51
|
Zhou JL, Huang XY, Qiu HC, Gan RZ, Zhou H, Zhu HQ, Zhang XX, Lu GD, Liang G. SSPH I, a Novel Anti-Cancer Saponin, Inhibits Autophagy and Induces Apoptosis via ROS Accumulation and ERK1/2 Signaling Pathway in Hepatocellular Carcinoma Cells. Onco Targets Ther 2020; 13:5979-5991. [PMID: 32606806 PMCID: PMC7320904 DOI: 10.2147/ott.s253234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Saponin of Schizocapsa plantaginea Hance I (SSPH I), a novel bioactive phytochemical isolated from the rhizomes of Schizocapsa plantaginea, has been demonstrated to exhibit anti-cancer activity against various tumors in preclinical studies. However, the molecular mechanisms involved in the suppression of hepatocellular carcinoma (HCC) are poorly understood. The present study aimed at analyzing the effects of SSPH I on autophagy and apoptosis in vitro. Methods MTT and colony forming assays were used to detect cell viability and cell proliferation. Hoechst 33,258 staining and flow cytometry were used to determine apoptosis and ROS production. The apoptosis and autophagy-related protein expression levels were evaluated via Western blot assay. Characteristics of autophagy and apoptosis were observed by transmission electron microscopy. Lysosomal activity was stained with Lyso-Tracker Red and Magic Red Cathepsin B. Results The results showed that SSPH I exhibited potent anti-cancer activity and proliferation in HepG2 and BEL-7402 cells and inhibited HepG2 cells through inhibiting autophagy and promoting apoptosis. The mechanistic study indicated that the inhibition of autophagy of SSPH I was mediated by blocking autophagosome–lysosome fusion. Additionally, we found that SSPH I could mediate the activation of MAPK/ERK1/2 signaling pathway, and the use of NAC (ROS inhibitor) and U0126 (MEK1/2 inhibitor) converted the effect of SSPH I on apoptosis and autophagy in HepG2 cells. Conclusion These data suggest that SSPH I induces tumor cells apoptosis and reduces autophagy in vitro by inducing ROS and activating MAPK/ERK1/2 signaling pathway, indicating that SSPH I might be a novel agent for the treatment of HCC.
Collapse
Affiliation(s)
- Jin-Ling Zhou
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Xiu-Ying Huang
- Liuzhou Employment Service Centre for the Disabled, Liuzhou, People's Republic of China
| | - Han-Chen Qiu
- Department of Pharmacy, The People's Hospital of Hezhou, Hezhou, People's Republic of China
| | - Ri-Zhi Gan
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Huan Zhou
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Hong-Qing Zhu
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Xuan-Xuan Zhang
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Guo-Dong Lu
- School of Public Health, Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Liang
- School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
52
|
Ghazipour AM, Shirpoor A, Ghiasi R, Pourheydar B, Khalaji N, Naderi R. Cyclosporine A induces testicular injury via mitochondrial apoptotic pathway by regulation of mir-34a and sirt-1 in male rats: The rescue effect of curcumin. Chem Biol Interact 2020; 327:109180. [PMID: 32569592 DOI: 10.1016/j.cbi.2020.109180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023]
Abstract
Testicular damage contributes to cyclosporine A (CsA) induced male infertility. However, the exact underlying molecular mediators involved in CsA-induced testis disorder remains unclear. The present study aimed to characterize the role of mir-34a/sirt-1 in CsA induced testicular injury alone or in combination with curcumin. A total of twenty-eight male Wistar rats were subdivided into four groups: control (Con), sham, cyclosporine A (CsA), cyclosporineA + curcumin (CsA + cur). The animals received cyclosporine A (30 mg/kg) and curcumin (40 mg/kg) for 28 days by oral gavage. At the end of the experiment, CsA administration significantly resulted in a decrease in testis weight and testis coefficient. The molecular analysis demonstrated that CsA exposure increased 8-OHdg and Nox4 protein contents in the testis tissue. TUNEL staining indicated that CsA caused the number of apoptotic cells to increase in the testes of male rats. In addition, exposure to CsA resulted in an increased expression of Bax, and a decreased expresion in that of Bcl-2, with a concomitant up-regulation of the Bax/Bcl-2, c-Caspase-3/p-Caspase-3 ratio and cytochrome c level. Meanwhile, exposure to CsA increased the expression of mir-34a and decreased sirt-1 protein level in the testis tissue samples compared to the control group. Taken together, our findings suggested that CsA can cause damage to testicular germ cells via oxidative stress and mitochondrial apoptotic pathway, and probably mir-34a/sirt-1 play a crucial role in this process. It also demonstrates that these negative effects of CsA can be reduced by using curcumin as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz Faculty of Medical Science Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Khalaji
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
53
|
Yu G, Chen Y, Bao Q, Jiang Z, Zhu Y, Ni H, Li Q, Oda T. A low-molecular-weight ascophyllan prepared from Ascophyllum nodosum: Optimization, analysis and biological activities. Int J Biol Macromol 2020; 153:107-117. [PMID: 32135255 DOI: 10.1016/j.ijbiomac.2020.02.334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/04/2023]
Abstract
In this study, a low-molecular-weight saccharide fragment (LMWAs-L) was prepared from alginate lyase (EC 4.2.2.3) hydrolyzed ascophyllan by ultra-filtration separation method. LMWAs-L was a homogeneous saccharide fraction with an average molecular weight of 6.96 kDa. Enzymolysis process optimization experiments revealed that the optimum process parameters for preparing LMWAs-L were the enzyme concentration 0.02 U/mL, initial pH 6.8, and enzymolysis temperature 43 °C. After optimization, the yield of LMWAs-L was increased to 9.74% higher than that without optimization. Interestingly, LMWAs-L exhibited stronger enhancing activities on the proliferation and migration of human skin fibroblasts cells in vitro and better antibacterial activities as compared to native ascophyllan at the same mass concentration. Our study establishes a simple way to prepare low-molecular-weight saccharide with beneficial bioactivities from ascophyllan efficiently. This is the first report to reveal that ascophyllan and its low-molecular-weight saccharide have the potentials to be developed as natural biological dressing and antibacterial agents.
Collapse
Affiliation(s)
- Gang Yu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yanhong Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingyun Bao
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
54
|
Ijaz H, Zia R, Taj A, Jameel F, Butt FK, Asim T, Jameel N, Abbas W, Iqbal M, Bajwa SZ, Khan WS. Synthesis of BiOCl nanoplatelets as the dual interfaces for the detection of glutathione linked disease biomarkers and biocompatibility assessment in vitro against HCT cell lines model. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01461-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Sharawi ZW. Therapeutic effect of Arthrocnemum machrostachyum methanolic extract on Ehrlich solid tumor in mice. BMC Complement Med Ther 2020; 20:153. [PMID: 32448237 PMCID: PMC7245743 DOI: 10.1186/s12906-020-02947-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background The anti-cancer effect of the halophyte Arthrocnemum indicum, a member of Arthrocnemum family of salt-tolerant plants, was evaluated against colorectal cancer cell, CaCo2. However, the anti-cancer effect of another halophyte Arthrocnemum machrostachyum was not investigated yet. Herein, the anticancer effect of A. machrostachyum methanolic extract (AME) was evaluated against Ehrlich solid tumor (EST) in mice and the potential mechanism of action was also studied. Methods Male Swiss albino mice (n = 28) were randomly divided into 4 groups (n = 7/group). Group 1 (negative control group); group 2 (EST) injected intramuscularly by 0.2 mL Ehrlich ascitic carcinoma (2 × 106 cells); and groups 3 and 4 injected intratumorally with AME (180 and 360 mg/kg body weight, respectively) at D12 trice weekly for 2 weeks. Gene expression, protein expression, DNA damage, and TNFa level in tumors were determined by real-time PCR, western blot, comet assay, and Elisa, respectively. Results Treatment with AME induced anti-tumor effects against EST as indicated by 1) notable reduction in tumor size; 2) elevation in tissue necrosis and apoptosis, as confirmed histologically; 3) increased DNA fragmentation; 4) decreased expression of the apoptotic genes (p53, Bax and caspase 3), and increased expression of the anti-apoptotic marker Bcl2; 5) significantly upregulated cell cycle regulatory genes Cdc2 and connexin26, and; 6) decreased TNFa levels in tumor tissues. Interestingly, a high dose of AME exhibited a more potent anti-tumor effect against EST. Conclusion These findings indicate that AME has a potent antitumor effect against EST and could be used as an adjuvant to anticancer drugs to combat tumor, but after application of further confirmatory clinical trials.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, P.O Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
56
|
Islam A, Ain Q, Munawar A, Corrêa Junior JD, Khan A, Ahmad F, Demicheli C, Shams DF, Ullah I, Sohail MF, Yasinzai M, Frézard F, Nadhman A. Reactive oxygen species generating photosynthesized ferromagnetic iron oxide nanorods as promising antileishmanial agent. Nanomedicine (Lond) 2020; 15:755-771. [PMID: 32193975 DOI: 10.2217/nnm-2019-0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the photodynamic therapeutic potential of ferromagnetic iron oxide nanorods (FIONs), using Trigonella foenum-graecum as a reducing agent, against Leishmania tropica. Materials & methods: FIONs were characterized using ultraviolet visible spectroscopy, x-ray diffraction and scanning electron microscopy. Results: FIONs showed excellent activity against L. tropica promastigotes and amastigotes (IC50 0.036 ± 0.003 and 0.072 ± 0.001 μg/ml, respectively) upon 15 min pre-incubation light-emitting diode light (84 lm/W) exposure, resulting in reactive oxygen species generation and induction of cell death via apoptosis. FIONs were found to be highly biocompatible with human erythrocytes (LD50 779 ± 21 μg/ml) and significantly selective (selectivity index >1000) against murine peritoneal macrophages (CC50 102.7 ± 2.9 μg/ml). Conclusion: Due to their noteworthy in vitro antileishmanial properties, FIONs should be further investigated in an in vivo model of the disease.
Collapse
Affiliation(s)
- Arshad Islam
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
- Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Quratul Ain
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Amna Munawar
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - José Dias Corrêa Junior
- Departamento of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ajmal Khan
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Farhan Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Cynthia Demicheli
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Frédéric Frézard
- Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| |
Collapse
|
57
|
Ayo-Lawal RA, Osoniyi O, Sibuyi NRS, Meyer M, Ekpo O. Cytotoxic and Apoptotic Induction Potential of Extracts from Fermented Citrullus vulgaris Thunb. Seeds on Cervical and Liver Cancer Cells. J Diet Suppl 2020; 18:132-146. [PMID: 32114858 DOI: 10.1080/19390211.2020.1731045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The anti-cancer activities of many fermented foods and beverages are now scientifically established. Ogiri-egusi is a condiment prepared from fermentation of Citrullus vulgaris (melon) seeds and consumed in many countries of West Africa. Its anti-oxidative and anti-hyperlipidaemic properties have been reported. This study investigated the anti-cancer activities of the aqueous and methanolic extracts from ogiri-egusi. Cytotoxicity was investigated using the MTT and colony-formation inhibition assays while flow-cytometer based Apopercentage assay was used to quantify apoptosis in extracts-treated cervical and liver cancer and normal human fibroblast cells. The inhibitory concentration responsible for killing 50% of cells after 24 h by the aqueous extract in KMST-6, HeLa, and Hep-G2 cells were estimated at 1.610, 1.020, and 1.507 mg/mL respectively. While these values reduced with increasing incubation time in cancer cells it increased in the non-cancer cell. Furthermore, the extract significantly induced apoptosis in HeLa (97 ± 0.18%) and Hep-G2 (73 ± 6.73%) cells. These findings were corroborated by cells morphologic presentations and inhibition of colony formation assay. These findings suggest that the aqueous extract from fermented Citrullus vulgaris seeds might be a nutraceutical with potential anti-cancer properties.
Collapse
Affiliation(s)
- Rachael Aderonke Ayo-Lawal
- National Centre for Technology Management (NACETEM), Obafemi Awolowo University, Ile-Ife, Nigeria.,Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Omolaja Osoniyi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Technology/Mintek Nanotechnology Innovation Centre, Biolabels Unit, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Mervin Meyer
- Department of Science and Technology/Mintek Nanotechnology Innovation Centre, Biolabels Unit, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Okobi Ekpo
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, South Africa
| |
Collapse
|
58
|
Muhammad I, Rahman N, Nayab GE, Niaz S, Shah M, Afridi SG, Khan H, Daglia M, Capanoglu E. The Molecular Docking of Flavonoids Isolated from Daucus carota as a Dual Inhibitor of MDM2 and MDMX. Recent Pat Anticancer Drug Discov 2020; 15:154-164. [PMID: 32101134 DOI: 10.2174/1574892815666200226112506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer is characterized by overexpression of p53 associated proteins, which down-regulate P53 signaling pathway. In cancer therapy, p53 activity can be restored by inhibiting the interaction of MDMX (2N0W) and MDM2 (4JGR) proteins with P53 protein. OBJECTIVE In the current, study in silico approaches were adapted to use a natural product as a source of cancer therapy. METHODS In the current study in silico approaches were adapted to use a natural product as a source of cancer therapy. For in silico studies, Chemdraw and Molecular Operating Environment were used for structure drawing and molecular docking, respectively. Flavonoids isolated from D. carota were docked with cancerous proteins. RESULT Based on the docking score analysis, we found that compound 7 was the potent inhibitor of both cancerous proteins and can be used as a potent molecule for inhibition of 2N0W and 4JGR interaction with p53. CONCLUSION Thus the compound 7 can be used for the revival of p53 signaling pathway function however, intensive in vitro and in vivo experiments are required to prove the in silico analysis.
Collapse
Affiliation(s)
- Ijaz Muhammad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Gul E Nayab
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Sahib G Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
59
|
Zhang R, Chen J, Mao L, Guo Y, Hao Y, Deng Y, Han X, Li Q, Liao W, Yuan M. Nobiletin Triggers Reactive Oxygen Species-Mediated Pyroptosis through Regulating Autophagy in Ovarian Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1326-1336. [PMID: 31955565 DOI: 10.1021/acs.jafc.9b07908] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ovarian cancer is one of the most serious female malignancies worldwide. Despite intensive efforts being made to overcome ovarian cancer, there still remain limited optional treatments for this disease. Nobiletin, a prospective food-derived phytochemical extracted from citrus fruits, has recently been reported to suppress ovarian cancer cells, but the role of pyroptosis in ovarian carcinoma with nobiletin still remains unknown. In this study, we aim to explore the effect of nobiletin on ovarian carcinoma and further expound the underlying mechanisms of nobiletin-induced ovarian cancer cell death. Our results showed that nobiletin could significantly inhibit cell proliferation, induce DNA damage, and also lead to apoptosis by increasing the cleaved poly (ADP-ribose) polymerase (PARP) level of human ovarian cancer cells (HOCCs) in a dose-dependent manner. Moreover, we revealed that nobiletin decreased mitochondrial membrane potential and induced reactive oxygen species (ROS) generation and autophagy of HOCCs, contributing to gasdermin D-/gasdermin E-mediated pyroptosis. Taken together, nobiletin as a functional food ingredient represents a promising new anti-ovarian cancer candidate that could induce apoptosis and trigger ROS-mediated pyroptosis through regulating autophagy in ovarian cancer cells.
Collapse
Affiliation(s)
- Rongjun Zhang
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Jian Chen
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Yajie Guo
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Yudi Deng
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Xue Han
- Department of Obstetrics and Gynecology , Gansu Provincial Hospital , Lanzhou 730000 , Gansu , China
| | - Qingjiao Li
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Miaomiao Yuan
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| |
Collapse
|
60
|
Kulkarni M, Hastak V, Jadhav V, Date AA. Fenugreek Leaf Extract and Its Gel Formulation Show Activity Against Malassezia furfur. Assay Drug Dev Technol 2019; 18:45-55. [PMID: 31524496 DOI: 10.1089/adt.2019.918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malassezia spp. are commensal yeasts that can cause cutaneous ailments such as dandruff and seborrheic dermatitis. We sought to develop a cost-effective, herbal formulation for the treatment of cutaneous ailments related to Malassezia spp. Aqueous and ethanolic extracts of fenugreek (Trigonellafoenum-graecum L.) leaves exhibited activity against a clinical isolate and commercial strain of Malassezia furfur. The extracts were also found to be active against other pathogenic fungi such as Aspergillus niger and Candida albicans. Qualitative and quantitative phytochemical evaluation of aqueous extract showed a predominant presence of flavonoids apart from alkaloids, saponins, carbohydrates, phenols, and proteins. Gel formulation of 30% aqueous fenugreek leaf extract was developed and optimized using sodium alginate as a gelling agent. The formulation showed good physicochemical characteristics and retained activity against M. furfur during 3-month accelerated stability studies. Furthermore, the developed herbal gel formulation did not show any irritation or sensitization in New Zealand rabbits after topical application, proving its cutaneous safety. Thus, topical gel formulation containing fenugreek leaf aqueous extract could be a safe and effective herbal treatment for various cutaneous fungal infections, including dandruff.
Collapse
Affiliation(s)
- Madhur Kulkarni
- Department of Pharmaceutics, SCES's Indira College of Pharmacy, Tathawade, Pune, India
| | - Vishakha Hastak
- Department of Pharmaceutics, SCES's Indira College of Pharmacy, Tathawade, Pune, India
| | - Vitthal Jadhav
- Department of Pharmaceutics, SCES's Indira College of Pharmacy, Tathawade, Pune, India
| | - Abhijit A Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii
| |
Collapse
|
61
|
Al-Dabbagh B, Elhaty IA, Elhaw M, Murali C, Al Mansoori A, Awad B, Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Res Notes 2019; 12:3. [PMID: 30602390 PMCID: PMC6317209 DOI: 10.1186/s13104-018-3960-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Objectives The present study aimed at determining the antioxidant activity, total phenols and flavonoids and to evaluate the antiproliferative activity of ethanolic extract of Matricaria recutita L. (chamomile). The antioxidant activities were measured using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The total phenolic content was measured by the Folin–Ciocalteu assay. The flavonoid content was determined using the aluminum chloride method. The MTT assay was used to estimate the antiproliferative activities against human hepatoma (HepG2) cancer cell line. We assessed the mode of action of the extract as a cancer preventive agent and reported its ability to regulate tumor angiogenesis by down regulating in a dose dependent manner the expression of some proteins involved in the process. Results The percentage inhibition of DPPH scavenging activity was dose-dependent ranging between (94.8% ± 0.03) at 1.50 mg/mL and (84.2% ± 0.86) at 0.15 mg/mL. It showed high polyphenols (21.4 ± 0.327 mg GAE/g) and high flavonoids content (157.9 ± 2.22 mg QE/g). Effect of extract was investigated against HepG2 cells. A dose-dependent reduction in cell viability was recorded in cells treated with the extract. The IC50 was ~ 300 µg/mL. It significantly inhibited the level of important prerequisite angiogenesis markers both in HepG2 cells and ex vivo. Electronic supplementary material The online version of this article (10.1186/s13104-018-3960-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bayan Al-Dabbagh
- Department of Chemistry, College of Science, UAE University, PO Box 15551, Al Ain, UAE.
| | - Ismail A Elhaty
- Department of Chemistry, College of Science, UAE University, PO Box 15551, Al Ain, UAE
| | - Mohamed Elhaw
- Department of Chemistry, College of Science, UAE University, PO Box 15551, Al Ain, UAE
| | - Chandraprabha Murali
- Department of Biology, College of Science, UAE University, PO Box 15551, Al Ain, UAE
| | - Ameera Al Mansoori
- Department of Biology, College of Science, UAE University, PO Box 15551, Al Ain, UAE
| | - Basma Awad
- Department of Biology, College of Science, UAE University, PO Box 15551, Al Ain, UAE
| | - Amr Amin
- Department of Biology, College of Science, UAE University, PO Box 15551, Al Ain, UAE.
| |
Collapse
|