51
|
Aprile-Garcia F, Tomar P, Hummel B, Khavaran A, Sawarkar R. Nascent-protein ubiquitination is required for heat shock–induced gene downregulation in human cells. Nat Struct Mol Biol 2019; 26:137-146. [DOI: 10.1038/s41594-018-0182-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
|
52
|
Wang Z, Chu T, Choate LA, Danko CG. Identification of regulatory elements from nascent transcription using dREG. Genome Res 2019; 29:293-303. [PMID: 30573452 PMCID: PMC6360809 DOI: 10.1101/gr.238279.118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023]
Abstract
Our genomes encode a wealth of transcription initiation regions (TIRs) that can be identified by their distinctive patterns of actively elongating RNA polymerase. We previously introduced dREG to identify TIRs using PRO-seq data. Here, we introduce an efficient new implementation of dREG that uses PRO-seq data to identify both uni- and bidirectionally transcribed TIRs with 70% improvement in accuracy, three- to fourfold higher resolution, and >100-fold increases in computational efficiency. Using a novel strategy to identify TIRs based on their statistical confidence reveals extensive overlap with orthogonal assays, yet also reveals thousands of additional weakly transcribed TIRs that were not identified by H3K27ac ChIP-seq or DNase-seq. Novel TIRs discovered by dREG were often associated with RNA polymerase III initiation, bound by pioneer transcription factors, or located in broad domains marked by repressive chromatin modifications. Our results suggest that transcription initiation can be a powerful tool for expanding the catalog of functional elements.
Collapse
Affiliation(s)
- Zhong Wang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Tinyi Chu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Lauren A Choate
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
53
|
Cossec JC, Theurillat I, Chica C, Búa Aguín S, Gaume X, Andrieux A, Iturbide A, Jouvion G, Li H, Bossis G, Seeler JS, Torres-Padilla ME, Dejean A. SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States. Cell Stem Cell 2018; 23:742-757.e8. [PMID: 30401455 DOI: 10.1016/j.stem.2018.10.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Understanding general principles that safeguard cellular identity should reveal critical insights into common mechanisms underlying specification of varied cell types. Here, we show that SUMO modification acts to stabilize cell fate in a variety of contexts. Hyposumoylation enhances pluripotency reprogramming in vitro and in vivo, increases lineage transdifferentiation, and facilitates leukemic cell differentiation. Suppressing sumoylation in embryonic stem cells (ESCs) promotes their conversion into 2-cell-embryo-like (2C-like) cells. During reprogramming to pluripotency, SUMO functions on fibroblastic enhancers to retain somatic transcription factors together with Oct4, Sox2, and Klf4, thus impeding somatic enhancer inactivation. In contrast, in ESCs, SUMO functions on heterochromatin to silence the 2C program, maintaining both proper H3K9me3 levels genome-wide and repression of the Dux locus by triggering recruitment of the sumoylated PRC1.6 and Kap/Setdb1 repressive complexes. Together, these studies show that SUMO acts on chromatin as a glue to stabilize key determinants of somatic and pluripotent states.
Collapse
Affiliation(s)
- Jack-Christophe Cossec
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | - Ilan Theurillat
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Claudia Chica
- Bioinformatics and Biostatistics Hub - C3BI, USR 3756 Institut Pasteur & CNRS, 75015 Paris, France
| | - Sabela Búa Aguín
- Cellular Plasticity and Disease Modelling Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR3738, 75015 Paris, France
| | - Xavier Gaume
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | - Ane Iturbide
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Gregory Jouvion
- Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France
| | - Han Li
- Cellular Plasticity and Disease Modelling Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR3738, 75015 Paris, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | | | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France.
| |
Collapse
|
54
|
Rodríguez-Castañeda F, Lemma RB, Cuervo I, Bengtsen M, Moen LM, Ledsaak M, Eskeland R, Gabrielsen OS. The SUMO protease SENP1 and the chromatin remodeler CHD3 interact and jointly affect chromatin accessibility and gene expression. J Biol Chem 2018; 293:15439-15454. [PMID: 30082317 DOI: 10.1074/jbc.ra118.002844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/12/2018] [Indexed: 01/22/2023] Open
Abstract
The small ubiquitin-like modifier (SUMO) post-translationally modifies lysine residues of transcription factors and co-regulators and thereby contributes to an important layer of control of the activities of these transcriptional regulators. Likewise, deSUMOylation of these factors by the sentrin-specific proteases (SENPs) also plays a role in gene regulation, but whether SENPs functionally interact with other regulatory factors that control gene expression is unclear. In the present work, we focused on SENP1, specifically, on its role in activation of gene expression investigated through analysis of the SENP1 interactome, which revealed that SENP1 physically interacts with the chromatin remodeler chromodomain helicase DNA-binding protein 3 (CHD3). Using several additional methods, including GST pulldown and co-immunoprecipitation assays, we validated and mapped this interaction, and using CRISPR-Cas9-generated CHD3- and SENP1-KO cells (in the haploid HAP1 cell line), we investigated whether these two proteins are functionally linked in regulating chromatin remodeling and gene expression. Genome-wide ATAC-Seq analysis of the CHD3- and SENP1-KO cells revealed a large degree of overlap in differential chromatin openness between these two mutant cell lines. Moreover, motif analysis and comparison with ChIP-Seq profiles in K562 cells pointed to an association of CHD3 and SENP1 with CCCTC-binding factor (CTCF) and SUMOylated chromatin-associated factors. Lastly, genome-wide RNA-Seq also indicated that these two proteins co-regulate the expression of several genes. We propose that the functional link between chromatin remodeling by CHD3 and deSUMOylation by SENP1 uncovered here provides another level of control of gene expression.
Collapse
Affiliation(s)
| | - Roza Berhanu Lemma
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Ignacio Cuervo
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Mads Bengtsen
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Lisa Marie Moen
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Marit Ledsaak
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| | - Ragnhild Eskeland
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and.,the Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway
| | - Odd Stokke Gabrielsen
- From the Department of Biosciences, University of Oslo, P. O. Box 1066 Blindern, N-0316 Oslo and
| |
Collapse
|
55
|
Shan X, Roberts C, Lan Y, Percec I. Age Alters Chromatin Structure and Expression of SUMO Proteins under Stress Conditions in Human Adipose-Derived Stem Cells. Sci Rep 2018; 8:11502. [PMID: 30065345 PMCID: PMC6068198 DOI: 10.1038/s41598-018-29775-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells play a critical role in tissue homeostasis and repair. Aging leads to a decline in stem cells’ regenerative capacity that contributes significantly to the maintenance of organ and tissue functions. Age-dependent genomic and epigenetic modifications together play a role in the disruption of critical cellular pathways. However, the epigenetic mechanisms responsible for the decline of adult stem cell functions remain to be well established. Here, we investigated age-dependent, genome-wide alterations in the chromatin accessibility of primary human adipose-derived stem cells (ASCs) in comparison to age-matched fibroblasts via ATAC-seq technology. Our results demonstrate that aging ASCs possess globally more stable chromatin accessibility profiles as compared to aging fibroblasts, suggesting that robust regulatory mechanisms maintain adult stem cell chromatin structure against aging. Furthermore, we observed age-dependent subtle changes in promoter nucleosome positioning in selective pathways during aging, concurrent with altered small ubiquitin-related modifier (SUMO) protein expression under stress conditions. Together, our data suggest a significant role for nucleosome positioning in sumoylation pathway regulation in stress response during adult stem cell aging. The differences described here between the chromatin structure of human ASCs and fibroblasts will further elucidate the mechanisms regulating gene expression during aging in both stem cells and differentiated cells.
Collapse
Affiliation(s)
- Xiaoyin Shan
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cleresa Roberts
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ivona Percec
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
56
|
Pfammatter S, Bonneil E, McManus FP, Thibault P. Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1111-1124. [PMID: 29623662 DOI: 10.1007/s13361-018-1917-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
The small ubiquitin-like modifier (SUMO) is a member of the family of ubiquitin-like modifiers (UBLs) and is involved in important cellular processes, including DNA damage response, meiosis and cellular trafficking. The large-scale identification of SUMO peptides in a site-specific manner is challenging not only because of the low abundance and dynamic nature of this modification, but also due to the branched structure of the corresponding peptides that further complicate their identification using conventional search engines. Here, we exploited the unusual structure of SUMO peptides to facilitate their separation by high-field asymmetric waveform ion mobility spectrometry (FAIMS) and increase the coverage of SUMO proteome analysis. Upon trypsin digestion, branched peptides contain a SUMO remnant side chain and predominantly form triply protonated ions that facilitate their gas-phase separation using FAIMS. We evaluated the mobility characteristics of synthetic SUMO peptides and further demonstrated the application of FAIMS to profile the changes in protein SUMOylation of HEK293 cells following heat shock, a condition known to affect this modification. FAIMS typically provided a 10-fold improvement of detection limit of SUMO peptides, and enabled a 36% increase in SUMO proteome coverage compared to the same LC-MS/MS analyses performed without FAIMS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sibylle Pfammatter
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Francis P McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada.
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
57
|
Abstract
Proteotoxic stress, that is, stress caused by protein misfolding and aggregation, triggers the rapid and global reprogramming of transcription at genes and enhancers. Genome-wide assays that track transcriptionally engaged RNA polymerase II (Pol II) at nucleotide resolution have provided key insights into the underlying molecular mechanisms that regulate transcriptional responses to stress. In addition, recent kinetic analyses of transcriptional control under heat stress have shown how cells 'prewire' and rapidly execute genome-wide changes in transcription while concurrently becoming poised for recovery. The regulation of Pol II at genes and enhancers in response to heat stress is coupled to chromatin modification and compartmentalization, as well as to co-transcriptional RNA processing. These mechanistic features seem to apply broadly to other coordinated genome-regulatory responses.
Collapse
Affiliation(s)
- Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
58
|
Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan YT, Charng YY, Scalf M, Smith LM, Vierstra RD. SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. THE PLANT CELL 2018; 30:1077-1099. [PMID: 29588388 PMCID: PMC6002191 DOI: 10.1105/tpc.17.00993] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/15/2018] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
The posttranslational addition of small ubiquitin-like modifier (SUMO) is an essential protein modification in plants that provides protection against numerous environmental challenges. Ligation is accomplished by a small set of SUMO ligases, with the SAP-MIZ domain-containing SIZ1 and METHYL METHANESULFONATE-SENSITIVE21 (MMS21) ligases having critical roles in stress protection and DNA endoreduplication/repair, respectively. To help identify their corresponding targets in Arabidopsis thaliana, we used siz1 and mms21 mutants for proteomic analyses of SUMOylated proteins enriched via an engineered SUMO1 isoform suitable for mass spectrometric studies. Through multiple data sets from seedlings grown at normal temperatures or exposed to heat stress, we identified over 1000 SUMO targets, most of which are nuclear localized. Whereas no targets could be assigned to MMS21, suggesting that it modifies only a few low abundance proteins, numerous targets could be assigned to SIZ1, including major transcription factors, coactivators/repressors, and chromatin modifiers connected to abiotic and biotic stress defense, some of which associate into multisubunit regulatory complexes. SIZ1 itself is also a target, but studies with mutants protected from SUMOylation failed to uncover a regulatory role. The catalog of SIZ1 substrates indicates that SUMOylation by this ligase provides stress protection by modifying a large array of key nuclear regulators.
Collapse
Affiliation(s)
- Thérèse C Rytz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marcus J Miller
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Yu-Ting Juan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
59
|
Yu F, Shi G, Cheng S, Chen J, Wu SY, Wang Z, Xia N, Zhai Y, Wang Z, Peng Y, Wang D, Du JX, Liao L, Duan SZ, Shi T, Cheng J, Chiang CM, Li J, Wong J. SUMO suppresses and MYC amplifies transcription globally by regulating CDK9 sumoylation. Cell Res 2018; 28:670-685. [PMID: 29588524 DOI: 10.1038/s41422-018-0023-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 01/21/2023] Open
Abstract
Regulation of transcription is fundamental to the control of cellular gene expression and function. Although recent studies have revealed a role for the oncoprotein MYC in amplifying global transcription, little is known as to how the global transcription is suppressed. Here we report that SUMO and MYC mediate opposite effects upon global transcription by controlling the level of CDK9 sumoylation. On one hand, SUMO suppresses global transcription via sumoylation of CDK9, the catalytic subunit of P-TEFb kinase essential for productive transcriptional elongation. On the other hand, MYC amplifies global transcription by antagonizing CDK9 sumoylation. Sumoylation of CDK9 blocks its interaction with Cyclin T1 and thus the formation of active P-TEFb complex. Transcription profiling analyses reveal that SUMO represses global transcription, particularly of moderately to highly expressed genes and by generating a sumoylation-resistant CDK9 mutant, we confirm that sumoylation of CDK9 inhibits global transcription. Together, our data reveal that SUMO and MYC oppositely control global gene expression by regulating the dynamic sumoylation and desumoylation of CDK9.
Collapse
Affiliation(s)
- Fang Yu
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guang Shi
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Gene Engineering of the Ministry of Education and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shimeng Cheng
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiwei Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Zhiqiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nansong Xia
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunhao Zhai
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhenxing Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Peng
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dong Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - James X Du
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
60
|
Appikonda S, Thakkar KN, Shah PK, Dent SYR, Andersen JN, Barton MC. Cross-talk between chromatin acetylation and SUMOylation of tripartite motif-containing protein 24 (TRIM24) impacts cell adhesion. J Biol Chem 2018. [PMID: 29523690 DOI: 10.1074/jbc.ra118.002233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins with domains that recognize and bind post-translational modifications (PTMs) of histones are collectively termed epigenetic readers. Numerous interactions between specific reader protein domains and histone PTMs and their regulatory outcomes have been reported, but little is known about how reader proteins may in turn be modulated by these interactions. Tripartite motif-containing protein 24 (TRIM24) is a histone reader aberrantly expressed in multiple cancers. Here, our investigation revealed functional cross-talk between histone acetylation and TRIM24 SUMOylation. Binding of TRIM24 to chromatin via its tandem PHD-bromodomain, which recognizes unmethylated lysine 4 and acetylated lysine 23 of histone H3 (H3K4me0/K23ac), led to TRIM24 SUMOylation at lysine residues 723 and 741. Inactivation of the bromodomain, either by mutation or with a small-molecule inhibitor, IACS-9571, abolished TRIM24 SUMOylation. Conversely, inhibition of histone deacetylation markedly increased TRIM24's interaction with chromatin and its SUMOylation. Of note, gene expression profiling of MCF7 cells expressing WT versus SUMO-deficient TRIM24 identified cell adhesion as the major pathway regulated by the cross-talk between chromatin acetylation and TRIM24 SUMOylation. In conclusion, our findings establish a new link between histone H3 acetylation and SUMOylation of the reader protein TRIM24, a functional connection that may bear on TRIM24's oncogenic function and may inform future studies of PTM cross-talk between histones and epigenetic regulators.
Collapse
Affiliation(s)
- Srikanth Appikonda
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, Texas 77030
| | - Kaushik N Thakkar
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, Texas 77030; University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Parantu K Shah
- Institute for Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, Texas 77030; University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Jannik N Andersen
- Institute for Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, Houston, Texas 77030; University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030.
| |
Collapse
|
61
|
Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol 2018; 52:1081-1094. [PMID: 29484374 PMCID: PMC5843405 DOI: 10.3892/ijo.2018.4280] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a reversible post-translational modification which has emerged as a crucial molecular regulatory mechanism, involved in the regulation of DNA damage repair, immune responses, carcinogenesis, cell cycle progression and apoptosis. Four SUMO isoforms have been identified, which are SUMO1, SUMO2/3 and SUMO4. The small ubiquitin-like modifier (SUMO) pathway is conserved in all eukaryotes and plays pivotal roles in the regulation of gene expression, cellular signaling and the maintenance of genomic integrity. The SUMO catalytic cycle includes maturation, activation, conjugation, ligation and de-modification. The dysregulation of the SUMO system is associated with a number of diseases, particularly cancer. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis and apoptosis. SUMO can be used as a potential therapeutic target for cancer. In this review, we briefly outline the basic concepts of the SUMO system and summarize the involvement of SUMO proteins in cancer cells in order to better understand the role of SUMO in human disease.
Collapse
Affiliation(s)
- Zhi-Jian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yan-Hu Feng
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Bao-Hong Gu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yu-Min Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
62
|
Shah SP, Nooka AK, Jaye DL, Bahlis NJ, Lonial S, Boise LH. Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation. Oncotarget 2018; 7:59727-59741. [PMID: 27487129 PMCID: PMC5312344 DOI: 10.18632/oncotarget.10847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/18/2016] [Indexed: 12/22/2022] Open
Abstract
Proteasome inhibitors such as bortezomib are highly active in multiple myeloma by affecting signaling cascades and leading to a toxic buildup of misfolded proteins. Bortezomib-treated cells activate the cytoprotective heat shock response (HSR), including upregulation of heat shock proteins (HSPs). Here we inhibited the bortezomib-induced HSR by silencing its master regulator, Heat Shock Factor 1 (HSF1). HSF1 silencing led to bortezomib sensitization. In contrast, silencing of individual and combination HSPs, except HSP40β, did not result in significant bortezomib sensitization. However, HSP40β did not entirely account for increased bortezomib sensitivity upon HSF1 silencing. To determine the mechanism of HSF1 activation, we assessed phosphorylation and observed bortezomib-inducible phosphorylation in cell lines and patient samples. We determined that this bortezomib-inducible event is phosphorylation at serine 326. Prior clinical use of HSP inhibitors in combination with bortezomib has been disappointing in multiple myeloma therapy. Our results provide a rationale for targeting HSF1 activation in combination with bortezomib to enhance multiple myeloma treatment efficacy.
Collapse
Affiliation(s)
- Shardule P Shah
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, GA, USA
| | - Ajay K Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, GA, USA
| | - David L Jaye
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nizar J Bahlis
- Department of Medical Oncology and Hematology, Tom Baker Cancer Center, Calgary, AB, Canada
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
63
|
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) protein regulates numerous cellular pathways and mounting evidence reveals a critical role for SUMO in modulating gene expression. Dynamic sumoylation of transcription factors, chromatin-modifying enzymes, histones, and other chromatin-associated factors significantly affects the transcriptional status of the eukaryotic genome. Recent studies have employed high-throughput ChIP-Seq analyses to gain clues regarding the role of the SUMO pathway in regulating chromatin-based transactions. Indeed, the global distribution of SUMO across chromatin reveals an important function for SUMO in controlling transcription, particularly of genes involved in protein synthesis. These newly appreciated patterns of genome-wide sumoylation will inform more directed studies aimed at analyzing how the dynamics of gene expression are controlled by posttranslational SUMO modification.
Collapse
Affiliation(s)
- Nicole R Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA.
| |
Collapse
|
64
|
Paasch F, den Brave F, Psakhye I, Pfander B, Jentsch S. Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. J Biol Chem 2017; 293:599-609. [PMID: 29183993 PMCID: PMC5767865 DOI: 10.1074/jbc.m117.817833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Indexed: 11/23/2022] Open
Abstract
Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.
Collapse
Affiliation(s)
| | | | - Ivan Psakhye
- From the Department of Molecular Cell Biology and
| | - Boris Pfander
- the Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
65
|
Abstract
Many of the known SUMO substrates are nuclear proteins, which regulate gene expression and chromatin dynamics. Sumoylation, in general, appears to correlate with decreased transcriptional activity, and in many cases modulation of the chromatin template is implicated. Sumoylation of the core histones is associated with transcriptional silencing, and transcription factor sumoylation can decrease gene expression by promoting recruitment of chromatin modifying enzymes. Additionally, sumoylation of transcriptional corepressors and chromatin remodeling enzymes can influence interactions with other transcriptional regulators, and alter their enzymatic activity. In some cases, proteins that are components of transcriptional corepressor complexes have been shown to be SUMO E3 ligases, further emphasizing the integration of sumoylation with the regulation of chromatin remodeling. Despite the evidence suggesting that sumoylation is primarily repressive for access to chromatin, recent analyses suggest that protein sumoylation on the chromatin template may play important roles at highly expressed genes. Elucidating the dynamic interplay of sumoylation with other post-translational modifications of histones and chromatin associated proteins will be key to fully understanding the regulation of access to the chromatin template.
Collapse
|
66
|
He X, Riceberg J, Soucy T, Koenig E, Minissale J, Gallery M, Bernard H, Yang X, Liao H, Rabino C, Shah P, Xega K, Yan ZH, Sintchak M, Bradley J, Xu H, Duffey M, England D, Mizutani H, Hu Z, Guo J, Chau R, Dick LR, Brownell JE, Newcomb J, Langston S, Lightcap ES, Bence N, Pulukuri SM. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol 2017; 13:1164-1171. [PMID: 28892090 DOI: 10.1038/nchembio.2463] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/21/2017] [Indexed: 01/29/2023]
Abstract
Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.
Collapse
Affiliation(s)
- Xingyue He
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Jessica Riceberg
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Teresa Soucy
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Erik Koenig
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - James Minissale
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Melissa Gallery
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Hugues Bernard
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Xiaofeng Yang
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Hua Liao
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Claudia Rabino
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Pooja Shah
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Kristina Xega
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Zhong-Hua Yan
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Mike Sintchak
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - John Bradley
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - He Xu
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Matt Duffey
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Dylan England
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Hirotake Mizutani
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Zhigen Hu
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Jianping Guo
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Ryan Chau
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Lawrence R Dick
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - James E Brownell
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - John Newcomb
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Steve Langston
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Eric S Lightcap
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Neil Bence
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Sai M Pulukuri
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| |
Collapse
|
67
|
Vihervaara A, Mahat DB, Guertin MJ, Chu T, Danko CG, Lis JT, Sistonen L. Transcriptional response to stress is pre-wired by promoter and enhancer architecture. Nat Commun 2017; 8:255. [PMID: 28811569 PMCID: PMC5557961 DOI: 10.1038/s41467-017-00151-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/05/2017] [Indexed: 12/29/2022] Open
Abstract
Programs of gene expression are executed by a battery of transcription factors that coordinate divergent transcription from a pair of tightly linked core initiation regions of promoters and enhancers. Here, to investigate how divergent transcription is reprogrammed upon stress, we measured nascent RNA synthesis at nucleotide-resolution, and profiled histone H4 acetylation in human cells. Our results globally show that the release of promoter-proximal paused RNA polymerase into elongation functions as a critical switch at which a gene's response to stress is determined. Highly transcribed and highly inducible genes display strong transcriptional directionality and selective assembly of general transcription factors on the core sense promoter. Heat-induced transcription at enhancers, instead, correlates with prior binding of cell-type, sequence-specific transcription factors. Activated Heat Shock Factor 1 (HSF1) binds to transcription-primed promoters and enhancers, and CTCF-occupied, non-transcribed chromatin. These results reveal chromatin architectural features that orient transcription at divergent regulatory elements and prime transcriptional responses genome-wide.Heat Shock Factor 1 (HSF1) is a regulator of stress-induced transcription. Here, the authors investigate changes to transcription and chromatin organization upon stress and find that activated HSF1 binds to transcription-primed promoters and enhancers, and to CTCF occupied, untranscribed chromatin.
Collapse
Affiliation(s)
- Anniina Vihervaara
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, 20520, Finland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14853, USA
| | - Dig Bijay Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14853, USA
| | - Michael J Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22908, USA
| | - Tinyi Chu
- Department of Biomedical Sciences, The Baker Institute for Animal Health, Cornell University, Ithaca, New York, 14853, USA
- Graduate Field of Computational Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Charles G Danko
- Department of Biomedical Sciences, The Baker Institute for Animal Health, Cornell University, Ithaca, New York, 14853, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14853, USA.
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, 20520, Finland.
| |
Collapse
|
68
|
Wang T, Chen YPP, MacLeod IM, Pryce JE, Goddard ME, Hayes BJ. Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. BMC Genomics 2017; 18:618. [PMID: 28810831 PMCID: PMC5558724 DOI: 10.1186/s12864-017-4030-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Using whole genome sequence data might improve genomic prediction accuracy, when compared with high-density SNP arrays, and could lead to identification of casual mutations affecting complex traits. For some traits, the most accurate genomic predictions are achieved with non-linear Bayesian methods. However, as the number of variants and the size of the reference population increase, the computational time required to implement these Bayesian methods (typically with Monte Carlo Markov Chain sampling) becomes unfeasibly long. Results Here, we applied a new method, HyB_BR (for Hybrid BayesR), which implements a mixture model of normal distributions and hybridizes an Expectation-Maximization (EM) algorithm followed by Markov Chain Monte Carlo (MCMC) sampling, to genomic prediction in a large dairy cattle population with imputed whole genome sequence data. The imputed whole genome sequence data included 994,019 variant genotypes of 16,214 Holstein and Jersey bulls and cows. Traits included fat yield, milk volume, protein kg, fat% and protein% in milk, as well as fertility and heat tolerance. HyB_BR achieved genomic prediction accuracies as high as the full MCMC implementation of BayesR, both for predicting a validation set of Holstein and Jersey bulls (multi-breed prediction) and a validation set of Australian Red bulls (across-breed prediction). HyB_BR had a ten fold reduction in compute time, compared with the MCMC implementation of BayesR (48 hours versus 594 hours). We also demonstrate that in many cases HyB_BR identified sequence variants with a high posterior probability of affecting the milk production or fertility traits that were similar to those identified in BayesR. For heat tolerance, both HyB_BR and BayesR found variants in or close to promising candidate genes associated with this trait and not detected by previous studies. Conclusions The results demonstrate that HyB_BR is a feasible method for simultaneous genomic prediction and QTL mapping with whole genome sequence in large reference populations.
Collapse
Affiliation(s)
- Tingting Wang
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3083, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia. .,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.
| | - Yi-Ping Phoebe Chen
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia
| | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,Faculty of Veterinary and Agricultural Science, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ben J Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
69
|
Niskanen EA, Palvimo JJ. Chromatin SUMOylation in heat stress: To protect, pause and organise?: SUMO stress response on chromatin. Bioessays 2017; 39. [PMID: 28440894 DOI: 10.1002/bies.201600263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Post-translational modifications, e.g. SUMO modifications (SUMOylation), provide a mechanism for swiftly changing a protein's activity. Various stress conditions trigger a SUMO stress response (SSR) - a stress-induced rapid change in the conjugation of SUMO to multiple proteins, which predominantly targets nuclear proteins. The SSR has been postulated to protect stressed cells by preserving the functionality of crucial proteins. However, it is unclear how it exerts its protective functions. Interestingly, heat stress (HS) increases SUMOylation of proteins at active promoters and enhancers. In promoters, HS-induced SUMOylation correlates with gene transcription and stress-induced RNA polymerase II (Pol2) pausing. Conversely, a disappearance of SUMOylation in HS occurs at chromatin anchor points that maintain chromatin-looping structures and the spatial organisation of chromatin. In reviewing the literature, we hypothesise that the SSR regulates Pol2 pausing by modulating the interactions of pausing-regulating proteins, whereas deSUMOylation alters the function of chromatin anchors.
Collapse
Affiliation(s)
- Einari A Niskanen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Jorma J Palvimo
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
70
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
71
|
Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res 2016; 45:619-630. [PMID: 27672034 PMCID: PMC5314794 DOI: 10.1093/nar/gkw855] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 01/01/2023] Open
Abstract
Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC.
Collapse
Affiliation(s)
- Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
72
|
Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets. Sci Rep 2016; 6:33510. [PMID: 27641228 PMCID: PMC5027586 DOI: 10.1038/srep33510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells.
Collapse
|
73
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
74
|
Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet 2016; 48:488-96. [PMID: 27064255 DOI: 10.1038/ng.3539] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
Discriminating the gene target of a distal regulatory element from other nearby transcribed genes is a challenging problem with the potential to illuminate the causal underpinnings of complex diseases. We present TargetFinder, a computational method that reconstructs regulatory landscapes from diverse features along the genome. The resulting models accurately predict individual enhancer-promoter interactions across multiple cell lines with a false discovery rate up to 15 times smaller than that obtained using the closest gene. By evaluating the genomic features driving this accuracy, we uncover interactions between structural proteins, transcription factors, epigenetic modifications, and transcription that together distinguish interacting from non-interacting enhancer-promoter pairs. Most of this signature is not proximal to the enhancers and promoters but instead decorates the looping DNA. We conclude that complex but consistent combinations of marks on the one-dimensional genome encode the three-dimensional structure of fine-scale regulatory interactions.
Collapse
|
75
|
PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:705-18. [PMID: 27032383 DOI: 10.1016/j.bbagrm.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/08/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022]
Abstract
The PIAS proteins (Protein Inhibitor of Activated STATs) constitute a family of multifunctional nuclear proteins operating as SUMO E3 ligases and being involved in a multitude of interactions. They participate in a range of biological processes, also beyond their well-established role in the immune system and cytokine signalling. They act both as transcriptional corepressors and coactivators depending on the context. In the present work, we investigated mechanisms by which PIAS1 causes activation or repression of c-Myb dependent target genes. Analysis of global expression data shows that c-Myb and PIAS1 knockdowns affect a subset of common targets, but with a dual outcome consistent with a role of PIAS1 as either a corepressor or coactivator. Our mechanistic studies show that PIAS1 engages in a novel interaction with the acetyltransferase and coactivator p300. Interaction and ChIP analysis suggest a bridging function where PIAS1 enhances p300 recruitment to c-Myb-bound sites through interaction with both proteins. In addition, the E3 activity of PIAS1 enhances further its coactivation. Remarkably, the SUMO status of c-Myb had a decisive role, indicating a SUMO-dependent switch in the way PIAS1 affects c-Myb, either as a coactivator or corepressor. Removal of the two major SUMO-conjugation sites in c-Myb (2KR mutant), which enhances its activity significantly, turned PIAS1 into a corepressor. Also, p300 was less efficiently recruited to chromatin by c-Myb-2KR. We propose that PIAS1 acts as a "protein inhibitor of activated c-Myb" in the absence of SUMOylation while, in its presence, PIAS behaves as a "protein activator of repressed c-Myb".
Collapse
|
76
|
Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Nat Struct Mol Biol 2016; 23:147-54. [PMID: 26727490 PMCID: PMC4973471 DOI: 10.1038/nsmb.3150] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
Heat Shock Transcription Factor (HSF) family members function in stress protection and in human disease including proteopathies, neurodegeneration and cancer. The mechanisms that drive distinct post-translational modifications, co-factor recruitment and target gene activation for specific HSF paralogs are unknown. We present high-resolution crystal structures of the human HSF2 DNA-binding domain (DBD) bound to DNA, revealing an unprecedented view of HSFs that provides insights into their unique biology. The HSF2 DBD structures resolve a novel carboxyl-terminal helix that directs the coiled-coil domain to wrap around DNA, exposing paralog-specific sequences of the DBD surface, for differential post-translational modifications and co-factor interactions. We further demonstrate a direct interaction between HSF1 and HSF2 through their coiled-coil domains. Together, these features provide a new model for HSF structure as the basis for differential and combinatorial regulation to influence the transcriptional response to cellular stress.
Collapse
|