51
|
Wang T, Yang J, Xiao Y, Wang J, Wang Y, Zeng X, Wang Y, Peng J. DFinder: a novel end-to-end graph embedding-based method to identify drug-food interactions. Bioinformatics 2022; 39:6965015. [PMID: 36579885 PMCID: PMC9828147 DOI: 10.1093/bioinformatics/btac837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Drug-food interactions (DFIs) occur when some constituents of food affect the bioaccessibility or efficacy of the drug by involving in drug pharmacodynamic and/or pharmacokinetic processes. Many computational methods have achieved remarkable results in link prediction tasks between biological entities, which show the potential of computational methods in discovering novel DFIs. However, there are few computational approaches that pay attention to DFI identification. This is mainly due to the lack of DFI data. In addition, food is generally made up of a variety of chemical substances. The complexity of food makes it difficult to generate accurate feature representations for food. Therefore, it is urgent to develop effective computational approaches for learning the food feature representation and predicting DFIs. RESULTS In this article, we first collect DFI data from DrugBank and PubMed, respectively, to construct two datasets, named DrugBank-DFI and PubMed-DFI. Based on these two datasets, two DFI networks are constructed. Then, we propose a novel end-to-end graph embedding-based method named DFinder to identify DFIs. DFinder combines node attribute features and topological structure features to learn the representations of drugs and food constituents. In topology space, we adopt a simplified graph convolution network-based method to learn the topological structure features. In feature space, we use a deep neural network to extract attribute features from the original node attributes. The evaluation results indicate that DFinder performs better than other baseline methods. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/23AIBox/23AIBox-DFinder. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tao Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710072, China
| | - Jinjin Yang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710072, China
| | - Yifu Xiao
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710072, China
| | - Jingru Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710072, China
| | - Yuxian Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710072, China
| | - Xi Zeng
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710072, China
| | - Yongtian Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China,Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi’an 710072, China
| | | |
Collapse
|
52
|
Pan D, Quan L, Jin Z, Chen T, Wang X, Xie J, Wu T, Lyu Q. Multisource Attention-Mechanism-Based Encoder-Decoder Model for Predicting Drug-Drug Interaction Events. J Chem Inf Model 2022; 62:6258-6270. [PMID: 36449561 DOI: 10.1021/acs.jcim.2c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Many computational methods have been proposed to predict drug-drug interactions (DDIs), which can occur when combining drugs to treat various diseases, but most mainly utilize single-source features of drugs, which is inadequate for drug representation. To fill this gap, we propose two attention-mechanism-based encoder-decoder models that incorporate multisource information: one is MAEDDI, which can predict DDIs, and the other is MAEDDIE, which can make further DDI-associated event predictions for drug pairs with DDIs. To better express the drug feature, we used three encoding methods to encode the drugs, integrating the self-attention mechanism, cross-attention mechanism, and graph attention network to construct a multisource feature fusion network. Experiments showed that both MAEDDI and MAEDDIE performed better than some state-of-the-art methods in various validation attempts at different experimental tasks. The visualization analysis showed that the semantic features of drug pairs learned from our models had a good drug representation. In practice, MAEDDIE successfully screened 43 DDI events on favipiravir, an influenza antiviral drug, with a success rate of nearly 50%. Our model achieved competitive results, mainly owing to the design of sequence-based, structural, biochemical, and statistical multisource features. Moreover, different encoders constructed based on different features learn the interrelationship information between drug pairs, and the different representations of these drug pairs are incorporated to predict the target problem. All of these encoders were designed to better characterize the complex DDI relationships, allowing us to achieve high generalization in DDI and DDI-associated event predations.
Collapse
Affiliation(s)
- Deng Pan
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Lijun Quan
- School of Computer Science and Technology, Soochow University, Suzhou215006, China.,Province Key Lab for Information Processing Technologies, Soochow University, Suzhou215006, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing210000, China
| | - Zhi Jin
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Taoning Chen
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Xuejiao Wang
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Jingxin Xie
- School of Computer Science and Technology, Soochow University, Suzhou215006, China
| | - Tingfang Wu
- School of Computer Science and Technology, Soochow University, Suzhou215006, China.,Province Key Lab for Information Processing Technologies, Soochow University, Suzhou215006, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing210000, China
| | - Qiang Lyu
- School of Computer Science and Technology, Soochow University, Suzhou215006, China.,Province Key Lab for Information Processing Technologies, Soochow University, Suzhou215006, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing210000, China
| |
Collapse
|
53
|
Xie J, Zhao C, Ouyang J, He H, Huang D, Liu M, Wang J, Zhang W. TP-DDI: A Two-Pathway Deep Neural Network for Drug-Drug Interaction Prediction. Interdiscip Sci 2022; 14:895-905. [PMID: 35622314 DOI: 10.1007/s12539-022-00524-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Adverse drug-drug interactions (DDIs) can severely damage the body. Thus, it is essential to accurately predict DDIs. DDIs are complex processes in which many factors can cause interactions. Rather than merely considering one or two of the factors, we design a two-pathway drug-drug interaction framework named TP-DDI that uses multimodal data for DDI prediction. TP-DDI effectively explores the combined effect of a topological structure-based pathway and a biomedical object similarity-based pathway to obtain multimodal drug representations. For the topology-based pathway, we focus on drug chemistry structures through the self-attention mechanism, which can capture hidden critical relationships, especially between pairs of atoms at remote topological distances. For the similarity-based pathway, our model can emphasize useful biomedical objects according to the channel weights. Finally, the fusion of multimodal data provides a holistic view of DDIs by learning the complementary features. On a real-world dataset, experiments show that TP-DDI can achieve better performance than the state-of-the-art models. Moreover, we can find the most critical substructures with certain interpretability in the newly predicted DDIs.
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Chang Zhao
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jiaming Ouyang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Hongjian He
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Dingkai Huang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Mengjiao Liu
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Wenjun Zhang
- College of Information Technology, Shanghai Jianqiao University, Shanghai, 201306, China.
| |
Collapse
|
54
|
A survey of graph neural networks in various learning paradigms: methods, applications, and challenges. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
55
|
Askr H, Elgeldawi E, Aboul Ella H, Elshaier YAMM, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev 2022; 56:5975-6037. [PMID: 36415536 PMCID: PMC9669545 DOI: 10.1007/s10462-022-10306-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Recently, using artificial intelligence (AI) in drug discovery has received much attention since it significantly shortens the time and cost of developing new drugs. Deep learning (DL)-based approaches are increasingly being used in all stages of drug development as DL technology advances, and drug-related data grows. Therefore, this paper presents a systematic Literature review (SLR) that integrates the recent DL technologies and applications in drug discovery Including, drug-target interactions (DTIs), drug-drug similarity interactions (DDIs), drug sensitivity and responsiveness, and drug-side effect predictions. We present a review of more than 300 articles between 2000 and 2022. The benchmark data sets, the databases, and the evaluation measures are also presented. In addition, this paper provides an overview of how explainable AI (XAI) supports drug discovery problems. The drug dosing optimization and success stories are discussed as well. Finally, digital twining (DT) and open issues are suggested as future research challenges for drug discovery problems. Challenges to be addressed, future research directions are identified, and an extensive bibliography is also included.
Collapse
Affiliation(s)
- Heba Askr
- Faculty of Computers and Artificial Intelligence, University of Sadat City, Sadat City, Egypt
| | - Enas Elgeldawi
- Computer Science Department, Faculty of Science, Minia University, Minia, Egypt
| | - Heba Aboul Ella
- Faculty of Pharmacy and Drug Technology, Chinese University in Egypt (CUE), Cairo, Egypt
| | | | - Mamdouh M. Gomaa
- Computer Science Department, Faculty of Science, Minia University, Minia, Egypt
| | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt
| |
Collapse
|
56
|
Roy R, Marakkar S, Vayalil MP, Shahanaz A, Anil AP, Kunnathpeedikayil S, Rawal I, Shetty K, Shameer Z, Sathees S, Prasannakumar AP, Mathew OK, Subramanian L, Shameer K, Yadav KK. Drug-food Interactions in the Era of Molecular Big Data, Machine Intelligence, and Personalized Health. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:27-50. [PMID: 36173075 PMCID: PMC10258917 DOI: 10.2174/2212798412666220620104809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022]
Abstract
The drug-food interaction brings forth changes in the clinical effects of drugs. While favourable interactions bring positive clinical outcomes, unfavourable interactions may lead to toxicity. This article reviews the impact of food intake on drug-food interactions, the clinical effects of drugs, and the effect of drug-food in correlation with diet and precision medicine. Emerging areas in drug-food interactions are the food-genome interface (nutrigenomics) and nutrigenetics. Understanding the molecular basis of food ingredients, including genomic sequencing and pharmacological implications of food molecules, helps to reduce the impact of drug-food interactions. Various strategies are being leveraged to alleviate drug-food interactions; measures including patient engagement, digital health, approaches involving machine intelligence, and big data are a few of them. Furthermore, delineating the molecular communications across dietmicrobiome- drug-food-drug interactions in a pharmacomicrobiome framework may also play a vital role in personalized nutrition. Determining nutrient-gene interactions aids in making nutrition deeply personalized and helps mitigate unwanted drug-food interactions, chronic diseases, and adverse events from their onset. Translational bioinformatics approaches could play an essential role in the next generation of drug-food interaction research. In this landscape review, we discuss important tools, databases, and approaches along with key challenges and opportunities in drug-food interaction and its immediate impact on precision medicine.
Collapse
Affiliation(s)
- Romy Roy
- Molecular Robotics, Cochin, Kerala, India
| | | | | | - Alisha Shahanaz
- Molecular Robotics, Cochin, Kerala, India
- Sanaria Inc, Rockville, MD, USA
| | - Athira Panicker Anil
- Molecular Robotics, Cochin, Kerala, India
- Mar Athanasious College for Advanced Studies, Tiruvalla, India
| | - Shameer Kunnathpeedikayil
- Molecular Robotics, Cochin, Kerala, India
- Thiruvalla, Kerala; People Care Health LLP Thrissur, Kerala, India
| | | | | | | | - Saraswathi Sathees
- Molecular Robotics, Cochin, Kerala, India
- University of Washington Seattle, Washington WA, USA
| | | | | | - Lakshminarayanan Subramanian
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Khader Shameer
- Northwell Health, New York, NY, USA and Faculty of Medicine, Imperial College London, London, UK
| | - Kamlesh K. Yadav
- School of Engineering Medicine, and
- Department of Translational Medical Sciences, Center for Genomic and Precision Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
57
|
Lin K, Kang L, Yang F, Lu P, Lu J. MFDA: Multiview fusion based on dual-level attention for drug interaction prediction. Front Pharmacol 2022; 13:1021329. [PMID: 36278200 PMCID: PMC9584567 DOI: 10.3389/fphar.2022.1021329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Drug-drug interaction prediction plays an important role in pharmacology and clinical applications. Most traditional methods predict drug interactions based on drug attributes or network structure. They usually have three limitations: 1) failing to integrate drug features and network structures well, resulting in less informative drug embeddings; 2) being restricted to a single view of drug interaction relationships; 3) ignoring the importance of different neighbors. To tackle these challenges, this paper proposed a multiview fusion based on dual-level attention to predict drug interactions (called MFDA). The MFDA first constructed multiple views for the drug interaction relationship, and then adopted a cross-fusion strategy to deeply fuse drug features with the drug interaction network under each view. To distinguish the importance of different neighbors and views, MFDA adopted a dual-level attention mechanism (node level and view level) to obtain the unified drug embedding for drug interaction prediction. Extensive experiments were conducted on real datasets, and the MFDA demonstrated superior performance compared to state-of-the-art baselines. In the multitask analysis of new drug reactions, MFDA obtained higher scores on multiple metrics. In addition, its prediction results corresponded to specific drug reaction events, which achieved more accurate predictions.
Collapse
Affiliation(s)
- Kaibiao Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Liping Kang
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| | - Fan Yang
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
- Department of Automation, Xiamen University, Xiamen, China
| | - Ping Lu
- School of Economics and Management, Xiamen University of Technology, Xiamen, China
| | - Jiangtao Lu
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
58
|
Al-Rabeah MH, Lakizadeh A. Prediction of drug-drug interaction events using graph neural networks based feature extraction. Sci Rep 2022; 12:15590. [PMID: 36114278 PMCID: PMC9481536 DOI: 10.1038/s41598-022-19999-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
The prevalence of multi_drug therapies has been increasing in recent years, particularly among the elderly who are suffering from several diseases. However, unexpected Drug_Drug interaction (DDI) can cause adverse reactions or critical toxicity, which puts patients in danger. As the need for multi_drug treatment increases, it's becoming increasingly necessary to discover DDIs. Nevertheless, DDIs detection in an extensive number of drug pairs, both in-vitro and in-vivo, is costly and laborious. Therefore, DDI identification is one of the most concerns in drug-related researches. In this paper, we propose GNN-DDI, a deep learning-based method for predicting DDI-associated events in two stages. In the first stage, we collect the drugs information from different sources and then integrate them through the formation of an attributed heterogeneous network and generate a drug embedding vector based on different drug interaction types and drug attributes. In the second stage, we aggregate the representation vectors then predictions of the DDIs and their events are performed through a deep multi-model framework. Various evaluation results show that the proposed method can outperform state-of-the methods in the prediction of drug-drug interaction-associated events. The experimental results indicate that producing the drug's representations based on different drug interaction types and attributes is efficient and effective and can better show the intrinsic characteristics of a drug.
Collapse
|
59
|
Yang Z, Zhong W, Lv Q, Yu-Chian Chen C. Learning size-adaptive molecular substructures for explainable drug-drug interaction prediction by substructure-aware graph neural network. Chem Sci 2022; 13:8693-8703. [PMID: 35974769 PMCID: PMC9337739 DOI: 10.1039/d2sc02023h] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 01/03/2023] Open
Abstract
Drug-drug interactions (DDIs) can trigger unexpected pharmacological effects on the body, and the causal mechanisms are often unknown. Graph neural networks (GNNs) have been developed to better understand DDIs. However, identifying key substructures that contribute most to the DDI prediction is a challenge for GNNs. In this study, we presented a substructure-aware graph neural network, a message passing neural network equipped with a novel substructure attention mechanism and a substructure-substructure interaction module (SSIM) for DDI prediction (SA-DDI). Specifically, the substructure attention was designed to capture size- and shape-adaptive substructures based on the chemical intuition that the sizes and shapes are often irregular for functional groups in molecules. DDIs are fundamentally caused by chemical substructure interactions. Thus, the SSIM was used to model the substructure-substructure interactions by highlighting important substructures while de-emphasizing the minor ones for DDI prediction. We evaluated our approach in two real-world datasets and compared the proposed method with the state-of-the-art DDI prediction models. The SA-DDI surpassed other approaches on the two datasets. Moreover, the visual interpretation results showed that the SA-DDI was sensitive to the structure information of drugs and was able to detect the key substructures for DDIs. These advantages demonstrated that the proposed method improved the generalization and interpretation capability of DDI prediction modeling.
Collapse
Affiliation(s)
- Ziduo Yang
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen 510275 China +86 02039332153
| | - Weihe Zhong
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen 510275 China +86 02039332153
| | - Qiujie Lv
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen 510275 China +86 02039332153
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University Shenzhen 510275 China +86 02039332153
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
| |
Collapse
|
60
|
Qiu Y, Zhang Y, Deng Y, Liu S, Zhang W. A Comprehensive Review of Computational Methods For Drug-Drug Interaction Detection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1968-1985. [PMID: 34003753 DOI: 10.1109/tcbb.2021.3081268] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The detection of drug-drug interactions (DDIs) is a crucial task for drug safety surveillance, which provides effective and safe co-prescriptions of multiple drugs. Since laboratory researches are often complicated, costly and time-consuming, it's urgent to develop computational approaches to detect drug-drug interactions. In this paper, we conduct a comprehensive review of state-of-the-art computational methods falling into three categories: literature-based extraction methods, machine learning-based prediction methods and pharmacovigilance-based data mining methods. Literature-based extraction methods detect DDIs from published literature using natural language processing techniques; machine learning-based prediction methods build prediction models based on the known DDIs in databases and predict novel ones; pharmacovigilance-based data mining methods usually apply statistical techniques on various electronic data to detect drug-drug interaction signals. We first present the taxonomy of drug-drug interaction detection methods and provide the outlines of three categories of methods. Afterwards, we respectively introduce research backgrounds and data sources of three categories, and illustrate their representative approaches as well as evaluation metrics. Finally, we discuss the current challenges of existing methods and highlight potential opportunities for future directions.
Collapse
|
61
|
Chen M, Jiang W, Pan Y, Dai J, Lei Y, Ji C. SGFNNs: Signed Graph Filtering-based Neural Networks for Predicting Drug-Drug Interactions. J Comput Biol 2022; 29:1104-1116. [PMID: 35723646 DOI: 10.1089/cmb.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Capturing comprehensive information about drug-drug interactions (DDIs) is one of the key tasks in public health and drug development. Recently, graph neural networks (GNNs) have received increasing attention in the drug discovery domain due to their capability of integrating drugs profiles and the network structure into a low-dimensional feature space for predicting links and classification. Most of GNN models for DDI predictions are built on an unsigned graph, which tends to represent associated nodes with similar embedding results. However, semantic correlation between drugs, such as degressive effects, or even adverse side reactions should be disassortative. In this study, we put forward signed GNNs to model assortative and disassortative relationships within drug pairs. Since negative links exclude direct generalization of spectral filters on unsigned graph, we divide the signed graph into two unsigned subgraphs to dedicate two spectral filters, which captures both commonality and difference of drug pairs. For drug representations we derive two signed graph filtering-based neural networks (SGFNNs) which integrate signed graph structures and drug node attributes. Moreover, we use an end-to-end framework for learning DDIs, where an SGFNN together with a discriminator is jointly trained under a problem-specific loss function. The experimental results on two prediction problems show that our framework can obtain significant improvements compared with baselines. The case study further verifies the validation of our method.
Collapse
Affiliation(s)
- Ming Chen
- Department of Artificial Intelligence, College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, China
| | - Wei Jiang
- Department of Artificial Intelligence, College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jianhua Dai
- Department of Artificial Intelligence, College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, China
| | - Yunwen Lei
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Chunyan Ji
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
62
|
He C, Liu Y, Li H, Zhang H, Mao Y, Qin X, Liu L, Zhang X. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction. BMC Bioinformatics 2022; 23:224. [PMID: 35689200 PMCID: PMC9188183 DOI: 10.1186/s12859-022-04763-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
Background Drug-Drug interactions (DDIs) are a challenging problem in drug research. Drug combination therapy is an effective solution to treat diseases, but it can also cause serious side effects. Therefore, DDIs prediction is critical in pharmacology. Recently, researchers have been using deep learning techniques to predict DDIs. However, these methods only consider single information of the drug and have shortcomings in robustness and scalability. Results In this paper, we propose a multi-type feature fusion based on graph neural network model (MFFGNN) for DDI prediction, which can effectively fuse the topological information in molecular graphs, the interaction information between drugs and the local chemical context in SMILES sequences. In MFFGNN, to fully learn the topological information of drugs, we propose a novel feature extraction module to capture the global features for the molecular graph and the local features for each atom of the molecular graph. In addition, in the multi-type feature fusion module, we use the gating mechanism in each graph convolution layer to solve the over-smoothing problem during information delivery. We perform extensive experiments on multiple real datasets. The results show that MFFGNN outperforms some state-of-the-art models for DDI prediction. Moreover, the cross-dataset experiment results further show that MFFGNN has good generalization performance. Conclusions Our proposed model can efficiently integrate the information from SMILES sequences, molecular graphs and drug-drug interaction networks. We find that a multi-type feature fusion model can accurately predict DDIs. It may contribute to discovering novel DDIs.
Collapse
Affiliation(s)
- Changxiang He
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuru Liu
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hao Li
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yaping Mao
- School of Mathematics and Statistis, Qinghai Normal University, Xining, 810008, China
| | - Xiaofei Qin
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lele Liu
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xuedian Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
63
|
Ren ZH, Yu CQ, Li LP, You ZH, Pan J, Guan YJ, Guo LX. BioChemDDI: Predicting Drug-Drug Interactions by Fusing Biochemical and Structural Information through a Self-Attention Mechanism. BIOLOGY 2022; 11:biology11050758. [PMID: 35625486 PMCID: PMC9138786 DOI: 10.3390/biology11050758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary Throughout history, combining drugs has been a common method in the fight against complex diseases. However, potential drug–drug interactions could give rise to unknown toxicity issues, which requires the urgent proposal of efficient methods to identify potential interactions.We use computer technology and machine learning techniques to propose a novel computational framework to calculate scores of drug–drug interaction probability for simplifying the screening process. Additionally, we built an online prescreening tool for biological researchers to further verify possible interactions in the fields of biomedicine and pharmacology. Overall, our study can provide new insights and approaches for rapidly identifying potential drug–drug interactions. Abstract During the development of drug and clinical applications, due to the co-administration of different drugs that have a high risk of interfering with each other’s mechanisms of action, correctly identifying potential drug–drug interactions (DDIs) is important to avoid a reduction in drug therapeutic activities and serious injuries to the organism. Therefore, to explore potential DDIs, we develop a computational method of integrating multi-level information. Firstly, the information of chemical sequence is fully captured by the Natural Language Processing (NLP) algorithm, and multiple biological function similarity information is fused by Similarity Network Fusion (SNF). Secondly, we extract deep network structure information through Hierarchical Representation Learning for Networks (HARP). Then, a highly representative comprehensive feature descriptor is constructed through the self-attention module that efficiently integrates biochemical and network features. Finally, a deep neural network (DNN) is employed to generate the prediction results. Contrasted with the previous supervision model, BioChemDDI innovatively introduced graph collapse for extracting a network structure and utilized the biochemical information during the pre-training process. The prediction results of the benchmark dataset indicate that BioChemDDI outperforms other existing models. Moreover, the case studies related to three cancer diseases, including breast cancer, hepatocellular carcinoma and malignancies, were analyzed using BioChemDDI. As a result, 24, 18 and 20 out of the top 30 predicted cancer-related drugs were confirmed by the databases. These experimental results demonstrate that BioChemDDI is a useful model to predict DDIs and can provide reliable candidates for biological experiments. The web server of BioChemDDI predictor is freely available to conduct further studies.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
- Correspondence: (C.-Q.Y.); (L.-P.L.); Tel.: +86-189-9118-5758 (C.-Q.Y.); +86-173-9276-3836 (L.-P.L.)
| | - Li-Ping Li
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (C.-Q.Y.); (L.-P.L.); Tel.: +86-189-9118-5758 (C.-Q.Y.); +86-173-9276-3836 (L.-P.L.)
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China;
| | - Jie Pan
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| | - Lu-Xiang Guo
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| |
Collapse
|
64
|
Feng YH, Zhang SW. Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs. Molecules 2022; 27:molecules27093004. [PMID: 35566354 PMCID: PMC9105425 DOI: 10.3390/molecules27093004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
The treatment of complex diseases by using multiple drugs has become popular. However, drug-drug interactions (DDI) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. Therefore, for polypharmacy safety it is crucial to identify DDIs and explore their underlying mechanisms. The detection of DDI in the wet lab is expensive and time-consuming, due to the need for experimental research over a large volume of drug combinations. Although many computational methods have been developed to predict DDIs, most of these are incapable of predicting potential DDIs between drugs within the DDI network and new drugs from outside the DDI network. In addition, they are not designed to explore the underlying mechanisms of DDIs and lack interpretative capacity. Thus, here we propose a novel method of GNN-DDI to predict potential DDIs by constructing a five-layer graph attention network to identify k-hops low-dimensional feature representations for each drug from its chemical molecular graph, concatenating all identified features of each drug pair, and inputting them into a MLP predictor to obtain the final DDI prediction score. The experimental results demonstrate that our GNN-DDI is suitable for each of two DDI predicting scenarios, namely the potential DDIs among known drugs in the DDI network and those between drugs within the DDI network and new drugs from outside DDI network. The case study indicates that our method can explore the specific drug substructures that lead to the potential DDIs, which helps to improve interpretability and discover the underlying interaction mechanisms of drug pairs.
Collapse
|
65
|
Feng YY, Yu H, Feng YH, Shi JY. Directed graph attention networks for predicting asymmetric drug-drug interactions. Brief Bioinform 2022; 23:6573959. [PMID: 35470854 DOI: 10.1093/bib/bbac151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
It is tough to detect unexpected drug-drug interactions (DDIs) in poly-drug treatments because of high costs and clinical limitations. Computational approaches, such as deep learning-based approaches, are promising to screen potential DDIs among numerous drug pairs. Nevertheless, existing approaches neglect the asymmetric roles of two drugs in interaction. Such an asymmetry is crucial to poly-drug treatments since it determines drug priority in co-prescription. This paper designs a directed graph attention network (DGAT-DDI) to predict asymmetric DDIs. First, its encoder learns the embeddings of the source role, the target role and the self-roles of a drug. The source role embedding represents how a drug influences other drugs in DDIs. In contrast, the target role embedding represents how it is influenced by others. The self-role embedding encodes its chemical structure in a role-specific manner. Besides, two role-specific items, aggressiveness and impressionability, capture how the number of interaction partners of a drug affects its interaction tendency. Furthermore, the predictor of DGAT-DDI discriminates direction-specific interactions by the combination between two proximities and the above two role-specific items. The proximities measure the similarity between source/target embeddings and self-role embeddings. In the designated experiments, the comparison with state-of-the-art deep learning models demonstrates the superiority of DGAT-DDI across a direction-specific predicting task and a direction-blinded predicting task. An ablation study reveals how well each component of DGAT-DDI contributes to its ability. Moreover, a case study of finding novel DDIs confirms its practical ability, where 7 out of the top 10 candidates are validated in DrugBank.
Collapse
Affiliation(s)
- Yi-Yang Feng
- School of Soft Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yue-Hua Feng
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
66
|
Vo TH, Nguyen NTK, Kha QH, Le NQK. On the road to explainable AI in drug-drug interactions prediction: A systematic review. Comput Struct Biotechnol J 2022; 20:2112-2123. [PMID: 35832629 PMCID: PMC9092071 DOI: 10.1016/j.csbj.2022.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022] Open
Abstract
Over the past decade, polypharmacy instances have been common in multi-diseases treatment. However, unwanted drug-drug interactions (DDIs) that might cause unexpected adverse drug events (ADEs) in multiple regimens therapy remain a significant issue. Since artificial intelligence (AI) is ubiquitous today, many AI prediction models have been developed to predict DDIs to support clinicians in pharmacotherapy-related decisions. However, even though DDI prediction models have great potential for assisting physicians in polypharmacy decisions, there are still concerns regarding the reliability of AI models due to their black-box nature. Building AI models with explainable mechanisms can augment their transparency to address the above issue. Explainable AI (XAI) promotes safety and clarity by showing how decisions are made in AI models, especially in critical tasks like DDI predictions. In this review, a comprehensive overview of AI-based DDI prediction, including the publicly available source for AI-DDIs studies, the methods used in data manipulation and feature preprocessing, the XAI mechanisms to promote trust of AI, especially for critical tasks as DDIs prediction, the modeling methods, is provided. Limitations and the future directions of XAI in DDIs are also discussed.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Ngan Thi Kim Nguyen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Quang Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
67
|
Han K, Cao P, Wang Y, Xie F, Ma J, Yu M, Wang J, Xu Y, Zhang Y, Wan J. A Review of Approaches for Predicting Drug-Drug Interactions Based on Machine Learning. Front Pharmacol 2022; 12:814858. [PMID: 35153767 PMCID: PMC8835726 DOI: 10.3389/fphar.2021.814858] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Drug-drug interactions play a vital role in drug research. However, they may also cause adverse reactions in patients, with serious consequences. Manual detection of drug-drug interactions is time-consuming and expensive, so it is urgent to use computer methods to solve the problem. There are two ways for computers to identify drug interactions: one is to identify known drug interactions, and the other is to predict unknown drug interactions. In this paper, we review the research progress of machine learning in predicting unknown drug interactions. Among these methods, the literature-based method is special because it combines the extraction method of DDI and the prediction method of DDI. We first introduce the common databases, then briefly describe each method, and summarize the advantages and disadvantages of some prediction models. Finally, we discuss the challenges and prospects of machine learning methods in predicting drug interactions. This review aims to provide useful guidance for interested researchers to further promote bioinformatics algorithms to predict DDI.
Collapse
Affiliation(s)
- Ke Han
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Peigang Cao
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yu Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Fang Xie
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jiaqi Ma
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Mengyao Yu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jianchun Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yaoqun Xu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jie Wan
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
68
|
Yan XY, Yin PW, Wu XM, Han JX. Prediction of the Drug-Drug Interaction Types with the Unified Embedding Features from Drug Similarity Networks. Front Pharmacol 2022; 12:794205. [PMID: 34987405 PMCID: PMC8721167 DOI: 10.3389/fphar.2021.794205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Drug combination therapies are a promising strategy to overcome drug resistance and improve the efficacy of monotherapy in cancer, and it has been shown to lead to a decrease in dose-related toxicities. Except the synergistic reaction between drugs, some antagonistic drug-drug interactions (DDIs) exist, which is the main cause of adverse drug events. Precisely predicting the type of DDI is important for both drug development and more effective drug combination therapy applications. Recently, numerous text mining- and machine learning-based methods have been developed for predicting DDIs. All these methods implicitly utilize the feature of drugs from diverse drug-related properties. However, how to integrate these features more efficiently and improve the accuracy of classification is still a challenge. In this paper, we proposed a novel method (called NMDADNN) to predict the DDI types by integrating five drug-related heterogeneous information sources to extract the unified drug mapping features. NMDADNN first constructs the similarity networks by using the Jaccard coefficient and then implements random walk with restart algorithm and positive pointwise mutual information for extracting the topological similarities. After that, five network-based similarities are unified by using a multimodel deep autoencoder. Finally, NMDADNN implements the deep neural network (DNN) on the unified drug feature to infer the types of DDIs. In comparison with other recent state-of-the-art DNN-based methods, NMDADNN achieves the best results in terms of accuracy, area under the precision-recall curve, area under the ROC curve, F1 score, precision and recall. In addition, many of the promising types of drug-drug pairs predicted by NMDADNN are also confirmed by using the interactions checker tool. These results demonstrate the effectiveness of our NMDADNN method, indicating that NMDADNN has the great potential for predicting DDI types.
Collapse
Affiliation(s)
- Xiao-Ying Yan
- College of Computer Science, Xi'an Shiyou University, Xi'an, China
| | - Peng-Wei Yin
- College of Computer Science, Xi'an Shiyou University, Xi'an, China
| | - Xiao-Meng Wu
- School of Electronic Engineering, Xi'an Shiyou University, Xi'an, China
| | - Jia-Xin Han
- College of Computer Science, Xi'an Shiyou University, Xi'an, China
| |
Collapse
|
69
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:216-229. [DOI: 10.1093/bfgp/elac004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
|
70
|
Yu H, Dong W, Shi J. RANEDDI: Relation-aware network embedding for drug-drug interaction prediction. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
71
|
Song T, Wang G, Ding M, Rodriguez-Paton A, Wang X, Wang S. Network-Based Approaches for Drug Repositioning. Mol Inform 2021; 41:e2100200. [PMID: 34970871 DOI: 10.1002/minf.202100200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 12/25/2022]
Abstract
With deep learning creeping up into the ranks of big data, new models based on deep learning and massive data have made great leaps forward rapidly in the field of drug repositioning. However, there is no relevant review to summarize the transformations and development process of models and their data in the field of drug repositioning. Among all the computational methods, network-based methods play an extraordinary role. In view of these circumstances, understanding and comparing existing network-based computational methods applied in drug repositioning will help us recognize the cutting-edge technologies and offer valuable information for relevant researchers. Therefore, in this review, we present an interpretation of the series of important network-based methods applied in drug repositioning, together with their comparisons and development process.
Collapse
Affiliation(s)
- Tao Song
- College of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, China.,Department of Artificial Intelligence, Faculty of Computer Science, Polytechnical University of Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain
| | - Gan Wang
- College of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, China
| | - Mao Ding
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan Shi, Jinan, 250033, China
| | - Alfonso Rodriguez-Paton
- Department of Artificial Intelligence, Faculty of Computer Science, Polytechnical University of Madrid, Campus de Montegancedo, Boadilla del Monte, 28660, Madrid, Spain
| | - Xun Wang
- College of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, China.,China High Performance Computer Research Center, Institute of Computer Technology, Chinese Academy of Science, Beijing, 100190, Beijing, China
| | - Shudong Wang
- College of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, China
| |
Collapse
|
72
|
Kang C, Zhang H, Liu Z, Huang S, Yin Y. LR-GNN: a graph neural network based on link representation for predicting molecular associations. Brief Bioinform 2021; 23:6456297. [PMID: 34889446 DOI: 10.1093/bib/bbab513] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
In biomedical networks, molecular associations are important to understand biological processes and functions. Many computational methods, such as link prediction methods based on graph neural networks (GNNs), have been successfully applied in discovering molecular relationships with biological significance. However, it remains a challenge to explore a method that relies on representation learning of links for accurately predicting molecular associations. In this paper, we present a novel GNN based on link representation (LR-GNN) to identify potential molecular associations. LR-GNN applies a graph convolutional network (GCN)-encoder to obtain node embedding. To represent associations between molecules, we design a propagation rule that captures the node embedding of each GCN-encoder layer to construct the LR. Furthermore, the LRs of all layers are fused in output by a designed layer-wise fusing rule, which enables LR-GNN to output more accurate results. Experiments on four biomedical network data, including lncRNA-disease association, miRNA-disease association, protein-protein interaction and drug-drug interaction, show that LR-GNN outperforms state-of-the-art methods and achieves robust performance. Case studies are also presented on two datasets to verify the ability to predict unknown associations. Finally, we validate the effectiveness of the LR by visualization.
Collapse
Affiliation(s)
- Chuanze Kang
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Zhuo Liu
- College of Artificial Intelligence, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Shenwei Huang
- College of Computer Science, Nankai University, Tongyan Road, 300350, Tianjin, China
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska - Lincoln, 1400 R Street, 68588, Nebraska, USA
| |
Collapse
|
73
|
Wang F, Lei X, Liao B, Wu FX. Predicting drug-drug interactions by graph convolutional network with multi-kernel. Brief Bioinform 2021; 23:6447677. [PMID: 34864856 DOI: 10.1093/bib/bbab511] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
Drug repositioning is proposed to find novel usages for existing drugs. Among many types of drug repositioning approaches, predicting drug-drug interactions (DDIs) helps explore the pharmacological functions of drugs and achieves potential drugs for novel treatments. A number of models have been applied to predict DDIs. The DDI network, which is constructed from the known DDIs, is a common part in many of the existing methods. However, the functions of DDIs are different, and thus integrating them in a single DDI graph may overlook some useful information. We propose a graph convolutional network with multi-kernel (GCNMK) to predict potential DDIs. GCNMK adopts two DDI graph kernels for the graph convolutional layers, namely, increased DDI graph consisting of 'increase'-related DDIs and decreased DDI graph consisting of 'decrease'-related DDIs. The learned drug features are fed into a block with three fully connected layers for the DDI prediction. We compare various types of drug features, whereas the target feature of drugs outperforms all other types of features and their concatenated features. In comparison with three different DDI prediction methods, our proposed GCNMK achieves the best performance in terms of area under receiver operating characteristic curve and area under precision-recall curve. In case studies, we identify the top 20 potential DDIs from all unknown DDIs, and the top 10 potential DDIs from the unknown DDIs among breast, colorectal and lung neoplasms-related drugs. Most of them have evidence to support the existence of their interactions. fangxiang.wu@usask.ca.
Collapse
Affiliation(s)
- Fei Wang
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, 620 West Chang'an Avenue, 710119, Shaanxi, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, 99 Longkun South Road, 571158, Hainan, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
- Department of Mechanical Engineering and Department of Computer Science, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada
| |
Collapse
|
74
|
Nyamabo AK, Yu H, Liu Z, Shi JY. Drug-drug interaction prediction with learnable size-adaptive molecular substructures. Brief Bioinform 2021; 23:6409692. [PMID: 34695842 DOI: 10.1093/bib/bbab441] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/12/2021] [Accepted: 09/26/2021] [Indexed: 11/14/2022] Open
Abstract
Drug-drug interactions (DDIs) are interactions with adverse effects on the body, manifested when two or more incompatible drugs are taken together. They can be caused by the chemical compositions of the drugs involved. We introduce gated message passing neural network (GMPNN), a message passing neural network which learns chemical substructures with different sizes and shapes from the molecular graph representations of drugs for DDI prediction between a pair of drugs. In GMPNN, edges are considered as gates which control the flow of message passing, and therefore delimiting the substructures in a learnable way. The final DDI prediction between a drug pair is based on the interactions between pairs of their (learned) substructures, each pair weighted by a relevance score to the final DDI prediction output. Our proposed method GMPNN-CS (i.e. GMPNN + prediction module) is evaluated on two real-world datasets, with competitive results on one, and improved performance on the other compared with previous methods. Source code is freely available at https://github.com/kanz76/GMPNN-CS.
Collapse
Affiliation(s)
- Arnold K Nyamabo
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zun Liu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
75
|
Wang F, Ding Y, Lei X, Liao B, Wu FX. Human Protein Complex-Based Drug Signatures for Personalized Cancer Medicine. IEEE J Biomed Health Inform 2021; 25:4079-4088. [PMID: 34665747 DOI: 10.1109/jbhi.2021.3120933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disease signature-based drug repositioning approaches typically first identify a disease signature from gene expression profiles of disease samples to represent a particular disease. Then such a disease signature is connected with the drug-induced gene expression profiles to find potential drugs for the particular disease. In order to obtain reliable disease signatures, the size of disease samples should be large enough, which is not always a single case in practice, especially for personalized medicine. On the other hand, the sample sizes of drug-induced gene expression profiles are generally large. In this study, we propose a new drug repositioning approach (HDgS), in which the drug signature is first identified from drug-induced gene expression profiles, and then connected to the gene expression profiles of disease samples to find the potential drugs for patients. In order to take the dependencies among genes into account, the human protein complexes (HPC) are used to define the drug signature. The proposed HDgS is applied to the drug-induced gene expression profiles in LINCS and several types of cancer samples. The results indicate that the HPC-based drug signature can effectively find drug candidates for patients and that the proposed HDgS can be applied for personalized medicine with even one patient sample.
Collapse
|
76
|
Lin S, Wang Y, Zhang L, Chu Y, Liu Y, Fang Y, Jiang M, Wang Q, Zhao B, Xiong Y, Wei DQ. MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Brief Bioinform 2021; 23:6406700. [PMID: 34671814 DOI: 10.1093/bib/bbab421] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
One of the main problems with the joint use of multiple drugs is that it may cause adverse drug interactions and side effects that damage the body. Therefore, it is important to predict potential drug interactions. However, most of the available prediction methods can only predict whether two drugs interact or not, whereas few methods can predict interaction events between two drugs. Accurately predicting interaction events of two drugs is more useful for researchers to study the mechanism of the interaction of two drugs. In the present study, we propose a novel method, MDF-SA-DDI, which predicts drug-drug interaction (DDI) events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. MDF-SA-DDI is mainly composed of two parts: multi-source drug fusion and multi-source feature fusion. First, we combine two drugs in four different ways and input the combined drug feature representation into four different drug fusion networks (Siamese network, convolutional neural network and two auto-encoders) to obtain the latent feature vectors of the drug pairs, in which the two auto-encoders have the same structure, and their main difference is the number of neurons in the input layer of the two auto-encoders. Then, we use transformer blocks that include self-attention mechanism to perform latent feature fusion. We conducted experiments on three different tasks with two datasets. On the small dataset, the area under the precision-recall-curve (AUPR) and F1 scores of our method on task 1 reached 0.9737 and 0.8878, respectively, which were better than the state-of-the-art method. On the large dataset, the AUPR and F1 scores of our method on task 1 reached 0.9773 and 0.9117, respectively. In task 2 and task 3 of two datasets, our method also achieved the same or better performance as the state-of-the-art method. More importantly, the case studies on five DDI events are conducted and achieved satisfactory performance. The source codes and data are available at https://github.com/ShenggengLin/MDF-SA-DDI.
Collapse
Affiliation(s)
- Shenggeng Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lingfeng Zhang
- School of Electrical Engineering and Computer Science, University of Ottawa, Canada
| | - Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yatong Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yitian Fang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Mingming Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Bowen Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
77
|
Kpanou R, Osseni MA, Tossou P, Laviolette F, Corbeil J. On the robustness of generalization of drug-drug interaction models. BMC Bioinformatics 2021; 22:477. [PMID: 34607569 PMCID: PMC8489092 DOI: 10.1186/s12859-021-04398-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep learning methods are a proven commodity in many fields and endeavors. One of these endeavors is predicting the presence of adverse drug-drug interactions (DDIs). The models generated can predict, with reasonable accuracy, the phenotypes arising from the drug interactions using their molecular structures. Nevertheless, this task requires improvement to be truly useful. Given the complexity of the predictive task, an extensive benchmarking on structure-based models for DDIs prediction was performed to evaluate their drawbacks and advantages. RESULTS We rigorously tested various structure-based models that predict drug interactions using different splitting strategies to simulate different real-world scenarios. In addition to the effects of different training and testing setups on the robustness and generalizability of the models, we then explore the contribution of traditional approaches such as multitask learning and data augmentation. CONCLUSION Structure-based models tend to generalize poorly to unseen drugs despite their ability to identify new DDIs among drugs seen during training accurately. Indeed, they efficiently propagate information between known drugs and could be valuable for discovering new DDIs in a database. However, these models will most probably fail when exposed to unknown drugs. While multitask learning does not help in our case to solve the problem, the use of data augmentation does at least mitigate it. Therefore, researchers must be cautious of the bias of the random evaluation scheme, especially if their goal is to discover new DDIs.
Collapse
Affiliation(s)
- Rogia Kpanou
- Computer Science and Software Engineering, Université Laval, 1065, av. de la Médecine, Quebec, CA Canada
- InVivo AI, Mila - 180 Corporate Lab L, 6650, 01 Rue Saint-Urbain, Montreal, CA H2S 3G9 Canada
| | - Mazid Abiodoun Osseni
- Computer Science and Software Engineering, Université Laval, 1065, av. de la Médecine, Quebec, CA Canada
| | - Prudencio Tossou
- Computer Science and Software Engineering, Université Laval, 1065, av. de la Médecine, Quebec, CA Canada
- InVivo AI, Mila - 180 Corporate Lab L, 6650, 01 Rue Saint-Urbain, Montreal, CA H2S 3G9 Canada
| | - Francois Laviolette
- Computer Science and Software Engineering, Université Laval, 1065, av. de la Médecine, Quebec, CA Canada
| | - Jacques Corbeil
- Department of Molecular Medicine, Université Laval, 1065, av. de la Médecine, Quebec, CA Canada
| |
Collapse
|
78
|
Badkas A, De Landtsheer S, Sauter T. Topological network measures for drug repositioning. Brief Bioinform 2021; 22:bbaa357. [PMID: 33348366 PMCID: PMC8294518 DOI: 10.1093/bib/bbaa357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Drug repositioning has received increased attention since the past decade as several blockbuster drugs have come out of repositioning. Computational approaches are significantly contributing to these efforts, of which, network-based methods play a key role. Various structural (topological) network measures have thereby contributed to uncovering unintuitive functional relationships and repositioning candidates in drug-disease and other networks. This review gives a broad overview of the topic, and offers perspectives on the application of topological measures for network analysis. It also discusses unexplored measures, and draws attention to a wider scope of application efforts, especially in drug repositioning.
Collapse
|
79
|
Luo Q, Mo S, Xue Y, Zhang X, Gu Y, Wu L, Zhang J, Sun L, Liu M, Hu Y. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes. BMC Bioinformatics 2021; 22:318. [PMID: 34116627 PMCID: PMC8194123 DOI: 10.1186/s12859-021-04241-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
Background Drug-drug interaction (DDI) is a serious public health issue. The L1000 database of the LINCS project has collected millions of genome-wide expressions induced by 20,000 small molecular compounds on 72 cell lines. Whether this unified and comprehensive transcriptome data resource can be used to build a better DDI prediction model is still unclear. Therefore, we developed and validated a novel deep learning model for predicting DDI using 89,970 known DDIs extracted from the DrugBank database (version 5.1.4). Results The proposed model consists of a graph convolutional autoencoder network (GCAN) for embedding drug-induced transcriptome data from the L1000 database of the LINCS project; and a long short-term memory (LSTM) for DDI prediction. Comparative evaluation of various machine learning methods demonstrated the superior performance of our proposed model for DDI prediction. Many of our predicted DDIs were revealed in the latest DrugBank database (version 5.1.7). In the case study, we predicted drugs interacting with sulfonylureas to cause hypoglycemia and drugs interacting with metformin to cause lactic acidosis, and showed both to induce effects on the proteins involved in the metabolic mechanism in vivo. Conclusions The proposed deep learning model can accelerate the discovery of new DDIs. It can support future clinical research for safer and more effective drug co-prescription. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04241-1.
Collapse
Affiliation(s)
- Qichao Luo
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China.,School of Management, Jinan University, Guangzhou, 510632, China
| | - Shenglong Mo
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Yunfei Xue
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Xiangzhou Zhang
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Yuliang Gu
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Lijuan Wu
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China
| | - Jia Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linyan Sun
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Mei Liu
- Division of Medical Informatics, Department of Internal Medicine, Medical Center, University of Kansas, Kansas City, KS, 66160, USA.
| | - Yong Hu
- Big Data Decision Institute, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
80
|
Nyamabo AK, Yu H, Shi JY. SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Brief Bioinform 2021; 22:6265181. [PMID: 33951725 DOI: 10.1093/bib/bbab133] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
A major concern with co-administration of different drugs is the high risk of interference between their mechanisms of action, known as adverse drug-drug interactions (DDIs), which can cause serious injuries to the organism. Although several computational methods have been proposed for identifying potential adverse DDIs, there is still room for improvement. Existing methods are not explicitly based on the knowledge that DDIs are fundamentally caused by chemical substructure interactions instead of whole drugs' chemical structures. Furthermore, most of existing methods rely on manually engineered molecular representation, which is limited by the domain expert's knowledge.We propose substructure-substructure interaction-drug-drug interaction (SSI-DDI), a deep learning framework, which operates directly on the raw molecular graph representations of drugs for richer feature extraction; and, most importantly, breaks the DDI prediction task between two drugs down to identifying pairwise interactions between their respective substructures. SSI-DDI is evaluated on real-world data and improves DDI prediction performance compared to state-of-the-art methods. Source code is freely available at https://github.com/kanz76/SSI-DDI.
Collapse
Affiliation(s)
- Arnold K Nyamabo
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
81
|
Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine Learning Methods in Drug Discovery. Molecules 2020; 25:E5277. [PMID: 33198233 PMCID: PMC7696134 DOI: 10.3390/molecules25225277] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
The advancements of information technology and related processing techniques have created a fertile base for progress in many scientific fields and industries. In the fields of drug discovery and development, machine learning techniques have been used for the development of novel drug candidates. The methods for designing drug targets and novel drug discovery now routinely combine machine learning and deep learning algorithms to enhance the efficiency, efficacy, and quality of developed outputs. The generation and incorporation of big data, through technologies such as high-throughput screening and high through-put computational analysis of databases used for both lead and target discovery, has increased the reliability of the machine learning and deep learning incorporated techniques. The use of these virtual screening and encompassing online information has also been highlighted in developing lead synthesis pathways. In this review, machine learning and deep learning algorithms utilized in drug discovery and associated techniques will be discussed. The applications that produce promising results and methods will be reviewed.
Collapse
Affiliation(s)
- Lauv Patel
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (L.P.); (T.S.)
| | - Tripti Shukla
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (L.P.); (T.S.)
| | - Xiuzhen Huang
- Department of Computer Science, Arkansas State University, Jonesboro, AR 72467, USA;
| | - David W. Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Shanzhi Wang
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (L.P.); (T.S.)
| |
Collapse
|