51
|
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475:1611-1634. [PMID: 29743249 PMCID: PMC5941316 DOI: 10.1042/bcj20170164] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Collapse
|
52
|
Lee JY, Alexeyev M, Kozhukhar N, Pastukh V, White R, Stevens T. Carbonic anhydrase IX is a critical determinant of pulmonary microvascular endothelial cell pH regulation and angiogenesis during acidosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L41-L51. [PMID: 29631360 DOI: 10.1152/ajplung.00446.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrase IX (CA IX) is highly expressed in rapidly proliferating and highly glycolytic cells, where it serves to enhance acid-regulatory capacity. Pulmonary microvascular endothelial cells (PMVECs) actively utilize aerobic glycolysis and acidify media, whereas pulmonary arterial endothelial cells (PAECs) primarily rely on oxidative phosphorylation and minimally change media pH. Therefore, we hypothesized that CA IX is critical to PMVEC angiogenesis because of its important role in regulating pH. To test this hypothesis, PMVECs and PAECs were isolated from Sprague-Dawley rats. CA IX knockout PMVECs were generated using the CRISPR-Cas9 technique. During serum-stimulated growth, mild acidosis (pH 6.8) did not affect cell counts of PMVECs, but it decreased PAEC cell number. Severe acidosis (pH 6.2) decreased cell counts of PMVECs and elicited an even more pronounced reduction of PAECs. PMVECs had a higher CA IX expression compared with PAECs. CA activity was higher in PMVECs compared with PAECs, and enzyme activity was dependent on the type IX isoform. Pharmacological inhibition and genetic ablation of CA IX caused profound dysregulation of extra- and intracellular pH in PMVECs. Matrigel assays revealed impaired angiogenesis of CA IX knockout PMVECs in acidosis. Lastly, pharmacological CA IX inhibition caused profound cell death in PMVECs, whereas genetic CA IX ablation had little effect on PMVEC cell death in acidosis. Thus CA IX controls PMVEC pH necessary for angiogenesis during acidosis. CA IX may contribute to lung vascular repair during acute lung injury that is accompanied by acidosis within the microenvironment.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Roderica White
- Center for Healthy Communities, University of South Alabama , Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| |
Collapse
|
53
|
Wang Y, Han X, Fu M, Wang J, Song Y, Liu Y, Zhang J, Zhou J, Ge J. Qiliqiangxin attenuates hypoxia-induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF-1α-dependent glycolysis. J Cell Mol Med 2018; 22:2791-2803. [PMID: 29502357 PMCID: PMC5908112 DOI: 10.1111/jcmm.13572] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre-treated with QL (0.5 mg/mL) and/or HIF-1α siRNA were cultured in a three-gas hypoxic incubator chamber (5% CO2 , 1% O2 , 94% N2 ) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF-1α-dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF-1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up-regulating HIF-1α and a series of glycolysis-relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6-phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF-1α-dependent manner. Lastly, the results suggested that QL-dependent enhancement of HIF-1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF-1α pathway, and we speculated that QL also improved HIF-1α stabilization through down-regulating prolyl hydroxylases 3 (PHD3) expression.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueting Han
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingqiang Fu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Song
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Zhang
- Department of Cardiology, Zoucheng Hospital, Affiliated Hospital of Jining medical university, Jinan, Shandong, China
| | - Jingmin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
54
|
Jayaraman A, Kumar P, Marin S, de Atauri P, Mateo F, M. Thomson T, J. Centelles J, F. Graham S, Cascante M. Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations. PLoS One 2018; 13:e0192175. [PMID: 29466368 PMCID: PMC5821452 DOI: 10.1371/journal.pone.0192175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic adaptations, downstream to any cellular change, can reveal attractive targets for inhibiting cancer growth. In the tumour microenvironment, endothelial cells (ECs) interact with heterogeneous tumour cell types that drive angiogenesis and metastasis. In this study we aim to characterize the metabolic alterations in ECs influenced by the presence of tumour cells with extreme metastatic abilities. Human umbilical vein endothelial cells (HUVECs) were subjected to different microenvironmental conditions, such as the presence of highly metastatic PC-3M and highly invasive PC-3S prostate cancer cell lines, in addition to the angiogenic activator vascular endothelial growth factor (VEGF), under normoxia. Untargeted high resolution liquid chromatography-mass spectrometry (LC-MS) based metabolomics revealed significant metabolite differences among the various conditions and a total of 25 significantly altered metabolites were identified including acetyl L-carnitine, NAD+, hypoxanthine, guanine and oleamide, with profile changes unique to each of the experimental conditions. Biochemical pathway analysis revealed the importance of fatty acid oxidation and nucleotide salvage pathways. These results provide a global metabolic preview that could help in selectively targeting the ECs aiding in either cancer cell invasion or metastasis in the heterogeneous tumour microenvironment.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Praveen Kumar
- Beaumont Health System, Beaumont Research Institute, Royal Oak, Michigan, United States of America
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro de Atauri
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesca Mateo
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Timothy M. Thomson
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Josep J. Centelles
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Stewart F. Graham
- Beaumont Health System, Beaumont Research Institute, Royal Oak, Michigan, United States of America
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
55
|
Zecchin A, Kalucka J, Dubois C, Carmeliet P. How Endothelial Cells Adapt Their Metabolism to Form Vessels in Tumors. Front Immunol 2017; 8:1750. [PMID: 29321777 PMCID: PMC5732229 DOI: 10.3389/fimmu.2017.01750] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/24/2017] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells (ECs) line blood vessels, i.e., vital conduits for oxygen and nutrient delivery to distant tissues. While mostly present as quiescent "phalanx" cells throughout adult life, ECs can rapidly switch to a migratory "tip" cell and a proliferative "stalk" cell, and sprout into avascular tissue to form new blood vessels. The angiogenic switch has long been considered to be primarily orchestrated by the activity of angiogenic molecules. However, recent evidence illustrates an instrumental role of cellular metabolism in vessel sprouting, whereby ECs require specific metabolic adaptations to grow. Here, we overview the emerging picture that tip, stalk, and phalanx cells have distinct metabolic signatures and discuss how these signatures can become deregulated in pathological conditions, such as in cancer.
Collapse
Affiliation(s)
- Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Charlotte Dubois
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
56
|
Giachini FR, Galaviz-Hernandez C, Damiano AE, Viana M, Cadavid A, Asturizaga P, Teran E, Clapes S, Alcala M, Bueno J, Calderón-Domínguez M, Ramos MP, Lima VV, Sosa-Macias M, Martinez N, Roberts JM, Escudero C. Vascular Dysfunction in Mother and Offspring During Preeclampsia: Contributions from Latin-American Countries. Curr Hypertens Rep 2017; 19:83. [PMID: 28986756 DOI: 10.1007/s11906-017-0781-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pregnancy is a physiologically stressful condition that generates a series of functional adaptations by the cardiovascular system. The impact of pregnancy on this system persists from conception beyond birth. Recent evidence suggests that vascular changes associated with pregnancy complications, such as preeclampsia, affect the function of the maternal and offspring vascular systems, after delivery and into adult life. Since the vascular system contributes to systemic homeostasis, defective development or function of blood vessels predisposes both mother and infant to future risk for chronic disease. These alterations in later life range from fertility problems to alterations in the central nervous system or immune system, among others. It is important to note that rates of morbi-mortality due to pregnancy complications including preeclampsia, as well as cardiovascular diseases, have a higher incidence in Latin-American countries than in more developed countries. Nonetheless, there is a lack both in the amount and impact of research conducted in Latin America. An impact, although smaller, can be seen when research in vascular disorders related to problems during pregnancy is analyzed. Therefore, in this review, information about preeclampsia and endothelial dysfunction generated from research groups based in Latin-American countries will be highlighted. We relate the need, as present in many other countries in the world, for increased effective regional and international collaboration to generate new data specific to our region on this topic.
Collapse
Affiliation(s)
- Fernanda Regina Giachini
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, MT, Brazil
| | | | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, IFIBIO Houssay-UBA-CONICET, Buenos Aires, Argentina.,Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquimica, UBA, Buenos Aires, Argentina
| | - Marta Viana
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Angela Cadavid
- Grupo Reproducción, Departamento de Fisiologia, Facultad de Medicina Universidad de Antioquia, Medellin, Colombia
| | | | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sonia Clapes
- Universidad de Ciencias Médicas de La Habana, Havana, Cuba
| | - Martin Alcala
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Julio Bueno
- Grupo Reproducción, Departamento de Fisiologia, Facultad de Medicina Universidad de Antioquia, Medellin, Colombia
| | - María Calderón-Domínguez
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María P Ramos
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Victor Vitorino Lima
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, MT, Brazil
| | - Martha Sosa-Macias
- Pharmacogenomics Academia, Instituto Politécnico Nacional-CIIDIR Durango, Durango, Mexico
| | - Nora Martinez
- Laboratorio de Biología de la Reproducción, IFIBIO Houssay-UBA-CONICET, Buenos Aires, Argentina
| | - James M Roberts
- Magee-Womens Research Institute, Departments of Obstetrics, Gynecology and Reproductive Sciences, Epidemiology, and the Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlos Escudero
- Vascular Physiology Laboratory Group of Investigation in Tumor Angiogenesis (GIANT) Group of Research and Innovation in Vascular Health (GRIVAS Health) Basic Sciences Department Faculty of Sciences, Universidad del Bio-Bio, Chillan, Chile.
| | | |
Collapse
|
57
|
Lee JY, McMurtry SA, Stevens T. Single cell cloning generates lung endothelial colonies with conserved growth, angiogenic, and bioenergetic characteristics. Pulm Circ 2017; 7:777-792. [PMID: 28841087 PMCID: PMC5703126 DOI: 10.1177/2045893217731295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/03/2017] [Indexed: 01/13/2023] Open
Abstract
Pulmonary artery, capillary, and vein endothelial cells possess distinctive structures and functions, which represent a form of vascular segment specific macroheterogeneity. However, within each of these segmental populations, individual cell functional variability represents a poorly characterized microheterogeneity. Here, we hypothesized that single cell clonogenic assays would reveal microheterogeneity among the parent cell population and enable isolation of highly representative cells with committed parental characteristics. To test this hypothesis, pulmonary microvascular endothelial cells (PMVECs) and pulmonary arterial endothelial cells (PAECs) were isolated from different Sprague Dawley rats. Serum stimulated proliferation of endothelial populations and single cell clonogenic potential were evaluated. In vitro Matrigel assays were utilized to analyze angiogenic potential and the Seahorse assay was used to evaluate bioenergetic profiles. PMVEC populations grew faster and had a higher proliferative potential than PAEC populations. Fewer PMVECs were needed to form networks on Matrigel when compared with PAECs. PMVECs primarily utilized aerobic glycolysis, while PAECs relied more heavily on oxidative phosphorylation, to support bioenergetic demands. Repeated single cell cloning and expansion of PAEC colonies generated homogeneous first-generation clones that were highly reflective of the parental population in terms of growth, angiogenic potential, and bioenergetic profiles. Repeated single cell cloning of the first-generation clones generated second-generation clones with increased proliferative potential while maintaining other parental characteristics. Second-generation clones were highly homogeneous populations. Thus, single cell cloning reveals microheterogeneity among the parent cell population and enables isolation of highly representative cells with parental characteristics.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Department of Internal Medicine, University of South Alabama, Mobile, AL, USA
- Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Sarah A. McMurtry
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Department of Internal Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
58
|
Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, Frid MG, Upton PD, D'Alessandro A, Hadinnapola C, Kiskin FN, Taha M, Hurst LA, Ormiston ML, Hata A, Stenmark KR, Carmeliet P, Stewart DJ, Morrell NW. Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2. Circulation 2017; 136:2451-2467. [PMID: 28971999 DOI: 10.1161/circulationaha.117.028034] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by abnormal growth and enhanced glycolysis of pulmonary artery endothelial cells. However, the mechanisms underlying alterations in energy production have not been identified. METHODS Here, we examined the miRNA and proteomic profiles of blood outgrowth endothelial cells (BOECs) from patients with heritable PAH caused by mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene and patients with idiopathic PAH to determine mechanisms underlying abnormal endothelial glycolysis. We hypothesized that in BOECs from patients with PAH, the downregulation of microRNA-124 (miR-124), determined with a tiered systems biology approach, is responsible for increased expression of the splicing factor PTBP1 (polypyrimidine tract binding protein), resulting in alternative splicing of pyruvate kinase muscle isoforms 1 and 2 (PKM1 and 2) and consequently increased PKM2 expression. We questioned whether this alternative regulation plays a critical role in the hyperglycolytic phenotype of PAH endothelial cells. RESULTS Heritable PAH and idiopathic PAH BOECs recapitulated the metabolic abnormalities observed in pulmonary artery endothelial cells from patients with idiopathic PAH, confirming a switch from oxidative phosphorylation to aerobic glycolysis. Overexpression of miR-124 or siRNA silencing of PTPB1 restored normal proliferation and glycolysis in heritable PAH BOECs, corrected the dysregulation of glycolytic genes and lactate production, and partially restored mitochondrial respiration. BMPR2 knockdown in control BOECs reduced the expression of miR-124, increased PTPB1, and enhanced glycolysis. Moreover, we observed reduced miR-124, increased PTPB1 and PKM2 expression, and significant dysregulation of glycolytic genes in the rat SUGEN-hypoxia model of severe PAH, characterized by reduced BMPR2 expression and endothelial hyperproliferation, supporting the relevance of this mechanism in vivo. CONCLUSIONS Pulmonary vascular and circulating progenitor endothelial cells isolated from patients with PAH demonstrate downregulation of miR-124, leading to the metabolic and proliferative abnormalities in PAH ECs via PTPB1 and PKM1/PKM2. Therefore, the manipulation of this miRNA or its targets could represent a novel therapeutic approach for the treatment of PAH.
Collapse
Affiliation(s)
- Paola Caruso
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| | - Benjamin J Dunmore
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| | - Kenny Schlosser
- Ottawa Hospital Research Institute and University of Ottawa, Ontario, Canada (K.S., C.P.-I., J.R.L., M.T., D.J.S.)
| | - Sandra Schoors
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium (S.S., P.C.).,Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Belgium (S.S., P.C.)
| | - Claudia Dos Santos
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.S., M.L.O.)
| | - Carol Perez-Iratxeta
- Ottawa Hospital Research Institute and University of Ottawa, Ontario, Canada (K.S., C.P.-I., J.R.L., M.T., D.J.S.)
| | - Jessie R Lavoie
- Ottawa Hospital Research Institute and University of Ottawa, Ontario, Canada (K.S., C.P.-I., J.R.L., M.T., D.J.S.)
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., A.R.F., M.G.F., K.R.S.)
| | - Lu Long
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| | - Amanda R Flockton
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., A.R.F., M.G.F., K.R.S.)
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., A.R.F., M.G.F., K.R.S.)
| | - Paul D Upton
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| | | | - Charaka Hadinnapola
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| | - Fedir N Kiskin
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| | - Mohamad Taha
- Ottawa Hospital Research Institute and University of Ottawa, Ontario, Canada (K.S., C.P.-I., J.R.L., M.T., D.J.S.)
| | - Liam A Hurst
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| | - Mark L Ormiston
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.D.S., M.L.O.)
| | - Akiko Hata
- University of Colorado, Anschutz Medical Campus, Aurora. Cardiovascular Research Institute, University of California, San Francisco (A.H.)
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., A.R.F., M.G.F., K.R.S.)
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium (S.S., P.C.).,Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Belgium (S.S., P.C.)
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and University of Ottawa, Ontario, Canada (K.S., C.P.-I., J.R.L., M.T., D.J.S.)
| | - Nicholas W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)
| |
Collapse
|
59
|
Miranda-Gonçalves V, Bezerra F, Costa-Almeida R, Freitas-Cunha M, Soares R, Martinho O, Reis RM, Pinheiro C, Baltazar F. Monocarboxylate transporter 1 is a key player in glioma-endothelial cell crosstalk. Mol Carcinog 2017; 56:2630-2642. [PMID: 28762551 DOI: 10.1002/mc.22707] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is one of the most glycolytic and angiogenic human tumors, characteristics that contribute to the poor prognosis associated with this type of tumor. A lactate shuttle has been described between tumor cells and endothelial cells (ECs), with the monocarboxylate transporters (MCTs) acting as important players in this tumor-EC communication. In this study, we aimed to understand how the tumor microenvironment modulates EC metabolism, and to characterize the role of MCTs in the glioma-brain EC crosstalk. Exposure of human brain microvascular ECs (HBMEC) to GBM cell-conditioned media increased the expression of MCT1, which corresponded to activation of oxidative metabolism and an increase in angiogenic capacity, as determined by increased proliferation, migration, and vessel assembly. Lactate depletion from the microenvironment or inhibition of lactate uptake in HBMEC induced an increase in lactate production and a decrease in proliferation, migration, and vessel assembly. Moreover, addition of lactate to HBMEC media promoted activation of AKT and AMPK pathways and increased expression in NFκB, HIF-1α, and the lactate receptor GPR81. Here, we demonstrate a role for MCT1 as a mediator of lactate signaling between glioma cells and brain ECs. Our results suggest that MCT1 can mediate EC metabolic reprograming, proliferation, and vessel sprouting in response to tumor signaling. Thus, targeting MCT1 in both tumor cells and brain EC may be a promising therapeutic strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Bezerra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- Faculty of Medicine, Biochemistry Department, University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Marta Freitas-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Soares
- Faculty of Medicine, Biochemistry Department, University of Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
60
|
Dasgupta A, Paul D, De RK. A fuzzy logic controller based approach to model the switching mechanism of the mammalian central carbon metabolic pathway in normal and cancer cells. MOLECULAR BIOSYSTEMS 2017; 12:2490-505. [PMID: 27225801 DOI: 10.1039/c6mb00131a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamics of large nonlinear complex systems, like metabolic networks, depend on several parameters. A metabolic pathway may switch to another pathway in accordance with the current state of parameters in both normal and cancer cells. Here, most of the parameter values are unknown to us. A fuzzy logic controller (FLC) has been developed here for the purpose of modeling metabolic networks by approximating the reasons for the behaviour of a system and applying expert knowledge to track switching between metabolic pathways. The simulation results can track the switching between glycolysis and gluconeogenesis, as well as glycolysis and pentose phosphate pathways (PPP) in normal cells. Unlike normal cells, pyruvate kinase (M2 isoform) (PKM2) switches alternatively between its two oligomeric forms, i.e. an active tetramer and a relatively low activity dimer, in cancer cells. Besides, there is a coordination among PKM2 switching and enzymes catalyzing PPP. These phenomena help cancer cells to maintain their high energy demand and macromolecular synthesis. However, the reduction of initial adenosine triphosphate (ATP) to a very low concentration, decreasing initial glucose uptake, destroying coordination between glycolysis and PPP, and replacement of PKM2 by its relatively inactive oligomeric form (dimer) or inhibition of the translation of PKM2 may destabilize the mutated control mechanism of the mammalian central carbon metabolic (CCM) pathway in cancer cells. The performance of the model is compared appropriately with some existing ones.
Collapse
Affiliation(s)
- Abhijit Dasgupta
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, West Bengal, India.
| | - Debjyoti Paul
- Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, West Bengal, India.
| | - Rajat K De
- Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, West Bengal, India.
| |
Collapse
|
61
|
Kim B, Li J, Jang C, Arany Z. Glutamine fuels proliferation but not migration of endothelial cells. EMBO J 2017; 36:2321-2333. [PMID: 28659379 DOI: 10.15252/embj.201796436] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022] Open
Abstract
Endothelial metabolism is a key regulator of angiogenesis. Glutamine metabolism in endothelial cells (ECs) has been poorly studied. We used genetic modifications and 13C tracing approaches to define glutamine metabolism in these cells. Glutamine supplies the majority of carbons in the tricyclic acid (TCA) cycle of ECs and contributes to lipid biosynthesis via reductive carboxylation. EC-specific deletion in mice of glutaminase, the initial enzyme in glutamine catabolism, markedly blunts angiogenesis. In cell culture, glutamine deprivation or inhibition of glutaminase prevents EC proliferation, but does not prevent cell migration, which relies instead on aerobic glycolysis. Without glutamine catabolism, there is near complete loss of TCA intermediates, with no compensation from glucose-derived anaplerosis. Mechanistically, addition of exogenous alpha-ketoglutarate replenishes TCA intermediates and rescues cellular growth, but simultaneously unveils a requirement for Rac1-dependent macropinocytosis to provide non-essential amino acids, including asparagine. Together, these data outline the dependence of ECs on glutamine for cataplerotic processes; the need for glutamine as a nitrogen source for generation of biomass; and the distinct roles of glucose and glutamine in EC biology.
Collapse
Affiliation(s)
- Boa Kim
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Li
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Chemistry and Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zoltan Arany
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA .,Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
62
|
Mao YZ, Jiang L. Effects of Notch signalling pathway on the relationship between vascular endothelial dysfunction and endothelial stromal transformation in atherosclerosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017. [PMID: 28622044 DOI: 10.1080/21691401.2017.1337030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
At present, with the improvement of living standards and population aging, the incidence of cardiovascular and cerebrovascular disease is on the rise and has been a serious threat to human health. Statistics show that the current death caused by cardiovascular and cerebrovascular disease has become the first cause of death has been increasing year by year. Therefore, studies on coronary heart disease and atherosclerosis (AS) have become a hot topic in clinical and basic research. In this study, the question of the effect of Notch signalling pathway on the relationship between endothelial dysfunction and endothelial stromal transformation in AS was studied in depth. Based on our results, we drew conclusions as follows. First, the Notch signalling pathway was activated in the atherosclerotic model; secondly, the Notch signalling pathway was demonstrated to enhance AS by promoting vascular endothelial dysfunction; thirdly, it was demonstrated that the Notch signalling pathway was mediated by promoting endothelial and to enhance AS; finally, we confirmed the endothelial function through the Notch signalling pathway to affect the transformation of endothelial stroma to achieve synergistic AS effect. The results of this study have a good guiding significance for the important role of Notch signalling in AS and indicate the ability to influence endothelial function and endothelial stromal transformation by intervening Notch signalling pathway and can affect the relationship between them, and thus eventually achieve the treatment of AS.
Collapse
Affiliation(s)
- Yong-Zhong Mao
- a Department of Pediatric Surgery Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ling Jiang
- b Department of Geriatrics , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
63
|
Rey S, Schito L, Wouters BG, Eliasof S, Kerbel RS. Targeting Hypoxia-Inducible Factors for Antiangiogenic Cancer Therapy. Trends Cancer 2017; 3:529-541. [PMID: 28718406 DOI: 10.1016/j.trecan.2017.05.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
Hypoxia (low O2) is a pathobiological hallmark of solid cancers, resulting from the imbalance between cellular O2 consumption and availability. Hypoxic cancer cells (CCs) stimulate blood vessel sprouting (angiogenesis), aimed at restoring O2 delivery to the expanding tumor masses through the activation of a transcriptional program mediated by hypoxia-inducible factors (HIFs). Here, we review recent data suggesting that the efficacy of antiangiogenic (AA) therapies is limited in some circumstances by HIF-dependent compensatory responses to increased intratumoral hypoxia. In lieu of this evidence, we discuss the potential of targeting HIFs as a strategy to overcome these instances of AA therapy resistance.
Collapse
Affiliation(s)
- Sergio Rey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Luana Schito
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada; Radiation Oncology, University of Toronto, ON, Canada
| | | | - Robert S Kerbel
- Radiation Oncology, University of Toronto, ON, Canada; Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
64
|
Trenti A, Tedesco S, Boscaro C, Ferri N, Cignarella A, Trevisi L, Bolego C. The Glycolytic Enzyme PFKFB3 Is Involved in Estrogen-Mediated Angiogenesis via GPER1. J Pharmacol Exp Ther 2017; 361:398-407. [PMID: 28348059 DOI: 10.1124/jpet.116.238212] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/22/2017] [Indexed: 01/08/2023] Open
Abstract
The endogenous estrogen 17β-estradiol (E2) is a key factor in promoting endothelial healing and angiogenesis. Recently, proangiogenic signals including vascular endothelial growth factor and others have been shown to converge in endothelial cell metabolism. Because inhibition of the glycolytic enzyme activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) reduces pathologic angiogenesis and estrogen receptor (ER) signaling stimulates glucose uptake and glycolysis by inducing PFKFB3 in breast cancer, we hypothesized that E2 triggers angiogenesis in endothelial cells via rapid ER signaling that requires PFKFB3 as a downstream effector. We report that treatment with the selective G protein-coupled estrogen receptor (GPER1) agonist G-1 (10-10 to 10-7 M) mimicked the chemotactic and proangiogenic effect of E2 as measured in a number of short-term angiogenesis assays in human umbilical vein endothelial cells (HUVECs); in addition, E2 treatment upregulated PFKFB3 expression in a time- and concentration-dependent manner. Such an effect peaked at 3 hours and was also induced by G-1 and abolished by pretreatment with the GPER1 antagonist G-15 or GPER1 siRNA, consistent with engagement of membrane ER. Experiments with the PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one showed that PFKFB3 activity was required for estrogen-mediated HUVEC migration via GPER1. In conclusion, E2-induced angiogenesis was mediated at least in part by the membrane GPER1 and required upregulation of the glycolytic activator PFKFB3 in HUVECs. These findings unravel a previously unrecognized mechanism of estrogen-dependent endocrine-metabolic crosstalk in HUVECs and may have implications in angiogenesis occurring in ischemic or hypoxic tissues.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Serena Tedesco
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Andrea Cignarella
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| |
Collapse
|
65
|
Gupta S, Roy A, Dwarakanath BS. Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy. Front Oncol 2017; 7:68. [PMID: 28447025 PMCID: PMC5388702 DOI: 10.3389/fonc.2017.00068] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the nature of interactions as well as competitions ensuring steady supply of nutrients and anapleoretic molecules for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic reprogramming also plays a significant role in suppressing the immune attack on the tumor cells and in resistance to therapies. Thus, the metabolic cooperation and competition among the different TME components besides the inherent alterations in the tumor cells arising out of genetic as well as epigenetic changes supports growth, metastasis, and therapeutic resistance. This review focuses on the metabolic remodeling achieved through an active cooperation and competition among the three principal components of the TME—the tumor cells, the T cells, and the cancer-associated fibroblasts while discussing about the current strategies that target metabolism of TME components. Further, we will also consider the probable therapeutic opportunities targeting the various metabolic pathways as well as the signaling molecules/transcription factors regulating them for the development of novel treatment strategies for cancer.
Collapse
Affiliation(s)
- Seema Gupta
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Amrita Roy
- School of Life Sciences, B. S. Abdur Rahman Crescent University, Chennai, India
| | | |
Collapse
|
66
|
Geeraerts X, Bolli E, Fendt SM, Van Ginderachter JA. Macrophage Metabolism As Therapeutic Target for Cancer, Atherosclerosis, and Obesity. Front Immunol 2017; 8:289. [PMID: 28360914 PMCID: PMC5350105 DOI: 10.3389/fimmu.2017.00289] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are not only essential components of innate immunity that contribute to host defense against infections, but also tumor growth and the maintenance of tissue homeostasis. An important feature of macrophages is their plasticity and ability to adopt diverse activation states in response to their microenvironment and in line with their functional requirements. Recent immunometabolism studies have shown that alterations in the metabolic profile of macrophages shape their activation state and function. For instance, to fulfill their respective functions lipopolysaccharides-induced pro-inflammatory macrophages and interleukin-4 activated anti-inflammatory macrophages adopt a different metabolism. Thus, metabolic reprogramming of macrophages could become a therapeutic approach to treat diseases that have a high macrophage involvement, such as cancer. In the first part of this review, we will focus on the metabolic pathways altered in differentially activated macrophages and link their metabolic aspects to their pro- and anti-inflammatory phenotype. In the second part, we will discuss how macrophage metabolism is a promising target for therapeutic intervention in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Xenia Geeraerts
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, VIB, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Evangelia Bolli
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, VIB, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, VIB, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
67
|
MacAskill MG, Tavares AS, Wu J, Lucatelli C, Mountford JC, Baker AH, Newby DE, Hadoke PWF. PET Cell Tracking Using 18F-FLT is Not Limited by Local Reuptake of Free Radiotracer. Sci Rep 2017; 7:44233. [PMID: 28287126 PMCID: PMC5347009 DOI: 10.1038/srep44233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Assessing the retention of cell therapies following implantation is vital and often achieved by labelling cells with 2'-[18F]-fluoro-2'-deoxy-D-glucose (18F-FDG). However, this approach is limited by local retention of cell-effluxed radiotracer. Here, in a preclinical model of critical limb ischemia, we assessed a novel method of cell tracking using 3'-deoxy-3'-L-[18F]-fluorothymidine (18F-FLT); a clinically available radiotracer which we hypothesise will result in minimal local radiotracer reuptake and allow a more accurate estimation of cell retention. Human endothelial cells (HUVECs) were incubated with 18F-FDG or 18F-FLT and cell characteristics were evaluated. Dynamic positron emission tomography (PET) images were acquired post-injection of free 18F-FDG/18F-FLT or 18F-FDG/18F-FLT-labelled HUVECs, following the surgical induction of mouse hind-limb ischemia. In vitro, radiotracer incorporation and efflux was similar with no effect on cell viability, function or proliferation under optimised conditions (5 MBq/mL, 60 min). Injection of free radiotracer demonstrated a faster clearance of 18F-FLT from the injection site vs. 18F-FDG (p ≤ 0.001), indicating local cellular uptake. Using 18F-FLT-labelling, estimation of HUVEC retention within the engraftment site 4 hr post-administration was 24.5 ± 3.2%. PET cell tracking using 18F-FLT labelling is an improved approach vs. 18F-FDG as it is not susceptible to local host cell reuptake, resulting in a more accurate estimation of cell retention.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Junxi Wu
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Joanne C Mountford
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Andrew H Baker
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
68
|
Park JY, Kang YW, Choi BY, Yang YC, Cho BP, Cho WG. CCL11 promotes angiogenic activity by activating the PI3K/Akt pathway in HUVECs. J Recept Signal Transduct Res 2017; 37:416-421. [PMID: 28279120 DOI: 10.1080/10799893.2017.1298132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CCR3, the receptor for CCL11, is expressed on the surface of immune cells and even on non-immune cells. CCL11-CCR3 interactions can promote cell migration and proliferation. In this study, we investigated the effect of CCL11 on angiogenesis in HUVECs and also examined the molecular mechanisms of this process. We found that CCL11 induced mRNA transcription and protein expression of CCR3 in HUVECs. Moreover, the scratch wound healing assay and MTS proliferation assay both demonstrated that CCL11 promotes endothelial cell migration and induces weak proliferation. CCL11 directly induced microvessel sprouting from the rat aortic ring; these effects occurred earlier and to a greater extent than with VEGF stimulation. Furthermore, CCL11-induced phosphorylation of Akt was abolished by PI3K inhibitors. siRNA-mediated knockdown of CCR3 led to a significant reduction of PI3K phosphorylation. However, the phosphorylation levels of ERK1/2 were not changed, even after CCL11 treatment. Cumulatively, our data suggest that the CCL11-CCR3 interaction mainly activates PI3K/Akt signal transduction pathway in HUVECs.
Collapse
Affiliation(s)
- Jun Young Park
- a Department of Anatomy , Yonsei University Wonju College of Medicine , Wonju , Republic of Korea
| | - Yeo Wool Kang
- a Department of Anatomy , Yonsei University Wonju College of Medicine , Wonju , Republic of Korea
| | - Byung Young Choi
- a Department of Anatomy , Yonsei University Wonju College of Medicine , Wonju , Republic of Korea
| | - Young Chul Yang
- a Department of Anatomy , Yonsei University Wonju College of Medicine , Wonju , Republic of Korea
| | - Byung Pil Cho
- a Department of Anatomy , Yonsei University Wonju College of Medicine , Wonju , Republic of Korea
| | - Won Gil Cho
- a Department of Anatomy , Yonsei University Wonju College of Medicine , Wonju , Republic of Korea
| |
Collapse
|
69
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
70
|
Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascul Pharmacol 2017; 90:8-18. [DOI: 10.1016/j.vph.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/19/2022]
|
71
|
Jiménez-Valerio G, Casanovas O. Angiogenesis and Metabolism: Entwined for Therapy Resistance. Trends Cancer 2016; 3:10-18. [PMID: 28718423 DOI: 10.1016/j.trecan.2016.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
Angiogenesis and metabolism are entwined processes that permit tumor growth and progression. Blood vessel supply is necessary for tumor survival not only by providing oxygen and nutrients for anabolism but also by removing waste products from cellular metabolism. On the other hand, blocking angiogenesis with antiangiogenic therapies shows clinical benefits in treating several tumor types. Nevertheless, resistance to therapy emerges over time. In this review we discuss a novel mechanism of adaptive resistance involving metabolic adaptation of tumor cells, and we also provide examples of tumor adaptation to therapy, which may represent a new mechanism of resistance in several types of cancer. Thus, targeting this metabolic tumor adaptation could be a way to avoid resistance in cancer patients.
Collapse
Affiliation(s)
- Gabriela Jiménez-Valerio
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
72
|
Tumova S, Kerimi A, Porter KE, Williamson G. Transendothelial glucose transport is not restricted by extracellular hyperglycaemia. Vascul Pharmacol 2016; 87:219-229. [DOI: 10.1016/j.vph.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 11/02/2016] [Indexed: 01/18/2023]
|
73
|
Lapel M, Weston P, Strassheim D, Karoor V, Burns N, Lyubchenko T, Paucek P, Stenmark KR, Gerasimovskaya EV. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am J Physiol Cell Physiol 2016; 312:C56-C70. [PMID: 27856430 PMCID: PMC5283894 DOI: 10.1152/ajpcell.00250.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production). Stimulation of glycolysis was accompanied by increased levels of phospho-phosphofructokinase B3, hexokinase (HK), and GLUT-1, but not lactate dehydrogenase. Moreover, extracellular ATP and MeSADP, and to a lesser extent adenosine, increased basal and maximal oxygen consumption rates in VVEC. These effects were potentiated when the cells were cultured in 20 mM galactose and 5 mM glucose compared with 25 mM glucose. Treatment with P2R agonists decreased phosphorylation of pyruvate dehydrogenase (PDH)-E1α and increased succinate dehydrogenase (SDH), cytochrome oxidase IV, and β-subunit of F1F0 ATP synthase expression. In addition, P2R stimulation transiently elevated mitochondrial Ca2+ concentration, implying involvement of mitochondria in VVEC angiogenic activation. We also demonstrated a critical role of phosphatidylinositol 3-kinase and Akt pathways in lactate production, PDH-E1α phosphorylation, and the expression of HK, SDH, and GLUT-1 in ATP-stimulated VVEC. Together, our findings suggest that purinergic and metabolic regulation of VVEC energy pathways is essential for VV angiogenesis and may contribute to pathologic vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Martin Lapel
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Philip Weston
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Derek Strassheim
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Vijaya Karoor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Nana Burns
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Taras Lyubchenko
- Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Petr Paucek
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | |
Collapse
|
74
|
Wong PP, Bodrug N, Hodivala-Dilke KM. Exploring Novel Methods for Modulating Tumor Blood Vessels in Cancer Treatment. Curr Biol 2016; 26:R1161-R1166. [PMID: 27825457 DOI: 10.1016/j.cub.2016.09.043] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies have explored the potential of targeting tumor angiogenesis in cancer treatment. Anti-angiogenesis monotherapy, which reduces blood vessel numbers, may still hold some promise in cancer treatment, but thus far it has only provided a modest effect on overall survival benefits. When combined with standard chemotherapies, some significant improvements in cancer therapy have been reported. However, anti-angiogenesis therapies can have undesirable effects, including the induction of tumor hypoxia and reduction of delivery of chemotherapeutic drugs. Interestingly, anti-angiogenic drugs, such as bevacizumab, when used at lower doses, can actually induce vascular normalization (that is, they improve blood vessel function and flow) and potentially enhance co-administrated chemotherapeutic drug delivery. Unfortunately, vascular normalization is a difficult approach to apply in clinical settings. Thus, there is an urgent need to explore new approaches for modulating the tumor vasculature. Here, we explore how vascular promotion strategies (which enhance blood vessel numbers and leakiness) may be optimized for combination therapies as an alternative option for cancer treatment.
Collapse
Affiliation(s)
- Ping-Pui Wong
- Centre for Molecular Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Natalia Bodrug
- Centre for Tumor Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumor Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
75
|
Paik JY, Jung KH, Lee JH, Park JW, Lee KH. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension. Nucl Med Biol 2016; 45:8-14. [PMID: 27835826 DOI: 10.1016/j.nucmedbio.2016.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022]
Abstract
Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18F-fluorodeoxyglucose (18F-FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18F-FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18F-FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18F-FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18F-FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18F-FDG transport.
Collapse
Affiliation(s)
- Jin-Young Paik
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Won Park
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
76
|
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HYPOXIA (AUCKLAND, N.Z.) 2016. [PMID: 27774485 DOI: 10.2147/hp.s93413.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
77
|
Dias QC, Nunes IDS, Garcia PV, Favaro WJ. Potential therapeutic strategies for non - muscle invasive bladder cancer based on association of intravesical immunotherapy with p - mapa and systemic administration of cisplatin and doxorubicin. Int Braz J Urol 2016; 42:942-954. [PMID: 24893914 PMCID: PMC5066890 DOI: 10.1590/s1677-5538.ibju.2015.0381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 11/21/2022] Open
Abstract
The present study describes the histopathological and molecular effects of P-MAPA (Protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride) intravesical immunotherapy combined with systemic doxorubicin or cisplatin for treatment of non-muscle invasive bladder cancer (NMIBC) in an appropriate animal model. Our results showed an undifferentiated tumor, characterizing a tumor invading mucosa or submucosa of the bladder wall (pT1) and papillary carcinoma in situ (pTa) in the Cancer group. The histopathological changes were similar between the combined treatment with intravesical P-MAPA plus systemic Cisplatin and P-MAPA immunotherapy alone, showing decrease of urothelial neoplastic lesions progression and histopathological recovery in 80% of the animals. The animals treated systemically with cisplatin or doxorubicin singly, showed 100% of malignant lesions in the urinary bladder. Furthemore, the combined treatment with P-MAPA and Doxorubicin showed no decrease of urothelial neoplastic lesions progression and histopathological recovery. Furthermore, Akt, PI3K, NF-kB and VEGF protein levels were significantly lower in intravesical P-MAPA plus systemic cisplatin and in intravesical P-MAPA alone treatments than other groups. In contrast, PTEN protein levels were significantly higher in intravesical P-MAPA plus systemic cisplatin and in intravesical P-MAPA alone treatments. Thus, it could be concluded that combination of intravesical P-MAPA immunotherapy and systemic cisplatin in the NMIBC animal model was effective, well tolerated and showed no apparent signs of antagonism between the drugs. In addition, intravesical P-MAPA immunotherapy may be considered as a valuable option for treatment of BCG unresponsive patients that unmet the criteria for early cystectomy.
Collapse
Affiliation(s)
- Queila Cristina Dias
- Laboratório de Urogenital Carcinogênese e Imunoterapia do Departamento de Biologia Estrutural e Funcional da Universidade de Campinas (UNICAMP), Campinas, SP, Brasil
| | | | - Patrick Vianna Garcia
- Laboratório de Urogenital Carcinogênese e Imunoterapia do Departamento de Biologia Estrutural e Funcional da Universidade de Campinas (UNICAMP), Campinas, SP, Brasil
| | - Wagner Jose Favaro
- Laboratório de Urogenital Carcinogênese e Imunoterapia do Departamento de Biologia Estrutural e Funcional da Universidade de Campinas (UNICAMP), Campinas, SP, Brasil.,FarmaBrasilis R & D, Campinas, SP, Brasil
| |
Collapse
|
78
|
Garcia PV, Seiva FRF, Carniato AP, de Mello Júnior W, Duran N, Macedo AM, de Oliveira AG, Romih R, Nunes IDS, Nunes ODS, Fávaro WJ. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer 2016; 16:422. [PMID: 27389279 PMCID: PMC4937612 DOI: 10.1186/s12885-016-2474-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The new modalities for treating patients with non-muscle invasive bladder cancer (NMIBC) for whom BCG (Bacillus Calmette-Guerin) has failed or is contraindicated are recently increasing due to the development of new drugs. Although agents like mitomycin C and BCG are routinely used, there is a need for more potent and/or less-toxic agents. In this scenario, a new perspective is represented by P-MAPA (Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride), developed by Farmabrasilis (non-profit research network). This study detailed and characterized the mechanisms of action of P-MAPA based on activation of mediators of Toll-like Receptors (TLRs) 2 and 4 signaling pathways and p53 in regulating angiogenesis and apoptosis in an animal model of NMIBC, as well as, compared these mechanisms with BCG treatment. RESULTS Our results demonstrated the activation of the immune system by BCG (MyD88-dependent pathway) resulted in increased inflammatory cytokines. However, P-MAPA intravesical immunotherapy led to distinct activation of TLRs 2 and 4-mediated innate immune system, resulting in increased interferons signaling pathway (TRIF-dependent pathway), which was more effective in the NMIBC treatment. Interferon signaling pathway activation induced by P-MAPA led to increase of iNOS protein levels, resulting in apoptosis and histopathological recovery. Additionally, P-MAPA immunotherapy increased wild-type p53 protein levels. The increased wild-type p53 protein levels were fundamental to NO-induced apoptosis and the up-regulation of BAX. Furthermore, interferon signaling pathway induction and increased p53 protein levels by P-MAPA led to important antitumor effects, not only suppressing abnormal cell proliferation, but also by preventing continuous expansion of tumor mass through suppression of angiogenesis, which was characterized by decreased VEGF and increased endostatin protein levels. CONCLUSIONS Thus, P-MAPA immunotherapy could be considered an important therapeutic strategy for NMIBC, as well as, opens a new perspective for treatment of patients that are refractory or resistant to BCG intravesical therapy.
Collapse
Affiliation(s)
- Patrick Vianna Garcia
- />Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), P.O. BOX 6109, zip code 13083-865 Campinas, São Paulo Brazil
| | | | - Amanda Pocol Carniato
- />Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), P.O. BOX 6109, zip code 13083-865 Campinas, São Paulo Brazil
| | - Wilson de Mello Júnior
- />Department of Anatomy, Institute of Biosciences, UNESP - Univ Estadual Paulista, Botucatu, SP Brazil
| | - Nelson Duran
- />Farmabrasilis R&D Division, Campinas, SP Brazil
- />NanoBioss, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP Brazil
| | | | - Alexandre Gabarra de Oliveira
- />Department of Internal Medicine, University of Campinas (UNICAMP), Campinas, SP Brazil
- />Department of Physical Education, São Paulo State University (UNESP), Rio Claro, SP Brazil
| | - Rok Romih
- />Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Wagner José Fávaro
- />Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), P.O. BOX 6109, zip code 13083-865 Campinas, São Paulo Brazil
- />Farmabrasilis R&D Division, Campinas, SP Brazil
- />NanoBioss, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP Brazil
| |
Collapse
|
79
|
Mirtschink P, Krek W. Hypoxia-driven glycolytic and fructolytic metabolic programs: Pivotal to hypertrophic heart disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1822-8. [DOI: 10.1016/j.bbamcr.2016.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 01/21/2023]
|
80
|
Wan A, Rodrigues B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res 2016; 111:172-83. [PMID: 27288009 DOI: 10.1093/cvr/cvw159] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022] Open
Abstract
The incidence of diabetes is increasing globally, with cardiovascular disease accounting for a substantial number of diabetes-related deaths. Although atherosclerotic vascular disease is a primary reason for this cardiovascular dysfunction, heart failure in patients with diabetes might also be an outcome of an intrinsic heart muscle malfunction, labelled diabetic cardiomyopathy. Changes in cardiomyocyte metabolism, which encompasses a shift to exclusive fatty acid utilization, are considered a leading stimulus for this cardiomyopathy. In addition to cardiomyocytes, endothelial cells (ECs) make up a significant proportion of the heart, with the majority of ATP generation in these cells provided by glucose. In this review, we will discuss the metabolic machinery that drives energy metabolism in the cardiomyocyte and EC, its breakdown following diabetes, and the research direction necessary to assist in devising novel therapeutic strategies to prevent or delay diabetic heart disease.
Collapse
Affiliation(s)
- Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
81
|
Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:281-306. [PMID: 27451101 DOI: 10.1016/bs.apha.2016.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review.
Collapse
|
82
|
Ciechanowska A, Ladyzynski P, Hoser G, Sabalinska S, Kawiak J, Foltynski P, Wojciechowski C, Chwojnowski A. Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies. J Artif Organs 2016; 19:270-7. [PMID: 27139241 DOI: 10.1007/s10047-016-0902-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 01/15/2023]
Abstract
Human endothelial cells are used in experimental models for studying in vitro pathophysiological mechanisms of different diseases. We developed an original bioreactor, which can simulate human blood vessel, with capillary polysulfone membranes covered with the human umbilical vein endothelial cells (HUVECs) and we characterized its properties. The elaborated cell seeding and culturing procedures ensured formation of a confluent cell monolayer on the inside surface of capillaries within 24 h of culturing under the shear stress of 6.6 dyn/cm(2). The optimal density of cells to be seeded was 60,000 cells/cm(2). Labeling HUVECs with carboxyfluorescein succinimidyl ester (CFSE) did not influence cells' metabolism. Flow cytometry-based analysis of HUVECs stained with CFSE demonstrated that in a presence of the shear stress cells' proliferation was much inhibited (after 72 h proliferation index was equal to 1.9 and 6.2 for cultures with and without shear stress, respectively) and the monolayer was formed mainly due to migration and spreading of cells that were physiologically elongated in a direction of the flow. Monitoring of cells' metabolism showed that HUVECs cultured in a presence of the shear stress preferred anaerobic metabolism and they consumed 1.5 times more glucose and produced 2.3 times more lactate than the cells cultured under static conditions. Daily von Willebrand factor production by HUVECs was near 2 times higher in a presence of the shear stress. The developed model can be used for at least 3 days in target studies under conditions mimicking the in vivo state more closely than the static HUVEC cultures.
Collapse
Affiliation(s)
- Anna Ciechanowska
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland.
| | - Piotr Ladyzynski
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland
| | - Grazyna Hoser
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland
| | - Stanislawa Sabalinska
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland
| | - Jerzy Kawiak
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland
| | - Piotr Foltynski
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland
| | - Cezary Wojciechowski
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland
| | - Andrzej Chwojnowski
- Department of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, Warsaw, Poland
| |
Collapse
|
83
|
Rodríguez-Núñez I, Romero F, Saavedra MJ. [Exercise-induced shear stress: Physiological basis and clinical impact]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 86:244-54. [PMID: 27118039 DOI: 10.1016/j.acmx.2016.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 11/30/2022] Open
Abstract
The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population.
Collapse
Affiliation(s)
- Iván Rodríguez-Núñez
- Laboratorio de Biología del Ejercicio, Escuela de Kinesiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile; Carrera de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Concepción, Chile; Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Universidad de la Frontera. Laboratorio de Neurociencia y Biología de péptidos CEBIOR-CEGIN BIOREN, Depto. Ciencias Preclínicas, Facultad Medicina, UFRO, Temuco, Chile; Programa de Magíster en Kinesiología Cardiorrespiratoria, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.
| | - Fernando Romero
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Universidad de la Frontera. Laboratorio de Neurociencia y Biología de péptidos CEBIOR-CEGIN BIOREN, Depto. Ciencias Preclínicas, Facultad Medicina, UFRO, Temuco, Chile
| | - María Javiera Saavedra
- Programa de Magíster en Kinesiología Cardiorrespiratoria, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
84
|
Escudero CA, Herlitz K, Troncoso F, Acurio J, Aguayo C, Roberts JM, Truong G, Duncombe G, Rice G, Salomon C. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies. Front Physiol 2016; 7:98. [PMID: 27047385 PMCID: PMC4796029 DOI: 10.3389/fphys.2016.00098] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Preeclampsia is a syndrome characterized by hypertension during pregnancy, which is a leading cause of morbidity and mortality in both mother and newborn in developing countries. Some advances have increased the understanding of pathophysiology of this disease. For example, reduced utero-placental blood flow associated with impaired trophoblast invasion may lead to a hypoxic placenta that releases harmful materials into the maternal and feto-placental circulation and impairs endothelial function. Identification of these harmful materials is one of the hot topics in the literature, since these provide potential biomarkers. Certainty, such knowledge will help us to understand the miscommunication between mother and fetus. In this review we highlight how placental extracellular vesicles and their cargo, such as small RNAs (i.e., microRNAs), might be involved in endothelial dysfunction, and then in the angiogenesis process, during preeclampsia. Currently only a few reports have addressed the potential role of endothelial regulatory miRNA in the impaired angiogenesis in preeclampsia. One of the main limitations in this area is the variability of the analyses performed in the current literature. This includes variability in the size of the particles analyzed, and broad variation in the exosomes considered. The quantity of microRNA targets genes suggest that practically all endothelial cell metabolic functions might be impaired. More studies are required to investigate mechanisms underlying miRNA released from placenta upon endothelial function involved in the angiogenenic process.
Collapse
Affiliation(s)
- Carlos A Escudero
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-BíoChillán, Chile; Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile
| | - Kurt Herlitz
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-Bío Chillán, Chile
| | - Felipe Troncoso
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-Bío Chillán, Chile
| | - Jesenia Acurio
- Group of Investigation in Tumor Angiogenesis, Vascular Physiology Laboratory, Universidad del Bío-Bío Chillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Universidad del Bío-BíoChillán, Chile; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile
| | - James M Roberts
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Epidemiology, and the Clinical and Translational Science Institute, Magee-Womens Research Institute, University of Pittsburgh Pittsburgh, PA, USA
| | - Grace Truong
- Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Gregory Duncombe
- Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Gregory Rice
- Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia; Ochsner Clinic Foundation, Maternal-Fetal Medicine, Department of Obstetrics and GynecologyNew Orleans, LA, USA
| | - Carlos Salomon
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of ConcepciónConcepción, Chile; Exosome Biology Laboratory, Faculty of Medicine and Biomedical Sciences, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia; Ochsner Clinic Foundation, Maternal-Fetal Medicine, Department of Obstetrics and GynecologyNew Orleans, LA, USA
| |
Collapse
|
85
|
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HYPOXIA 2015; 3:83-92. [PMID: 27774485 PMCID: PMC5045092 DOI: 10.2147/hp.s93413] [Citation(s) in RCA: 1346] [Impact Index Per Article: 134.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
86
|
Integration of Mitochondrial Targeting for Molecular Cancer Therapeutics. Int J Cell Biol 2015; 2015:283145. [PMID: 26713093 PMCID: PMC4680051 DOI: 10.1155/2015/283145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial metabolism greatly influences cancer cell survival, invasion, metastasis, and resistance to many anticancer drugs. Furthermore, molecular-targeted therapies (e.g., oncogenic kinase inhibitors) create a dependence of surviving cells on mitochondrial metabolism. For these reasons, inhibition of mitochondrial metabolism represents promising therapeutic pathways in cancer. This review provides an overview of mitochondrial metabolism in cancer and discusses the limitations of mitochondrial inhibition for cancer treatment. Finally, we present preclinical evidence that mitochondrial inhibition could be associated with oncogenic “drivers” inhibitors, which may lead to innovative drug combinations for improving the efficacy of molecular-targeted therapy.
Collapse
|
87
|
Huang CC, Wang SY, Lin LL, Wang PW, Chen TY, Hsu WM, Lin TK, Liou CW, Chuang JH. Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice. Dis Model Mech 2015; 8:1247-54. [PMID: 26398947 PMCID: PMC4610240 DOI: 10.1242/dmm.021667] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/04/2015] [Indexed: 01/31/2023] Open
Abstract
Neuroblastoma is characterized by a wide range of clinical manifestations and associated with poor prognosis when there is amplification of MYCN oncogene or high expression of Myc oncoproteins. In a previous in vitro study, we found that the glycolytic inhibitor 2-deoxyglucose (2DG) could suppress the growth of neuroblastoma cells, particularly in those with MYCN amplification. In this study, we established a mouse model of neuroblastoma xenografts with SK-N-DZ and SK-N-AS cells treated with 2DG by intraperitoneal injection twice a week for 3 weeks at 100 or 500 mg/kg body weight. We found that 2DG was effective in suppressing the growth of both MYCN-amplified SK-N-DZ and MYCN-non-amplified SK-N-AS neuroblastoma xenografts, which was associated with downregulation of HIF-1α, PDK1 and c-Myc, and a reduction in the number of tumor blood vessels. In vitro study showed that 2DG can suppress proliferation, cause apoptosis and reduce migration of murine endothelial cells, with inhibition of the formation of lamellipodia and filopodia and disorganization of F-actin filaments. The results suggest that 2DG might simultaneously target cancer cells and endothelial cells in the neuroblastoma xenografts in mice regardless of the status of MYCN amplification, providing a potential therapeutic opportunity to use 2DG or other glycolytic inhibitors for the treatment of patients with refractory neuroblastoma.
Collapse
Affiliation(s)
- Chao-Cheng Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Shuo-Yu Wang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 710, Taiwan Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Li-Ling Lin
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Pei-Wen Wang
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan Department of Internal and Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ting-Ya Chen
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Tsu-Kung Lin
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Wei Liou
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiin-Haur Chuang
- The Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan The Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
88
|
Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE, Petrova LL. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol 2015; 64:174-84. [PMID: 25900038 DOI: 10.1016/j.biocel.2015.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 12/29/2022]
Abstract
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.
Collapse
Affiliation(s)
- Alla B Salmina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Natalia V Kuvacheva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Andrey V Morgun
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yulia K Komleva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Elena A Pozhilenkova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Olga L Lopatina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yana V Gorina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Tatyana E Taranushenko
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Lyudmila L Petrova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| |
Collapse
|