51
|
Kudagammana HDWS, Thevanesam V, Chu DKW, Eriyagama NB, Peiris JSM, Noordeen F. Coronaviruses in guano from Pteropus medius bats in Peradeniya, Sri Lanka. Transbound Emerg Dis 2018; 65:1122-1124. [PMID: 29498228 PMCID: PMC7169738 DOI: 10.1111/tbed.12851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 01/06/2023]
Abstract
Bats are a unique group of mammals well suited to be hosts for emerging viruses. With current rates of deforestation and urbanization, redistribution of bat habitats to urban and suburban areas may bring bats into closer contact with livestock and humans. Common flying fox, Pteropus medius (previously known as Pteropus giganteus), forms large communal roosts on treetops, often in close proximity to human habitation in Sri Lanka. This report describes the detection of coronavirus RNA in P. medius bat guano collected in Peradeniya, Sri Lanka. These viruses had >97% nucleotide identity with coronaviruses detected in Cynopterus sphinx, Scotophilus heathii and S. kuhlii bats in Thailand. Pteropus medius is widespread in Asia and appears to excrete group D coronaviruses, which are hitherto confined to bats; however, these findings may have public health implications in the future.
Collapse
Affiliation(s)
- H D W S Kudagammana
- Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka.,Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - V Thevanesam
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - D K W Chu
- School of Public Health, University of Hong Kong, Hong Kong, Hong Kong
| | - N B Eriyagama
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - J S M Peiris
- School of Public Health, University of Hong Kong, Hong Kong, Hong Kong
| | - F Noordeen
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
52
|
Ar Gouilh M, Puechmaille SJ, Diancourt L, Vandenbogaert M, Serra-Cobo J, Lopez Roïg M, Brown P, Moutou F, Caro V, Vabret A, Manuguerra JC. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology 2018; 517:88-97. [PMID: 29482919 PMCID: PMC7112086 DOI: 10.1016/j.virol.2018.01.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 01/18/2018] [Indexed: 11/28/2022]
Abstract
The emergence of SARS-CoV and MERS-CoV, triggered the discovery of a high diversity of coronaviruses in bats. Studies from Europe have shown that coronaviruses circulate in bats in France but this reflects only a fraction of the whole diversity. In the current study the diversity of coronaviruses circulating in western Europe was extensively explored. Ten alphacoronaviruses in eleven bat species belonging to the Miniopteridae, Vespertilionidae and Rhinolophidae families and, a SARS-CoV-related Betacoronavirus in Rhinolophus ferrumequinum were identified. The diversity and prevalence of bat coronaviruses presently reported from western Europe is much higher than previously described and includes a SARS-CoV sister group. This diversity demonstrates the dynamic evolution and circulation of coronaviruses in this species. That said, the identified coronaviruses were consistently associated with a particular bat species or genus, and these relationships were maintained no matter the geographic location. The observed phylogenetic grouping of coronaviruses from the same species in Europe and Asia, emphasizes the role of host/pathogen coevolution in this group.
Collapse
Affiliation(s)
- Meriadeg Ar Gouilh
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France; Normandie Université, EA2656, Groupe de Recherche sur l'Adaptation Microbienne, 14000, Caen, France.
| | - Sébastien J Puechmaille
- Greifswald University, 17489, Greifswald, Germany; University College Dublin, Belfield, Dublin 4, Ireland; Chauves-souris Aveyron, 12310, Vimenet, France
| | - Laure Diancourt
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | - Mathias Vandenbogaert
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | - Jordi Serra-Cobo
- IRBIO & Departament de de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Marc Lopez Roïg
- IRBIO & Departament de de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paul Brown
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, 22440, Ploufragan, France
| | - François Moutou
- Ecole Nationale Vétérinaire d'Alfort, 94704, Maison-Alfort, France
| | - Valérie Caro
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | - Astrid Vabret
- Normandie Université, EA2656, Groupe de Recherche sur l'Adaptation Microbienne, 14000, Caen, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | | |
Collapse
|
53
|
Wacharapluesadee S, Duengkae P, Chaiyes A, Kaewpom T, Rodpan A, Yingsakmongkon S, Petcharat S, Phengsakul P, Maneeorn P, Hemachudha T. Longitudinal study of age-specific pattern of coronavirus infection in Lyle's flying fox (Pteropus lylei) in Thailand. Virol J 2018; 15:38. [PMID: 29463282 PMCID: PMC5819653 DOI: 10.1186/s12985-018-0950-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/15/2018] [Indexed: 02/02/2023] Open
Abstract
Background Bats are natural reservoirs for several highly pathogenic and novel viruses including coronaviruses (CoVs) (mainly Alphacoronavirus and Betacoronavirus). Lyle’s flying fox (Pteropus lylei)‘s roosts and foraging sites are usually in the proximity to humans and animals. Knowledge about age-specific pattern of CoV infection in P. lylei, prevalence, and viral shedding at roosts and foraging sites may have an impact on infection-age-structure model to control CoV outbreak. Methods P. lylei bats were captured monthly during January–December 2012 for detection of CoV at three areas in Chonburi province; two human dwellings, S1 and S2, where few fruit trees were located with an open pig farm, 0.6 km and 5.5 km away from the bat roost, S3. Nested RT-PCR of RNA-dependent RNA polymerase (RdRp) gene from rectal swabs was used for CoV detection. The strain of CoV was confirmed by sequencing and phylogenetic analysis. Results CoV infection was found in both juveniles and adult bats between May and October (January, in adults only and April, in juveniles only). Of total rectal swab positives (68/367, 18.5%), ratio was higher in bats captured at S1 (11/44, 25.0%) and S2 (35/99, 35.4%) foraging sites than at roost (S3) (22/224, 9.8%). Juveniles (forearm length ≤ 136 mm) were found with more CoV infection than adults at all three sites; S1 (9/24, 37.5% vs 2/20, 10%), S2 (22/49, 44.9% vs 13/50, 26.0%), and S3 (10/30, 33.3% vs 12/194, 6.2%). The average BCI of CoV infected bats was significantly lower than uninfected bats. No gender difference related to infection was found at the sites. Phylogenetic analysis of conserved RdRp gene revealed that the detected CoVs belonged to group D betacoronavirus (n = 64) and alphacoronavirus (n = 4). Conclusions The fact that CoV infection and shedding was found in more juvenile than adult bats may suggest transmission from mother during peripartum period. Whether viral reactivation during parturition period or stress is responsible in maintaining transmission in the bat colony needs to be explored.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | - Aingorn Chaiyes
- Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Thongchai Kaewpom
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apaporn Rodpan
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pattarapol Maneeorn
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases - Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
54
|
Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, Hicks AL, Joly DO, Wolfe ND, Daszak P, Karesh W, Lipkin WI, Morse SS, Mazet JAK, Goldstein T. Global patterns in coronavirus diversity. Virus Evol 2017. [PMID: 28630747 PMCID: PMC5467638 DOI: 10.1093/ve/vex012] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrom Coronavirus (MERS-CoV) it has become increasingly clear that bats are important reservoirs of CoVs. Despite this, only 6% of all CoV sequences in GenBank are from bats. The remaining 94% largely consist of known pathogens of public health or agricultural significance, indicating that current research effort is heavily biased towards describing known diseases rather than the ‘pre-emergent’ diversity in bats. Our study addresses this critical gap, and focuses on resource poor countries where the risk of zoonotic emergence is believed to be highest. We surveyed the diversity of CoVs in multiple host taxa from twenty countries to explore the factors driving viral diversity at a global scale. We identified sequences representing 100 discrete phylogenetic clusters, ninety-one of which were found in bats, and used ecological and epidemiologic analyses to show that patterns of CoV diversity correlate with those of bat diversity. This cements bats as the major evolutionary reservoirs and ecological drivers of CoV diversity. Co-phylogenetic reconciliation analysis was also used to show that host switching has contributed to CoV evolution, and a preliminary analysis suggests that regional variation exists in the dynamics of this process. Overall our study represents a model for exploring global viral diversity and advances our fundamental understanding of CoV biodiversity and the potential risk factors associated with zoonotic emergence.
Collapse
Affiliation(s)
- Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - Christine K Johnson
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise J Greig
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sarah Kramer
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Heather Wells
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Allison L Hicks
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Damien O Joly
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA.,Wildlife Conservation Society, New York, NY 10460, USA
| | - Nathan D Wolfe
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - William Karesh
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - W I Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Stephen S Morse
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | | | - Jonna A K Mazet
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
55
|
Urushadze L, Bai Y, Osikowicz L, McKee C, Sidamonidze K, Putkaradze D, Imnadze P, Kandaurov A, Kuzmin I, Kosoy M. Prevalence, diversity, and host associations of Bartonella strains in bats from Georgia (Caucasus). PLoS Negl Trop Dis 2017; 11:e0005428. [PMID: 28399125 PMCID: PMC5400274 DOI: 10.1371/journal.pntd.0005428] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/21/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
Bartonella infections were investigated in seven species of bats from four regions of the Republic of Georgia. Of the 236 bats that were captured, 212 (90%) specimens were tested for Bartonella infection. Colonies identified as Bartonella were isolated from 105 (49.5%) of 212 bats Phylogenetic analysis based on sequence variation of the gltA gene differentiated 22 unique Bartonella genogroups. Genetic distances between these diverse genogroups were at the level of those observed between different Bartonella species described previously. Twenty-one reference strains from 19 representative genogroups were characterized using four additional genetic markers. Host specificity to bat genera or families was reported for several Bartonella genogroups. Some Bartonella genotypes found in bats clustered with those identified in dogs from Thailand and humans from Poland. Bacteria of the genus Bartonella parasitize erythrocytes and endothelial cells of a wide range of mammals and recently were reported in bats from Africa, Asia, America, and northern Europe. A human disease case in the USA was associated with a novel Bartonella species, which later was identified in bats in Finland. This human case has demonstrated the zoonotic potential of bat-borne Bartonella and underscores the need for extended surveillance and studies of these pathogens. The present work assesses prevalence and diversity of Bartonella in bats in the country of Georgia (southern Caucasus), characterizes reference strains representing diverse genogroups by variation of genetic loci, and evaluates the links between identified Bartonella genogroups and bat hosts. Importantly, some Bartonella genotypes found in bats were close or identical to those identified in dogs and humans. The data indicate that the public health impact of Bartonella carried by bats should be investigated.
Collapse
Affiliation(s)
- Lela Urushadze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
- Ilia State University, Tbilisi, Georgia
- * E-mail:
| | - Ying Bai
- Centers for Disease Control and Prevention, Division of Vector-Borne Disease, Fort Collins, Colorado, United States of America
| | - Lynn Osikowicz
- Centers for Disease Control and Prevention, Division of Vector-Borne Disease, Fort Collins, Colorado, United States of America
| | - Clifton McKee
- Centers for Disease Control and Prevention, Division of Vector-Borne Disease, Fort Collins, Colorado, United States of America
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Davit Putkaradze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Paata Imnadze
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | | | - Ivan Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael Kosoy
- Centers for Disease Control and Prevention, Division of Vector-Borne Disease, Fort Collins, Colorado, United States of America
| |
Collapse
|
56
|
Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus. mBio 2017; 8:mBio.00373-17. [PMID: 28377531 PMCID: PMC5380844 DOI: 10.1128/mbio.00373-17] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionary origins of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) are unknown. Current evidence suggests that insectivorous bats are likely to be the original source, as several 2c CoVs have been described from various species in the family Vespertilionidae Here, we describe a MERS-like CoV identified from a Pipistrellus cf. hesperidus bat sampled in Uganda (strain PREDICT/PDF-2180), further supporting the hypothesis that bats are the evolutionary source of MERS-CoV. Phylogenetic analysis showed that PREDICT/PDF-2180 is closely related to MERS-CoV across much of its genome, consistent with a common ancestry; however, the spike protein was highly divergent (46% amino acid identity), suggesting that the two viruses may have different receptor binding properties. Indeed, several amino acid substitutions were identified in key binding residues that were predicted to block PREDICT/PDF-2180 from attaching to the MERS-CoV DPP4 receptor. To experimentally test this hypothesis, an infectious MERS-CoV clone expressing the PREDICT/PDF-2180 spike protein was generated. Recombinant viruses derived from the clone were replication competent but unable to spread and establish new infections in Vero cells or primary human airway epithelial cells. Our findings suggest that PREDICT/PDF-2180 is unlikely to pose a zoonotic threat. Recombination in the S1 subunit of the spike gene was identified as the primary mechanism driving variation in the spike phenotype and was likely one of the critical steps in the evolution and emergence of MERS-CoV in humans.IMPORTANCE Global surveillance efforts for undiscovered viruses are an important component of pandemic prevention initiatives. These surveys can be useful for finding novel viruses and for gaining insights into the ecological and evolutionary factors driving viral diversity; however, finding a viral sequence is not sufficient to determine whether it can infect people (i.e., poses a zoonotic threat). Here, we investigated the specific zoonotic risk of a MERS-like coronavirus (PREDICT/PDF-2180) identified in a bat from Uganda and showed that, despite being closely related to MERS-CoV, it is unlikely to pose a threat to humans. We suggest that this approach constitutes an appropriate strategy for beginning to determine the zoonotic potential of wildlife viruses. By showing that PREDICT/PDF-2180 does not infect cells that express the functional receptor for MERS-CoV, we further show that recombination was likely to be the critical step that allowed MERS to emerge in humans.
Collapse
|
57
|
Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, Hicks AL, Joly DO, Wolfe ND, Daszak P, Karesh W, Lipkin WI, Morse SS, Mazet JAK, Goldstein T. Global patterns in coronavirus diversity. Virus Evol 2017; 3:vex012. [PMID: 28630747 DOI: 10.1093/ve] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrom Coronavirus (MERS-CoV) it has become increasingly clear that bats are important reservoirs of CoVs. Despite this, only 6% of all CoV sequences in GenBank are from bats. The remaining 94% largely consist of known pathogens of public health or agricultural significance, indicating that current research effort is heavily biased towards describing known diseases rather than the 'pre-emergent' diversity in bats. Our study addresses this critical gap, and focuses on resource poor countries where the risk of zoonotic emergence is believed to be highest. We surveyed the diversity of CoVs in multiple host taxa from twenty countries to explore the factors driving viral diversity at a global scale. We identified sequences representing 100 discrete phylogenetic clusters, ninety-one of which were found in bats, and used ecological and epidemiologic analyses to show that patterns of CoV diversity correlate with those of bat diversity. This cements bats as the major evolutionary reservoirs and ecological drivers of CoV diversity. Co-phylogenetic reconciliation analysis was also used to show that host switching has contributed to CoV evolution, and a preliminary analysis suggests that regional variation exists in the dynamics of this process. Overall our study represents a model for exploring global viral diversity and advances our fundamental understanding of CoV biodiversity and the potential risk factors associated with zoonotic emergence.
Collapse
Affiliation(s)
- Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - Christine K Johnson
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise J Greig
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sarah Kramer
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Heather Wells
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Allison L Hicks
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Damien O Joly
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA
- Wildlife Conservation Society, New York, NY 10460, USA
| | - Nathan D Wolfe
- Metabiota, Inc. One Sutter, Suite 600, San Francisco, CA 94104, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - William Karesh
- EcoHealth Alliance, 460 West 34 Street, New York, NY 10001, USA
| | - W I Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Stephen S Morse
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY 10032, USA
| | - Jonna A K Mazet
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute & Karen C Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
58
|
Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. INFECTION GENETICS AND EVOLUTION 2016; 48:10-18. [PMID: 27932284 PMCID: PMC7106194 DOI: 10.1016/j.meegid.2016.11.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 01/01/2023]
Abstract
South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n = 55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii Coronaviruses detected in bats from Lao PDR and Cambodia. High diversity of αCoVs and βCoVs circulating in bats in Cambodia and Lao PDR. One strain of βCoV, a new member of the MERS-CoV sister-clade, detected from Pipistrellus coromandra. A αCoV strain genetically related to PEDV-CoV, detected from Myotis horsfieldii. CoVs detected for the first time in Megaerops niphanae, Myotis horsfieldii and Macroglossus sp.
Collapse
|
59
|
Lacroix A, Duong V, Hul V, San S, Davun H, Omaliss K, Chea S, Hassanin A, Theppangna W, Silithammavong S, Khammavong K, Singhalath S, Afelt A, Greatorex Z, Fine AE, Goldstein T, Olson S, Joly DO, Keatts L, Dussart P, Frutos R, Buchy P. Diversity of bat astroviruses in Lao PDR and Cambodia. INFECTION GENETICS AND EVOLUTION 2016; 47:41-50. [PMID: 27871796 PMCID: PMC7106329 DOI: 10.1016/j.meegid.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022]
Abstract
Astroviruses are known to infect humans and a wide range of animal species, and can cause gastroenteritis in their hosts. Recent studies have reported astroviruses in bats in Europe and in several locations in China. We sampled 1876 bats from 17 genera at 45 sites from 14 and 13 provinces in Cambodia and Lao PDR respectively, and tested them for astroviruses. Our study revealed a high diversity of astroviruses among various Yangochiroptera and Yinpterochiroptera bats. Evidence for varying degrees of host restriction for astroviruses in bats was found. Furthermore, additional Pteropodid hosts were detected. The astroviruses formed distinct phylogenetic clusters within the genus Mamastrovirus, most closely related to other known bat astroviruses. The astrovirus sequences were found to be highly saturated indicating that phylogenetic relationships should be interpreted carefully. An astrovirus clustering in a group with other viruses from diverse hosts, including from ungulates and porcupines, was found in a Rousettus bat. These findings suggest that diverse astroviruses can be found in many species of mammals, including bats. Diverse astroviruses detected in bats in Lao PDR and Cambodia High polymorphism of astroviruses found in insectivorous and frugivorous bats High level of genome saturation and hypermutation potential evidenced in astrovirus Detection of additional astrovirus bat hosts, i.e. nectar bats from the genus Eonycteris Discovery of a new species of astrovirus in fruit bats (Rousettus sp.)
Collapse
Affiliation(s)
- Audrey Lacroix
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Vibol Hul
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Sorn San
- National Veterinary Research Institute, Department of Animal Health and Production, Ministry of Agriculture Forestry and Fisheries, Cambodia
| | - Holl Davun
- National Veterinary Research Institute, Department of Animal Health and Production, Ministry of Agriculture Forestry and Fisheries, Cambodia
| | - Keo Omaliss
- Forest Administration, Ministry of Agriculture Forestry and Fisheries, Cambodia
| | | | - Alexandre Hassanin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN CNRS UPMC, EPHE, Muséum national d'Histoire naturelle, Paris, France; Muséum national d'Histoire naturelle, Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN CNRS UPMC, France
| | - Watthana Theppangna
- National Animal Health Laboratory, Ministry of Agriculture Forestry and Fisheries, Laos
| | | | | | | | - Aneta Afelt
- Institute of Physical Geography, Faculty of Geography and Regional Studies, University of Warsaw, Warsaw, Poland
| | | | - Amanda E Fine
- Wildlife Conservation Society, Wildlife Health Program, Bronx, N.Y., USA
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, USA
| | - Sarah Olson
- Wildlife Conservation Society, Wildlife Health Program, Bronx, N.Y., USA
| | - Damien O Joly
- Wildlife Conservation Society, Wildlife Health Program, Bronx, N.Y., USA; Metabiota Inc., Nanaimo, British Columbia, Canada
| | | | - Philippe Dussart
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Roger Frutos
- Cirad, UMR 17, Cirad-Ird, TA-A17/G, Montpellier, France; Université de Montpellier, IES, UMR 5214, CNRS-UM, Montpellier, France.
| | - Philippe Buchy
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia; GSK Vaccines R&D, 150 Beach road, # 22-00, 189720, Singapore.
| |
Collapse
|
60
|
Mendenhall IH, Borthwick S, Neves ES, Low D, Linster M, Liang B, Skiles M, Jayakumar J, Han H, Gunalan V, Lee BPYH, Okahara K, Wang LF, Maurer-Stroh S, Su YCF, Smith GJD. Identification of a Lineage D Betacoronavirus in Cave Nectar Bats (Eonycteris spelaea) in Singapore and an Overview of Lineage D Reservoir Ecology in SE Asian Bats. Transbound Emerg Dis 2016; 64:1790-1800. [PMID: 27637887 PMCID: PMC7159162 DOI: 10.1111/tbed.12568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 12/11/2022]
Abstract
Coronaviruses are a diverse group of viruses that infect mammals and birds. Bats are reservoirs for several different coronaviruses in the Alphacoronavirus and Betacoronavirus genera. They also appear to be the natural reservoir for the ancestral viruses that generated the severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus outbreaks. Here, we detected coronavirus sequences in next‐generation sequence data created from Eonycteris spelaea faeces and urine. We also screened by PCR urine samples, faecal samples and rectal swabs collected from six species of bats in Singapore between 2011 and 2014, all of which were negative. The phylogenetic analysis indicates this novel strain is most closely related to lineage D Betacoronaviruses detected in a diverse range of bat species. This is the second time that coronaviruses have been detected in cave nectar bats, but the first coronavirus sequence data generated from this species. Bat species from which this group of coronaviruses has been detected are widely distributed across SE Asia, South Asia and Southern China. They overlap geographically, often share roosting sites and have been witnessed to forage on the same plant. The addition of sequence data from this group of viruses will allow us to better understand coronavirus evolution and host specificity.
Collapse
Affiliation(s)
- I H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - S Borthwick
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - E S Neves
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - D Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - M Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - B Liang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - M Skiles
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - J Jayakumar
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - H Han
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - V Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - B P Y-H Lee
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,National Parks Board, Singapore
| | - K Okahara
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - L-F Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - S Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Y C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - G J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
61
|
Banerjee A, Rapin N, Miller M, Griebel P, Zhou Y, Munster V, Misra V. Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen. J Virol Methods 2016; 237:166-173. [PMID: 27639955 PMCID: PMC7113758 DOI: 10.1016/j.jviromet.2016.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Eptesicus fuscus kidney cells immortalized using Myotis polyomavirus T-antigen. E. fuscus interferon competent kidney cell line supports the growth of vesicular stomatitis virus, porcine epidemic diarrhea virus, herpes simplex virus and Middle-East respiratory syndrome coronavirus. All cell lines exhibit a marker for fibroblasts (vimentin), some also exhibit an epithelial marker (cytokeratin).
It is speculated that bats are important reservoir hosts for numerous viruses, with 27 viral families reportedly detected in bats. Majority of these viruses have not been isolated and there is little information regarding their biology in bats. Establishing a well-characterized bat cell line supporting the replication of bat-borne viruses would facilitate the analysis of virus-host interactions in an in vitro model. Currently, few bat cell lines have been developed and only Tb1-Lu, derived from Tadarida brasiliensis is commercially available. Here we describe a method to establish and immortalize big brown bat (Eptesicus fuscus) kidney (Efk3) cells using the Myotis polyomavirus T-antigen. Subclones of this cell line expressed both epithelial and fibroblast markers to varying extents. Cell clones expressed interferon beta in response to poly(I:C) stimulation and supported the replication of four different viruses, namely, vesicular stomatitis virus (VSV), porcine epidemic diarrhea coronavirus (PED-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and herpes simplex virus (HSV). To our knowledge, this is the first bat cell line from a northern latitude insectivorous bat developed using a novel technology. The cell line has the potential to be used for isolation of bat viruses and for studying virus-bat interactions in culture.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Noreen Rapin
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Megan Miller
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Philip Griebel
- Vaccine and Infectious Disease Organization - International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization - International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Vikram Misra
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
62
|
MERS-CoV vaccine candidates in development: The current landscape. Vaccine 2016; 34:2982-2987. [PMID: 27083424 PMCID: PMC7115572 DOI: 10.1016/j.vaccine.2016.03.104] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging infectious disease of growing global importance, has caused severe acute respiratory disease in more than 1600 people, resulting in more than 600 deaths. The high case fatality rate, growing geographic distribution and vaguely defined epidemiology of MERS-CoV have created an urgent need for effective public health countermeasures, paramount of which is an effective means of prevention through a vaccine or antibody prophylaxis. Despite the relatively few number of cases to-date, research and development of MERS-CoV vaccine candidates is advancing quickly. This review surveys the landscape of these efforts across multiple groups in academia, government and industry.
Collapse
|
63
|
Tsoleridis T, Onianwa O, Horncastle E, Dayman E, Zhu M, Danjittrong T, Wachtl M, Behnke JM, Chapman S, Strong V, Dobbs P, Ball JK, Tarlinton RE, McClure CP. Discovery of Novel Alphacoronaviruses in European Rodents and Shrews. Viruses 2016; 8:84. [PMID: 27102167 PMCID: PMC4810274 DOI: 10.3390/v8030084] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 12/04/2022] Open
Abstract
Eight hundred and thirteen European rodents and shrews encompassing seven different species were screened for alphacoronaviruses using PCR detection. Novel alphacoronaviruses were detected in the species Rattus norvegicus, Microtus agrestis, Sorex araneus and Myodes glareolus. These, together with the recently described Lucheng virus found in China, form a distinct rodent/shrew-specific clade within the coronavirus phylogeny. Across a highly conserved region of the viral polymerase gene, the new members of this clade were up to 22% dissimilar at the nucleotide level to the previously described Lucheng virus. As such they might represent distinct species of alphacoronaviruses. These data greatly extend our knowledge of wildlife reservoirs of alphacoronaviruses.
Collapse
Affiliation(s)
| | - Okechukwu Onianwa
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Emma Horncastle
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Emma Dayman
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Miaoran Zhu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | - Marta Wachtl
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Sarah Chapman
- Twycross Zoo, Burton Road, Atherstone, Warwickshire CV9 3PX, UK.
| | - Victoria Strong
- Twycross Zoo, Burton Road, Atherstone, Warwickshire CV9 3PX, UK.
| | - Phillipa Dobbs
- Twycross Zoo, Burton Road, Atherstone, Warwickshire CV9 3PX, UK.
| | - Jonathan K Ball
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Rachael E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - C Patrick McClure
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
64
|
Ge XY, Wang N, Zhang W, Hu B, Li B, Zhang YZ, Zhou JH, Luo CM, Yang XL, Wu LJ, Wang B, Zhang Y, Li ZX, Shi ZL. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol Sin 2016; 31:31-40. [PMID: 26920708 PMCID: PMC7090819 DOI: 10.1007/s12250-016-3713-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/22/2016] [Indexed: 01/04/2023] Open
Abstract
Since the 2002–2003 severe acute respiratory syndrome (SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012–2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene (RdRp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial RdRp fragments had 80%–99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including BtCoV HKU2, BtCoV HKU8, and BtCoV1, and unassigned species BtCoV HKU7 and BtCoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens.![]()
Collapse
Affiliation(s)
- Xing-Yi Ge
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ning Wang
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Zhang
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ben Hu
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bei Li
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun-Zhi Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.,School of Public Health, Dali University, Dali, 671000, China
| | - Ji-Hua Zhou
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Chu-Ming Luo
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Li-Jun Wu
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Wang
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Zhang
- Mojiang Center for Diseases Control and Prevention, Mojiang, 654800, China
| | - Zong-Xiao Li
- Mojiang Center for Diseases Control and Prevention, Mojiang, 654800, China
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
65
|
Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol Sin 2016; 31:69-77. [PMID: 26847648 PMCID: PMC7090707 DOI: 10.1007/s12250-016-3727-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Bats have been implicated as important reservoir hosts of alpha- and betacoronaviruses. In this study, diverse coronaviruses (CoVs) were detected in 50 of 951 (positive rate 5.3%) intestinal specimens of eight bat species collected in four provinces and the Tibet Autonomous Region of China by pan-coronavirus RT-PCR screening. Based on 400-nt RNA-dependent RNA polymerase (RdRP) sequence analysis, eight belonged to genus Alphacoronavirus and 42 to Betacoronavirus. Among the 50 positive specimens, thirteen gave rise to CoV full-length RdRP gene amplification for further sequence comparison, of which three divergent sequences (two from a unreported province) were subjected to full genome sequencing. Two complete genomes of betacoronaviruses (JTMC15 and JPDB144) and one nearly-complete genome of alphacoronavirus (JTAC2) were sequenced and their genomic organization predicted. The present study has identified additional numbers of genetically diverse bat-borne coronaviruses with a wide distribution in China. Two new species of bat CoV, identified through sequence comparison and phylogenetic analysis, are proposed.![]()
Collapse
|
66
|
Goffard A, Demanche C, Arthur L, Pinçon C, Michaux J, Dubuisson J. Alphacoronaviruses Detected in French Bats Are Phylogeographically Linked to Coronaviruses of European Bats. Viruses 2015; 7:6279-90. [PMID: 26633467 PMCID: PMC4690861 DOI: 10.3390/v7122937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022] Open
Abstract
Bats are a reservoir for a diverse range of viruses, including coronaviruses (CoVs). To determine the presence of CoVs in French bats, fecal samples were collected between July and August of 2014 from four bat species in seven different locations around the city of Bourges in France. We present for the first time the presence of alpha-CoVs in French Pipistrellus pipistrellus bat species with an estimated prevalence of 4.2%. Based on the analysis of a fragment of the RNA-dependent RNA polymerase (RdRp) gene, phylogenetic analyses show that alpha-CoVs sequences detected in French bats are closely related to other European bat alpha-CoVs. Phylogeographic analyses of RdRp sequences show that several CoVs strains circulate in European bats: (i) old strains detected that have probably diverged a long time ago and are detected in different bat subspecies; (ii) strains detected in Myotis and Pipistrellus bat species that have more recently diverged. Our findings support previous observations describing the complexity of the detected CoVs in bats worldwide.
Collapse
Affiliation(s)
- Anne Goffard
- Molecular & Cellular Virology, University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Bâtiment IBL. 1 rue du Pr. Calmette CS 50447, 59021 Lille Cedex, France.
| | - Christine Demanche
- Bacterial Respiratory Infections: Pertussis and Tuberculosis, University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.
| | - Laurent Arthur
- Museum d'Histoire Naturelle de Bourges, Les Rives d'Auron, allée René Ménard, 18000 Bourges, France.
| | - Claire Pinçon
- University Lille, CHU Lille, EA 2694-Santé publique: épidémiologie et qualité des soins, F-59000 Lille, France.
| | - Johan Michaux
- Conservation Genetics Unit, Institute of Botany (B. 22), University Liège, 4000 Liège, Belgium.
- CIRAD TA C-22/E-Campus international de Baillarguet, 34398 Montpellier Cedex 5, France.
| | - Jean Dubuisson
- Molecular & Cellular Virology, University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Bâtiment IBL. 1 rue du Pr. Calmette CS 50447, 59021 Lille Cedex, France.
| |
Collapse
|