regulation is unknown. Here we tested cohesin's contribution to reprogramming in systems that reactivate the expression of pluripotency genes in the absence of proliferation (embryonic stem [ES] cell heterokaryons) or DNA replication (nuclear transfer). Contrary to expectations, cohesin depletion enhanced the ability of ES cells to initiate somatic cell reprogramming in heterokaryons. This was explained by increased c-Myc (Myc) expression in cohesin-depleted ES cells, which promoted DNA replication-dependent reprogramming of somatic fusion partners. In contrast, cohesin-depleted somatic cells were poorly reprogrammed in heterokaryons, due in part to defective DNA replication. Pluripotency gene induction was rescued by Myc, which restored DNA replication, and by nuclear transfer, where reprogramming does not require DNA replication. These results redefine cohesin's role in pluripotency and reveal a novel function for Myc in promoting the replication-dependent reprogramming of somatic nuclei.
Collapse
Affiliation(s)
- Thais Lavagnolli
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Preksha Gupta
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Eva Hörmanseder
- Wellcome Trust, Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | - Hegias Mira-Bontenbal
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Gopuraja Dharmalingam
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Thomas Carroll
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - John B Gurdon
- Wellcome Trust, Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom;
| |
Collapse
|
53
|
Harada A, Maehara K, Sato Y, Konno D, Tachibana T, Kimura H, Ohkawa Y. Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Res 2014; 43:775-86. [PMID: 25539924 PMCID: PMC4333396 DOI: 10.1093/nar/gku1346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage potential is triggered by lineage-specific transcription factors in association with changes in the chromatin structure. Histone H3.3 variant is thought to play an important role in the regulation of lineage-specific genes. To elucidate the function of H3.3 in myogenic differentiation, we forced the expression of GFP-H3.1 to alter the balance between H3.1 and H3.3 in mouse C2C12 cells that could be differentiated into myotubes. GFP-H3.1 replaced H3.3 in the regulatory regions of skeletal muscle (SKM) genes and induced a decrease of H3K4 trimethylation (H3K4me3) and increase of H3K27 trimethylation (H3K27me3). Similar results were obtained by H3.3 knockdown. In contrast, MyoD-dependent H3.3 incorporation into SKM genes in fibroblasts induced an increase of H3K4me3 and H3K27me3. In mouse embryos, a bivalent modification of H3K4me3 and H3K27me3 was formed on H3.3-incorporated SKM genes before embryonic skeletal muscle differentiation. These results suggest that lineage potential is established through a selective incorporation of specific H3 variants that governs the balance of histone modifications.
Collapse
Affiliation(s)
- Akihito Harada
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0021, Japan
| | - Daijiro Konno
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Taro Tachibana
- Department Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0021, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0021, Japan
| |
Collapse
|
54
|
Maza I, Hanna JH. Hijacked by an oocyte: hierarchical molecular changes in somatic cell nuclear transfer. Mol Cell 2014; 55:507-9. [PMID: 25148360 DOI: 10.1016/j.molcel.2014.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Xenopus oocytes can epigenetically reprogram mouse somatic cells toward totipotency. In this issue, Jullien et al. (2014) now describe rapid, interdependent molecular events that facilitate this reprogramming.
Collapse
Affiliation(s)
- Itay Maza
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
55
|
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. Bioessays 2014; 37:52-9. [PMID: 25328107 DOI: 10.1002/bies.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non-canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following fertilization. We discuss how reduced maternal histone variant incorporation in somatic nuclear transfer experiments may explain the reduced viability of resulting embryos and how knowledge of repressive and activating maternal factors may be used to improve somatic cell reprogramming.
Collapse
Affiliation(s)
- Peng Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
56
|
Xu R, Zhang S, Lei A. Chromatin changes in reprogramming of mammalian somatic cells. Rejuvenation Res 2014; 17:3-10. [PMID: 23987213 DOI: 10.1089/rej.2013.1455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT), cell fusion, and induced pluripotent stem cells (iPSCs) technologies are three strategies that allow reprogramming somatic cells into the pluripotent state; however, the efficiency is low and the mechanisms are not fully clear. In addition, there are reports that changes in chromatin play a critical role in these reprogramming strategies by modulating binding of transcription factors to their targets. In this review, we mainly discuss inactivation of the X chromosome, chromatin decondensation and remodeling, histone modifications, and histone variants in the three strategies. This review will provide an insight for future nuclear reprogramming research.
Collapse
Affiliation(s)
- Rong Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Ministry of Agriculture of China, Northwest A&F University , Yangling, Shaanxi, P.R. China
| | | | | |
Collapse
|
57
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|
58
|
Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 2014; 15:723-34. [PMID: 25303116 DOI: 10.1038/nrm3885] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Following fertilization, gametes undergo epigenetic reprogramming in order to revert to a totipotent state. How embryonic cells subsequently acquire their fate and the role of chromatin dynamics in this process are unknown. Genetic and experimental embryology approaches have identified some of the players and morphological changes that are involved in early mammalian development, but the exact events underlying cell fate allocation in single embryonic cells have remained elusive. Experimental and technological advances have recently provided novel insights into chromatin dynamics and nuclear architecture in single cells; these insights have reshaped our understanding of the mechanisms underlying cell fate allocation and plasticity in early mammalian development.
Collapse
Affiliation(s)
- Adam Burton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 ILLKIRCH, Cité Universitaire de Strasbourg, France
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, F-67404 ILLKIRCH, Cité Universitaire de Strasbourg, France
| |
Collapse
|
59
|
Nie X, Wang H, Li J, Holec S, Berger F. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics. Biol Open 2014; 3:794-802. [PMID: 25086063 PMCID: PMC4163656 DOI: 10.1242/bio.20148680] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In animals, replication-independent incorporation of nucleosomes containing the histone variant H3.3 enables global reprogramming of histone modifications and transcriptional profiles. H3.3 enrichment over gene bodies correlates with gene transcription in animals and plants. In animals, H3.3 is deposited into chromatin by specific protein complexes, including the HIRA complex. H3.3 variants evolved independently and acquired similar properties in animals and plants, questioning how the H3.3 deposition machinery evolved in plants and what are its biological functions. We performed phylogenetic analyses in the plant kingdom and identified in Arabidopsis all orthologs of human genes encoding members of the HIRA complex. Genetic analyses, biochemical data and protein localisation suggest that these proteins form a complex able to interact with H3.3 in Arabidopsis in a manner similar to that described in mammals. In contrast to animals, where HIRA is required for fertilization and early development, loss of function of HIRA in Arabidopsis causes mild phenotypes in the adult plant and does not perturb sexual reproduction and embryogenesis. Rather, HIRA function is required for transcriptional reprogramming during dedifferentiation of plant cells that precedes vegetative propagation and for the appropriate transcription of genes responsive to biotic and abiotic factors. We conclude that the molecular function of the HIRA complex is conserved between plants and animals. Yet plants diversified HIRA functions to enable asexual reproduction and responsiveness to the environment in response to the plant sessile lifestyle.
Collapse
Affiliation(s)
- Xin Nie
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Haifeng Wang
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Jing Li
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Sarah Holec
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Frédéric Berger
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
60
|
Jullien J, Miyamoto K, Pasque V, Allen GE, Bradshaw CR, Garrett NJ, Halley-Stott RP, Kimura H, Ohsumi K, Gurdon JB. Hierarchical molecular events driven by oocyte-specific factors lead to rapid and extensive reprogramming. Mol Cell 2014; 55:524-36. [PMID: 25066233 PMCID: PMC4156308 DOI: 10.1016/j.molcel.2014.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022]
Abstract
Nuclear transfer to oocytes is an efficient way to transcriptionally reprogram somatic nuclei, but its mechanisms remain unclear. Here, we identify a sequence of molecular events that leads to rapid transcriptional reprogramming of somatic nuclei after transplantation to Xenopus oocytes. RNA-seq analyses reveal that reprogramming by oocytes results in a selective switch in transcription toward an oocyte rather than pluripotent type, without requiring new protein synthesis. Time-course analyses at the single-nucleus level show that transcriptional reprogramming is induced in most transplanted nuclei in a highly hierarchical manner. We demonstrate that an extensive exchange of somatic- for oocyte-specific factors mediates reprogramming and leads to robust oocyte RNA polymerase II binding and phosphorylation on transplanted chromatin. Moreover, genome-wide binding of oocyte-specific linker histone B4 supports its role in transcriptional reprogramming. Thus, our study reveals the rapid, abundant, and stepwise loading of oocyte-specific factors onto somatic chromatin as important determinants for successful reprogramming. Xenopus oocytes induce an oocyte transcription pattern in mouse nuclei in 2 days Reprogramming requires a switch from somatic to oocyte transcriptional components Unusually high amounts of oocyte-derived RNA polymerase II drive reprogramming The pattern of oocyte linker histone binding to somatic chromatin is revealed
Collapse
Affiliation(s)
- Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Vincent Pasque
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - George E Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Nigel J Garrett
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Richard P Halley-Stott
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Keita Ohsumi
- Laboratory of Molecular Genetics, Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
61
|
Abstract
Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes, consisting of DNA wrapped around a core of histone proteins, are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. In this review, Weber and Henikoff consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states. Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. Whereas canonical histones package the newly replicated genome, they can be replaced with histone variants that alter nucleosome structure, stability, dynamics, and, ultimately, DNA accessibility. Here we consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states.
Collapse
Affiliation(s)
- Christopher M Weber
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
62
|
Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci U S A 2014; 111:7325-30. [PMID: 24799717 DOI: 10.1073/pnas.1406389111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mature oocyte cytoplasm can reprogram somatic cell nuclei to the pluripotent state through a series of sequential events including protein exchange between the donor nucleus and ooplasm, chromatin remodeling, and pluripotency gene reactivation. Maternal factors that are responsible for this reprogramming process remain largely unidentified. Here, we demonstrate that knockdown of histone variant H3.3 in mouse oocytes results in compromised reprogramming and down-regulation of key pluripotency genes; and this compromised reprogramming for developmental potentials and transcription of pluripotency genes can be rescued by injecting exogenous H3.3 mRNA, but not H3.2 mRNA, into oocytes in somatic cell nuclear transfer embryos. We show that maternal H3.3, and not H3.3 in the donor nucleus, is essential for successful reprogramming of somatic cell nucleus into the pluripotent state. Furthermore, H3.3 is involved in this reprogramming process by remodeling the donor nuclear chromatin through replacement of donor nucleus-derived H3 with de novo synthesized maternal H3.3 protein. Our study shows that H3.3 is a crucial maternal factor for oocyte reprogramming and provides a practical model to directly dissect the oocyte for its reprogramming capacity.
Collapse
|
63
|
Skene PJ, Hernandez AE, Groudine M, Henikoff S. The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. eLife 2014; 3:e02042. [PMID: 24737864 PMCID: PMC3983905 DOI: 10.7554/elife.02042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA polymerase II (PolII) transcribes RNA within a chromatin context, with nucleosomes acting as barriers to transcription. Despite these barriers, transcription through chromatin in vivo is highly efficient, suggesting the existence of factors that overcome this obstacle. To increase the resolution obtained by standard chromatin immunoprecipitation, we developed a novel strategy using micrococcal nuclease digestion of cross-linked chromatin. We find that the chromatin remodeler Chd1 is recruited to promoter proximal nucleosomes of genes undergoing active transcription, where Chd1 is responsible for the vast majority of PolII-directed nucleosome turnover. The expression of a dominant negative form of Chd1 results in increased stalling of PolII past the entry site of the promoter proximal nucleosomes. We find that Chd1 evicts nucleosomes downstream of the promoter in order to overcome the nucleosomal barrier and enable PolII promoter escape, thus providing mechanistic insight into the role of Chd1 in transcription and pluripotency. DOI:http://dx.doi.org/10.7554/eLife.02042.001 DNA is tightly packaged in a material called chromatin inside the cell nucleus. To produce proteins this DNA must first be transcribed to produce a molecule of messenger RNA, which is then translated to make a protein. To assist with this process cells ‘unpack’ certain regions of the DNA so that enzymes that catalyze the different steps in this process can have access to the DNA. A protein called Chd1 is involved in the unpacking process in yeast, but its role in more complex animals is not clear. Now, Skene et al. have shown that this protein is needed to allow the enzyme that catalyzes the transcription of DNA—an enzyme called RNA polymerase II—to do its job. Chd1 acts to unpack the tightly packaged DNA from chromatin, thus allowing the transcription of the DNA to proceed. In the absence of Chd1 activity, RNA polymerase II stalls at the gene promoter—the region of DNA that starts the transcription of a particular gene. This work highlights how the packaging of DNA in the cell is highly dynamic and controls fundamental biological processes. Skene et al. modified a well-known genetic technique called ChIP-seq. Previous ChIP-seq protocols typically provided a blurry, low-resolution map of where proteins bound to chromatin. Skene et al. used an enzyme to ‘chew back’ the DNA to reveal the exact ‘footprints’ of the Chd1 protein and the RNA polymerase II enzyme on the chromatin in mice. It will be possible to adapt this new protocol to map the positions of other proteins, which will help to improve our understanding of the ways in which chromatin regulates access to DNA. DOI:http://dx.doi.org/10.7554/eLife.02042.002
Collapse
Affiliation(s)
- Peter J Skene
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | | | | | | |
Collapse
|
64
|
Adam S, Polo SE, Almouzni G. How to restore chromatin structure and function in response to DNA damage--let the chaperones play: delivered on 9 July 2013 at the 38th FEBS Congress in St Petersburg, Russia. FEBS J 2014; 281:2315-23. [PMID: 24673849 DOI: 10.1111/febs.12793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023]
Abstract
Histone deposition onto DNA assisted by specific chaperones forms the chromatin basic unit and serves to package the genome within the cell nucleus. The resulting chromatin organization, often referred to as the epigenome, contributes to a unique transcriptional program that defines cell identity. Importantly, during cellular life, substantial alterations in chromatin structure may arise due to cell stress, including DNA damage, which not only challenges the integrity of the genome but also threatens the epigenome. Considerable efforts have been made to decipher chromatin dynamics in response to genotoxic stress, and to assess how it affects both genome and epigenome stability. Here, we review recent advances in understanding the mechanisms of DNA damage-induced chromatin plasticity in mammalian cells. We focus specifically on the dynamics of histone H3 variants in response to UV irradiation, and highlight the role of their dedicated chaperones in restoring both chromatin structure and function. Finally, we discuss how, in addition to restoring chromatin integrity, the cellular networks that signal and repair DNA damage may also provide a window of opportunity for modulating the information conveyed by chromatin.
Collapse
Affiliation(s)
- Salomé Adam
- Institut Curie, Centre de Recherche, Paris, France; Centre National de la Recherche Scientifique, UMR3664, Paris, France; Equipe Labellisée Ligue Contre le Cancer, Paris, France; Institut de Formation Doctorale, University Pierre & Marie Curie, Paris, France; Sorbonne University, PSL*, Paris, France; Epigenetics and Cell Fate Centre, UMR7216, Centre National de la Recherche Scientifique/Paris Diderot University, Paris, France
| | | | | |
Collapse
|
65
|
Huang C, Zhu B. H3.3 turnover: a mechanism to poise chromatin for transcription, or a response to open chromatin? Bioessays 2014; 36:579-84. [PMID: 24700556 DOI: 10.1002/bies.201400005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histone H3.3 turnover displays distinct dynamics at various genomic elements such as promoters, enhancers, gene bodies, and heterochromatic regions, suggesting that it is differentially regulated according to chromatin context. Incorporation of variant histones into chromatin provides a mechanism to modulate chromatin states in addition to histone modifications. The replication-independent deposition and replacement of histone variant H3.3, i.e. H3.3 turnover, is mainly associated with transcriptional activity. H3.3 or H3.3-like histone turnover has been studied in various organisms from yeast to mammals. Here, we review the recent progress on this topic. The diversified turnover profiles of H3.3, and their corresponding underlying mechanisms, may reflect distinct requirements for chromatin accessibility in different biological events.
Collapse
Affiliation(s)
- Chang Huang
- National Institute of Biological Sciences, Beijing, China
| | | |
Collapse
|
66
|
Mann JR. Epigenetics and memigenetics. Cell Mol Life Sci 2014; 71:1117-22. [PMID: 24445814 PMCID: PMC11113772 DOI: 10.1007/s00018-014-1560-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
The field of epigenetics is expanding rapidly, yet there is persistent uncertainty in the definition of the term. The word was coined in the mid-twentieth century as a descriptor of how intrinsic, yet largely unknown, forces act with genes to channel progenitor cells along pathways of differentiation. Near the end of the twentieth century, epigenetics was defined more specifically as the study of changes in gene activity states. In some definitions, only those activity states that are inherited across cell division were considered. Other definitions were broader, also including activity states that are transient, or occurring in non-dividing cells. The greatest point of disagreement in these current definitions, is if the term should concern only inherited activity states. To alleviate this disparity, an alternative term, 'memigenetics', could be used in place of epigenetics to describe inherited chromatin activity states. The advantage of this term is that it is self-defining, and would serve to emphasize the important concept of cell memory. It would also free the term epigenetics to be used in a broader sense in accord with the meaning of the prefix 'epi', that is, as a descriptor of what is 'over' DNA at any point in time.
Collapse
Affiliation(s)
- Jeffrey R Mann
- Theme of Genetics, Murdoch Childrens Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, 3052, VIC, Australia,
| |
Collapse
|
67
|
A network of players in H3 histone variant deposition and maintenance at centromeres. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:241-50. [DOI: 10.1016/j.bbagrm.2013.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
|
68
|
Chen P, Wang Y, Li G. Dynamics of histone variant H3.3 and its coregulation with H2A.Z at enhancers and promoters. Nucleus 2014; 5:21-7. [PMID: 24637397 DOI: 10.4161/nucl.28067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, genomic DNA is hierarchically packaged into chromatin by histones. A defined organization of the genome into chromatin with specific patterns of epigenetic modifications is crucial for transcriptional regulation, cell fate determination, and maintenance, in which the histone variant incorporation has been characterized as one of the most key players. The diversity of histone variants results in structural plasticity of chromatin and highlights functionally distinct chromosomal domains. Here we focus on the role of histone variant H3.3 and its coregulation with H2A.Z in chromatin dynamics at enhancers and promoters and transcriptional regulation.
Collapse
Affiliation(s)
- Ping Chen
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Yan Wang
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China; University of Chinese Academy of Sciences; Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| |
Collapse
|
69
|
Chen Y, Chen Q, McEachin RC, Cavalcoli JD, Yu X. H2A.B facilitates transcription elongation at methylated CpG loci. Genome Res 2014; 24:570-9. [PMID: 24402521 PMCID: PMC3975057 DOI: 10.1101/gr.156877.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
H2A.B is a unique histone H2A variant that only exists in mammals. Here we found that H2A.B is ubiquitously expressed in major organs. Genome-wide analysis of H2A.B in mouse ES cells shows that H2A.B is associated with methylated DNA in gene body regions. Moreover, H2A.B-enriched gene loci are actively transcribed. One typical example is that H2A.B is enriched in a set of differentially methylated regions at imprinted loci and facilitates transcription elongation. These results suggest that H2A.B positively regulates transcription elongation by overcoming DNA methylation in the transcribed region. It provides a novel mechanism by which transcription is regulated at DNA hypermethylated regions.
Collapse
Affiliation(s)
- Yibin Chen
- Division of Molecular Medicine and Genetics, Department of Internal Medicine
| | | | | | | | | |
Collapse
|
70
|
Steiner FA, Henikoff S. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife 2014; 3:e02025. [PMID: 24714495 DOI: 10.7554/elife.02025.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Centromeres vary greatly in size and sequence composition, ranging from 'point' centromeres with a single cenH3-containing nucleosome to 'regional' centromeres embedded in tandemly repeated sequences to holocentromeres that extend along the length of entire chromosomes. Point centromeres are defined by sequence, whereas regional and holocentromeres are epigenetically defined by the location of cenH3-containing nucleosomes. In this study, we show that Caenorhabditis elegans holocentromeres are organized as dispersed but discretely localized point centromeres, each forming a single cenH3-containing nucleosome. These centromeric sites co-localize with kinetochore components, and their occupancy is dependent on the cenH3 loading machinery. These sites coincide with non-specific binding sites for multiple transcription factors ('HOT' sites), which become occupied when cenH3 is lost. Our results show that the point centromere is the basic unit of holocentric organization in support of the classical polycentric model for holocentromeres, and provide a mechanistic basis for understanding how centromeric chromatin might be maintained. DOI: http://dx.doi.org/10.7554/eLife.02025.001.
Collapse
Affiliation(s)
- Florian A Steiner
- Basic Sciences Division, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | | |
Collapse
|
71
|
Steiner FA, Henikoff S. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife 2014; 3:e02025. [PMID: 24714495 PMCID: PMC3975580 DOI: 10.7554/elife.02025] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centromeres vary greatly in size and sequence composition, ranging from ‘point’ centromeres with a single cenH3-containing nucleosome to ‘regional’ centromeres embedded in tandemly repeated sequences to holocentromeres that extend along the length of entire chromosomes. Point centromeres are defined by sequence, whereas regional and holocentromeres are epigenetically defined by the location of cenH3-containing nucleosomes. In this study, we show that Caenorhabditis elegans holocentromeres are organized as dispersed but discretely localized point centromeres, each forming a single cenH3-containing nucleosome. These centromeric sites co-localize with kinetochore components, and their occupancy is dependent on the cenH3 loading machinery. These sites coincide with non-specific binding sites for multiple transcription factors (‘HOT’ sites), which become occupied when cenH3 is lost. Our results show that the point centromere is the basic unit of holocentric organization in support of the classical polycentric model for holocentromeres, and provide a mechanistic basis for understanding how centromeric chromatin might be maintained. DOI:http://dx.doi.org/10.7554/eLife.02025.001 During cell division, the chromosomes in the original cell must be replicated and these ‘sister chromosomes’ must then be divided equally between the two new daughter cells. At first, the sister chromosomes are held together near a region called the centromere, which is important because the microtubules that pull the sister chromosomes apart attach themselves to the centromere. In many cases, the centromere is a small region near the middle of the chromosomes, which produces a classic X shape. However, in some organisms centromeres span the entire length of the chromosomes. There are at least 13 plant and animal lineages with such holocentromeres. Inside the nucleus of cells, DNA is wrapped around molecules called histones. There are five major families of histones, and histones belonging to one of these families—the H3 histones—are replaced by cenH3 variant histones at both conventional centromeres and holocentromeres. There are many unanswered questions about holocentromeres. In particular, do holocentromeres truly extend along the full length of the chromosomes, or are they found at a large number of specific sites? Now Steiner and Henikoff have studied the distribution of cenH3 in the genome of the worm C. elegans to investigate holocentromeres in greater detail. These experiments showed that the holocentromere in C. elegans is actually made of about 700 individual centromeric sites distributed along the length of the chromosomes. Each of these sites contains just one nucleosome that contains cenH3, and these sites are likely to be the sites that microtubules attach to during cell division. Surprisingly, the same sites can also act as so-called ‘HOT–sites’: these sites are bound by many proteins that are involved in regulating the process by which genes are expressed as proteins, which suggests a link between centromeres and these regulatory proteins. The work of Steiner and Henikoff describes how centromeric nucleosomes are distributed across the genome, but why and how cenH3 ends up at these particular 700 sites remains an open question. DOI:http://dx.doi.org/10.7554/eLife.02025.002
Collapse
Affiliation(s)
- Florian A Steiner
- Basic Sciences Division, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | | |
Collapse
|
72
|
Adam S, Polo SE, Almouzni G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 2013; 155:94-106. [PMID: 24074863 DOI: 10.1016/j.cell.2013.08.029] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/17/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Understanding how to recover fully functional and transcriptionally active chromatin when its integrity has been challenged by genotoxic stress is a critical issue. Here, by investigating how chromatin dynamics regulate transcriptional activity in response to DNA damage in human cells, we identify a pathway involving the histone chaperone histone regulator A (HIRA) to promote transcription restart after UVC damage. Our mechanistic studies reveal that HIRA accumulates at sites of UVC irradiation upon detection of DNA damage prior to repair and deposits newly synthesized H3.3 histones. This local action of HIRA depends on ubiquitylation events associated with damage recognition. Furthermore, we demonstrate that the early and transient function of HIRA in response to DNA damage primes chromatin for later reactivation of transcription. We propose that HIRA-dependent histone deposition serves as a chromatin bookmarking system to facilitate transcription recovery after genotoxic stress.
Collapse
Affiliation(s)
- Salomé Adam
- Chromatin Dynamics, Institut Curie Research Centre, 75248 Paris Cedex 5, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
| | | | | |
Collapse
|
73
|
Yuen BTK, Knoepfler PS. Histone H3.3 mutations: a variant path to cancer. Cancer Cell 2013; 24:567-74. [PMID: 24229707 PMCID: PMC3882088 DOI: 10.1016/j.ccr.2013.09.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022]
Abstract
A host of cancer types exhibit aberrant histone modifications. Recently, distinct and recurrent mutations in a specific histone variant, histone H3.3, have been implicated in a high proportion of malignant pediatric brain cancers. The presence of mutant H3.3 histone disrupts epigenetic posttranslational modifications near genes involved in cancer processes and in brain function. Here, we review possible mechanisms by which mutant H3.3 histones may act to promote tumorigenesis. Furthermore, we discuss how perturbations in normal H3.3 chromatin-related and epigenetic functions may more broadly contribute to the formation of human cancers.
Collapse
Affiliation(s)
- Benjamin T K Yuen
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, 4303 Tupper Hall, Davis, CA 95616, USA; Genome Center, University of California Davis School of Medicine, 451 Health Sciences Drive, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | | |
Collapse
|
74
|
Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013; 502:462-71. [PMID: 24153299 PMCID: PMC4216318 DOI: 10.1038/nature12749] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Effie Apostolou
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
75
|
Ishiuchi T, Torres-Padilla ME. Towards an understanding of the regulatory mechanisms of totipotency. Curr Opin Genet Dev 2013; 23:512-8. [DOI: 10.1016/j.gde.2013.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
76
|
Abstract
Most histones are assembled into nucleosomes during replication to package genomic DNA. However, several variant histones are deposited independently of replication at particular regions of chromosomes. Such histone variants include cenH3, which forms the nucleosomal foundation for the centromere, and H3.3, which replaces histones that are lost during dynamic processes that disrupt nucleosomes. Furthermore, various H2A variants participate in DNA repair, gene regulation and other processes that are, as yet, not fully understood. Here, we review recent studies that have implicated histone variants in maintaining pluripotency and as causal factors in cancer and other diseases.
Collapse
Affiliation(s)
- Peter J Skene
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
77
|
Filipescu D, Szenker E, Almouzni G. Developmental roles of histone H3 variants and their chaperones. Trends Genet 2013; 29:630-40. [PMID: 23830582 DOI: 10.1016/j.tig.2013.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 11/27/2022]
Abstract
Animal development and lifetime potential exploit a balance between the stability and plasticity of cellular identity. Within the nucleus, this is controlled by an interplay involving lineage-specific transcription factors and chromatin dynamics. Histone H3 variants contribute to chromatin dynamics through the timing and sites of their incorporation, promoted by dedicated histone chaperones. Moreover, their individual modifications and binding partners provide distinct features at defined genomic loci. We highlight here the importance of the H3.3 replacement variant for the nuclear reprogramming that occurs during gametogenesis, fertilization, and germline establishment. Furthermore, we describe how the recently characterized H3.3 dynamics associated with gastrulation, myogenesis, or neurogenesis underline the role of chromatin changes in cell differentiation. Finally, we discuss the challenges of maintaining centromeric identity through propagation of the centromeric CenH3 variant in different cell types. Future challenges will be to gain a comprehensive picture of H3 variants and their chaperones during development and differentiation.
Collapse
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris F-75248 Cedex 05, France; CNRS, UMR218, Paris F-75248 Cedex 05, France
| | | | | |
Collapse
|
78
|
Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y. Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. THE PLANT CELL 2013; 25:2444-63. [PMID: 23903317 PMCID: PMC3753376 DOI: 10.1105/tpc.113.109538] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/31/2013] [Accepted: 07/03/2013] [Indexed: 05/19/2023]
Abstract
The molecular mechanisms underlying plant cell totipotency are largely unknown. Here, we present a protocol for the efficient regeneration of plants from Arabidopsis thaliana protoplasts. The specific liquid medium used in our study leads to a high rate of reentry into the cell cycle of most cell types, providing a powerful system to study dedifferentiation/regeneration processes in independent somatic cells. To identify the early events in the establishment of totipotency, we monitored the genome-wide transcript profiles of plantlets and protoplast-derived cells (PdCs) during the first week of culture. Plant cells rapidly dedifferentiated. Then, we observed the reinitiation and reorientation of protein synthesis, accompanied by the reinitiation of cell division and de novo cell wall synthesis. Marked changes in the expression of chromatin-associated genes, especially of those in the histone variant family, were observed during protoplast culture. Surprisingly, the epigenetic status of PdCs and well-established cell cultures differed, with PdCs exhibiting rare reactivated transposons and epigenetic changes. The differentially expressed genes identified in this study are interesting candidates for investigating the molecular mechanisms underlying plant cell plasticity and totipotency. One of these genes, the plant-specific transcription factor ABERRANT LATERAL ROOT FORMATION4, is required for the initiation of protoplast division.
Collapse
Affiliation(s)
- Marie-Christine Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Fabienne Granier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Olivier Pichon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Jean-Pierre Renou
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Valérie Gaudin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Yves Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
79
|
Salomoni P. The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture. Front Oncol 2013; 3:152. [PMID: 23760585 PMCID: PMC3675705 DOI: 10.3389/fonc.2013.00152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
The promyelocytic leukemia (PML) protein has been implicated in regulation of multiple key cellular functions, from transcription to calcium homeostasis. PML pleiotropic role is in part related to its ability to localize to both the nucleus and cytoplasm. In the nucleus, PML is known to regulate gene transcription, a role linked to its ability to associate with transcription factors as well as chromatin-remodelers. A new twist came from the discovery that the PML-interacting protein death-associated protein 6 (DAXX) acts as chaperone for the histone H3.3 variant. H3.3 is found enriched at active genes, centromeric heterochromatin, and telomeres, and has been proposed to act as important carrier of epigenetic information. Our recent work has implicated DAXX in regulation of H3.3 loading and transcription in the central nervous system (CNS). Remarkably, driver mutations in H3.3 and/or its loading machinery have been identified in brain cancer, thus suggesting a role for altered H3.3 function/deposition in CNS tumorigenesis. Aberrant H3.3 deposition may also play a role in leukemia pathogenesis, given DAXX role in PML-RARα-driven transformation and the identification of a DAXX missense mutation in acute myeloid leukemia. This review aims to critically discuss the existing literature and propose new avenues for investigation.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute , University College London, London , UK
| |
Collapse
|
80
|
Newhart A, Rafalska-Metcalf IU, Yang T, Joo LM, Powers SL, Kossenkov AV, Lopez-Jones M, Singer RH, Showe LC, Skordalakes E, Janicki SM. Single cell analysis of RNA-mediated histone H3.3 recruitment to a cytomegalovirus promoter-regulated transcription site. J Biol Chem 2013; 288:19882-99. [PMID: 23689370 DOI: 10.1074/jbc.m113.473181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike the core histones, which are incorporated into nucleosomes concomitant with DNA replication, histone H3.3 is synthesized throughout the cell cycle and utilized for replication-independent (RI) chromatin assembly. The RI incorporation of H3.3 into nucleosomes is highly conserved and occurs at both euchromatin and heterochromatin. However, neither the mechanism of H3.3 recruitment nor its essential function is well understood. Several different chaperones regulate H3.3 assembly at distinct sites. The H3.3 chaperone, Daxx, and the chromatin-remodeling factor, ATRX, are required for H3.3 incorporation and heterochromatic silencing at telomeres, pericentromeres, and the cytomegalovirus (CMV) promoter. By evaluating H3.3 dynamics at a CMV promoter-regulated transcription site in a genetic background in which RI chromatin assembly is blocked, we have been able to decipher the regulatory events upstream of RI nucleosomal deposition. We find that at the activated transcription site, H3.3 accumulates with sense and antisense RNA, suggesting that it is recruited through an RNA-mediated mechanism. Sense and antisense transcription also increases after H3.3 knockdown, suggesting that the RNA signal is amplified when chromatin assembly is blocked and attenuated by nucleosomal deposition. Additionally, we find that H3.3 is still recruited after Daxx knockdown, supporting a chaperone-independent recruitment mechanism. Sequences in the H3.3 N-terminal tail and αN helix mediate both its recruitment to RNA at the activated transcription site and its interaction with double-stranded RNA in vitro. Interestingly, the H3.3 gain-of-function pediatric glioblastoma mutations, G34R and K27M, differentially affect H3.3 affinity in these assays, suggesting that disruption of an RNA-mediated regulatory event could drive malignant transformation.
Collapse
Affiliation(s)
- Alyshia Newhart
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics Chromatin 2013; 6:7. [PMID: 23570311 PMCID: PMC3635903 DOI: 10.1186/1756-8935-6-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background The histone variant H3.3 plays key roles in regulating chromatin states and transcription. However, the role of endogenous H3.3 in mammalian cells and during development has been less thoroughly investigated. To address this gap, we report the production and phenotypic analysis of mice and cells with targeted disruption of the H3.3-encoding gene, H3f3b. Results H3f3b knockout (KO) mice exhibit a semilethal phenotype traceable at least in part to defective cell division and chromosome segregation. H3f3b KO cells have widespread ectopic CENP-A protein localization suggesting one possible mechanism for defective chromosome segregation. KO cells have abnormal karyotypes and cell cycle profiles as well. The transcriptome and euchromatin-related epigenome were moderately affected by loss of H3f3b in mouse embryonic fibroblasts (MEFs) with ontology most notably pointing to changes in chromatin regulatory and histone coding genes. Reduced numbers of H3f3b KO mice survive to maturity and almost all survivors from both sexes are infertile. Conclusions Taken together, our studies suggest that endogenous mammalian histone H3.3 has important roles in regulating chromatin and chromosome functions that in turn are important for cell division, genome integrity, and development.
Collapse
|
82
|
Skene PJ, Henikoff S. Chromatin roadblocks to reprogramming 50 years on. BMC Biol 2012; 10:83. [PMID: 23107587 PMCID: PMC3483161 DOI: 10.1186/1741-7007-10-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/17/2012] [Indexed: 11/10/2022] Open
Abstract
A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon.
Collapse
Affiliation(s)
- Peter J Skene
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|