51
|
Azad MA, Gao J, Ma J, Li T, Tan B, Huang X, Yin J. Opportunities of prebiotics for the intestinal health of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:379-388. [PMID: 33364453 PMCID: PMC7750794 DOI: 10.1016/j.aninu.2020.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The goal of prebiotic applications from different sources is to improve the gut ecosystem where the host and microbiota can benefit from prebiotics. It has already been recognized that prebiotics have potential roles in the gut ecosystem because gut microbiota ferment complex dietary macronutrients and carry out a broad range of functions in the host body, such as the production of nutrients and vitamins, protection against pathogens, and maintenance of immune system balance. The gut ecosystem is very crucial and can be affected by numerous factors consisting of dietary constituents and commensal bacteria. This review focuses on recent scientific evidence, confirming a beneficial effect of prebiotics on animal health, particularly in terms of protection against pathogenic bacteria and increasing the number of beneficial bacteria that may improve epithelial cell barrier functions. It has also been reviewed that modification of the gut ecosystem through the utilization of prebiotics significantly affects the intestinal health of animals. However, the identification and characterization of novel potential prebiotics remain a topical issue and elucidation of the metagenomics relationship between gut microbiota alteration and prebiotic substances is necessary for future prebiotic studies.
Collapse
Affiliation(s)
- Md A.K. Azad
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
52
|
Effects of Wheat Bran Applied to Maternal Diet on the Intestinal Architecture and Immune Gene Expression in Suckling Piglets. Animals (Basel) 2020; 10:ani10112051. [PMID: 33171908 PMCID: PMC7694546 DOI: 10.3390/ani10112051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This research was committed to revealing the potential effects of the use of a high percentage of wheat bran (WB) in the sow’s diets on the offspring’s growth and health, by measuring the bodyweight gain, the morphology of the intestine, as well as the expression levels of immune-related genes in the mucosa of the ileum and colon. Results indicate that adding 25% of wheat bran to the sow’s gestation and 14% to the lactation diet can affect the intestinal architecture and the expression of some inflammation genes, to some extent, in the ileal mucosa in the progeny. Abstract The strategy of improving the growth and health of piglets through maternal fiber diet intervention has attracted increasing attention. Therefore, 15 sows were conducted to a wheat bran (WB) group, in which the sows’ diets included 25% of WB in gestation and 14% in lactation, and a control (CON) group, in which the sows’ diets at all stages of reproduction did not contain WB. The results show that maternal high WB intervention seems not to have an impact on the growth of the offspring or the villus height of the duodenum, and the ratio of villi/crypts in the duodenum and jejunum were all higher in piglets born from WB sows, which may indicate that WB piglets had a larger absorption area and capacity for nutrients. The peroxisome proliferator-activated receptor gamma (PPARγ) and interleukin 6 (IL6) expression levels were notably upregulated in the ileal mucosa of WB piglets, while no immune-related genes in the colonic mucosa were affected by the maternal WB supplementation. In conclusion, adding a high proportion of wheat bran to the sow’s gestation and lactation diet can affect the intestinal architecture and the expression of some inflammation genes, to some extent, in the ileal mucosa in the progeny.
Collapse
|
53
|
Mou D, Li S, Yan C, Zhang Q, Li J, Wu Q, Qiu P, He Y, Li Y, Liu H, Jiang X, Zhao X, Zhuo Y, Feng B, Lin Y, Fang Z, Xu S, Li J, Che L, Wu D. Dietary fiber sources for gestation sows: Evaluations based on combined in vitro and in vivo methodology. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Tian M, Chen J, Liu J, Chen F, Guan W, Zhang S. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. ACTA ACUST UNITED AC 2020; 6:397-403. [PMID: 33364455 PMCID: PMC7750804 DOI: 10.1016/j.aninu.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Dietary fiber is a critical nutrient in sow diet and has attracted interest of animal nutritionists for many years. In addition to increase sows’ satiety, dietary fiber has been found to involve in the regulation of multiple biological functions in the sow production. The interaction of dietary fiber and gut microbes can produce bioactive metabolites, which are of great significance to sows' metabolism and reproductive performance. This article reviewed the interaction between dietary fiber and gut microbes in regulating sows' gut microbial diversity, intestinal immune system, lactation, and production performance, with the aim to provide a new strategy for the use of dietary fiber in sow diets.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxin Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 516042, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 516042, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 516042, China
| |
Collapse
|
55
|
Déru V, Bouquet A, Labussière E, Ganier P, Blanchet B, Carillier-Jacquin C, Gilbert H. Genetics of digestive efficiency in growing pigs fed a conventional or a high-fibre diet. J Anim Breed Genet 2020; 138:246-258. [PMID: 32951296 PMCID: PMC7891433 DOI: 10.1111/jbg.12506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
The use of diets with increased dietary fibre content (HF) from alternative feedstuffs is a solution to limit the impact of increased feed costs on pig production. This study aimed at determining the impact of an alternative HF diet on pig digestibility and at estimating genetic parameters of this trait. Digestibility coefficients (DC) of energy, organic matter and nitrogen were predicted from faecal samples analysed with near infrared spectrometry for 1,242 samples, and it represented 654 Large White pigs fed a conventional (CO) diet and 588 fed a HF diet. Growth and feed efficiency traits, carcass composition and meat quality traits were recorded. Pigs fed the HF diet had significantly lower DC than pigs fed the CO diet (−4.5 to 6.0 points). The DC were moderately to highly heritable (about 0.26 ± 0.12 and 0.54 ± 0.15 in the CO and the HF diet, respectively). Genetic correlations were favourable with feed conversion ratio, daily feed intake and residual feed intake, but unfavourable with average daily gain (ADG) and carcass yield (CY). To conclude, DC could be an interesting trait to include in future breeding objectives if pigs were fed diet with HF diets, but adverse genetic trends with ADG and CY would have to be taken into account.
Collapse
Affiliation(s)
- Vanille Déru
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France.,France Génétique Porc, Le Rheu, France
| | | | | | | | | | | | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
56
|
Gut microbial metabolism of dietary fibre protects against high energy feeding induced ovarian follicular atresia in a pig model. Br J Nutr 2020; 125:38-49. [PMID: 32600501 DOI: 10.1017/s0007114520002378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To investigate the effects of dietary fibre on follicular atresia in pigs fed a high-fat diet, we fed thirty-two prepubescent gilts a basal diet (CON) or a CON diet supplemented with 300 g/d dietary fibre (fibre), 240 g/d soya oil (SO) or both (fibre + SO). At the 19th day of the 4th oestrus cycle, gilts fed the SO diet showed 112 % more atretic follicles and greater expression of the apoptotic markers, Bax and caspase-3, and these effects were reversed by the fibre diet. The abundance of SCFA-producing microbes was decreased by the SO diet, but this effect was reversed by fibre treatment. Concentrations of serotonin and melatonin in the serum and follicular fluid were increased by the fibre diet. Overall, dietary fibre protected against high fat feeding-induced follicular atresia at least partly via gut microbiota-related serotonin-melatonin synthesis. These results provide insight into preventing negative effects on fertility in humans consuming a high-energy diet.
Collapse
|
57
|
Acceptability, Preferences, and Palatability of Diets Containing Summer and Winter Brassica Forage in Growing Pigs: A Pilot Study. Animals (Basel) 2020; 10:ani10061080. [PMID: 32585838 PMCID: PMC7341294 DOI: 10.3390/ani10061080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The inclusion of fiber in pigs’ commercial diets may represent an opportunity to reduce feeding costs and benefit animals’ health and welfare. However, antinutritional factors that generate a bitter taste may reduce the voluntary intake of animals. The present experiments evaluated growing pigs’ feeding behavior for winter and summer brassicas, when incorporated on commercial diets as a replacement for wheat middlings. Experiment 1 studied the feeding behavior of pigs when summer turnip or forage rape were included into the diets, while experiment 2 studied the inclusion of kale and swede by replacing 15% of wheat middlings. No differences were found between diets that included brassicas and control diet in pigs’ acceptability or palatability. However, during preference tests of experiment 2 (winter brassicas), diet that incorporated swede presented a higher consumption than control diet and a diet that incorporated kale. This suggests that brassica forage may be incorporated in growing pigs’ diets without negative repercussions in animals’ oral perception during short term feeding tests. Abstract Brassica forage may be included in pigs’ diet as a dietary fiber ingredient to reduce feeding costs, benefit gut health, immune system, reproductive traits, and welfare. However, they contain antinutritional factors which may affect feeding behavior. This study evaluated feeding behavior of growing pigs offered winter (kale and swede) and summer (turnip and forage rape) brassicas incorporated on their diets as dried ground meal. Two consecutive experiments with six growing castrated male pigs were conducted. Experiment 1 evaluated the inclusion of turnip bulbs and forage rape, while experiment 2 studied inclusion of kale and swede bulbs. Brassica meal was included at 15% of the diet by replacing wheat middlings (control diet). In each experiment, pigs were offered experimental diets over six consecutive days for 10 min to test their acceptability (day 1–3) and preferences (day 4–6). No differences were found between diets that included brassicas and control diet in pigs’ acceptability or palatability (p > 0.05). However, during preference tests of winter brassicas, swede presented a higher consumption than control and kale (p < 0.05). This suggest that brassicas may be incorporated in growing pigs’ diets without negative effects in animals’ oral perception during short term feeding tests. Nevertheless, the long-term effects need to be explored.
Collapse
|
58
|
Priester M, Visscher C, Fels M, Rohn K, Dusel G. Fibre supply for breeding sows and its effects on social behaviour in group-housed sows and performance during lactation. Porcine Health Manag 2020; 6:15. [PMID: 32518669 PMCID: PMC7273647 DOI: 10.1186/s40813-020-00153-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fibre sources as feed components with specific physical characteristics like a high swelling capacity (SC), viscosity and water-binding capacity (WBC) have been discussed to affect sow behaviour and to have long-term effects on lactational performance. The present studies aim to analyse the effects of different fibre sources in diets for sows on behaviour in gestation, reproductive performance as well as piglet development. Methods Twenty-eight feedingstuffs (four grain varieties, 16 by-products, three oilseeds and five leguminous plants) were compared concerning swelling capacity, viscosity and water binding capacity to select fibre sources with optimal physical characteristics. Following this a digestibility study was carried out with eight castrates for determining digestibilities of gross energy, crude protein, crude fibre, crude fat and crude ash. Additionally, a practical feeding experiment during gestation was performed with 96 sows of Danish genetics. Two supplements for sows with different fibre sources were composed, namely a control diet (based on wheat bran and lignocellulose) and a test diet containing sugar beet pulp, alfalfa, rapeseed meal, soybean hulls, grape pomace and lignocellulose. Six pens with eight sows each were video-monitored for 2 weeks (evaluation of interactions and fights). Furthermore, the animals were subjected to weekly scoring to count skin injuries. To check the fibre effect on reproductive performance and piglet development, the body condition development of the sows as well as the number and weight of live and stillborn piglets, litter weight- and weaning weight of the litters were recorded. Results Digestibility of crude fibre increased significantly in the experimental group (58.8% ± 3.3 vs. 49.0% ± 4.3, p = 0.01). At the sow trial, there was a tendency to observe less aggressive interactions and fewer fights in sows in the fibre group without significance. No significant differences could be measured between the two groups concerning performance parameters of sows and piglets. Conclusion Only changing the fibre source in a gestational diet does not have significant effects on the sows´ behaviour and performance of sows and piglets in lactation. It should be investigated how the amount of fibre can be increased without having any negatives effects on the performance so that the positive effects on the behaviour of the sows become more obvious.
Collapse
Affiliation(s)
- Miriam Priester
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstraße 109, 55411 Bingen, Germany.,Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Michaela Fels
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - Georg Dusel
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstraße 109, 55411 Bingen, Germany
| |
Collapse
|
59
|
Zhuo Y, Feng B, Xuan Y, Che L, Fang Z, Lin Y, Xu S, Li J, Feng B, Wu D. Inclusion of purified dietary fiber during gestation improved the reproductive performance of sows. J Anim Sci Biotechnol 2020; 11:47. [PMID: 32426131 PMCID: PMC7216585 DOI: 10.1186/s40104-020-00450-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background This study aimed to investigate the impacts of guar gum and cellulose as the source of dietary fiber during gestation on the reproductive performance of sows. Methods A total of 210 sows (parities 3–6) were randomly allocated into six diets (n = 35) throughout gestation to feed graded levels of dietary fiber (DF), including a corn-soybean meal-based control diet with no wheat bran inclusion (CON, 12.5% DF), a wheat bran-rich diet (DF1, 17.4% DF), and another 4 diets (DF2, 17.7% DF; DF3, 18.1% DF; DF4, 18.4% DF; DF5, 18.8% DF) in which wheat bran were equally substituted by 1%, 2%, 3% and 4% purified FIBER MIX (guar gum and cellulose, 1:4). All sows received similar DE and other nutrients throughout gestation. Results DF treatment during gestation resulted in normal fecal score (1 to 5 with 1 = dry and 5 = watery) in sows compared with those received the CON diet (P < 0.05). The number of total born piglets had a tendency to be affected by dietary treatment (P = 0.07), and correlation analysis revealed a linear response of total born to dietary fiber levels during gestation (P < 0.01). Sows received the DF2, DF3, and DF5 diets during gestation had a greater ADFI during lactation compared with those in the CON group (P < 0.05) without affecting the daily body weight gain of suckling piglets. Gut microbiota compositions were dramatically changed by the gestation stage and some of those were changed by DF inclusion. Fecal acetate, propionate, and butyrate of sows were markedly increased in late gestation, and butyrate contents in feces of gestating sows were significantly affected by DF levels (P < 0.01). Serum concentrations of pro-inflammatory TNF-α were decreased and anti-inflammatory IL-10 was increased on day 30 of gestation by DF levels (P < 0.05). Conclusions In summary, increasing dietary fiber levels by guar gum and cellulose during gestation improved the reproductive performance of sows, which might be related to changes in immunity and gut microbiota of sows.
Collapse
Affiliation(s)
- Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Bo Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Yuedong Xuan
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - Bing Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130 People's Republic of China
| |
Collapse
|
60
|
Pu G, Li P, Du T, Niu Q, Fan L, Wang H, Liu H, Li K, Niu P, Wu C, Zhou W, Huang R. Adding Appropriate Fiber in Diet Increases Diversity and Metabolic Capacity of Distal Gut Microbiota Without Altering Fiber Digestibility and Growth Rate of Finishing Pig. Front Microbiol 2020; 11:533. [PMID: 32328041 PMCID: PMC7160236 DOI: 10.3389/fmicb.2020.00533] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
The digestion ability of pigs to dietary fiber is derived from their intestinal microbiota, especially hindgut microbiota. However, tolerance of pigs to high dietary fiber and the changes of microbiota profile with fiber levels are still unclear. To investigate the changes of gut microbiota with dietary fiber and its relationship with fiber digestibility, we conducted comparative analyses of growth rate, apparent fiber digestibility, gut microbiota and volatile fatty acid (VFA) profiles in Chinese Suhuai pigs feeding diets with different defatted rice bran (DFRB) fiber levels. We found that dietary fiber level had no effect on the growth rate of Suhuai pigs. Although the apparent digestibility of Cellulose, insoluble dietary fiber (IDF) and total dietary fiber (TDF) decreased with dietary fiber level, we found that the apparent digestibility of Cellulose, IDF and TDF of Suhuai pigs was not changed when provided with diet containing 19.10% TDF (as feed basis). The pigs provided with diet containing 19.10% TDF had higher microbial richness, proportions of several fiber-degrading bacteria taxa at genus level and predicted microbial functions (such as carbohydrate metabolism, energy metabolism) in cecum compared to those fed with basal diet. In addition, the fiber-induced increasing of fiber-degrading bacteria promoted the VFAs metabolism, which potentially helped Suhuai pigs to maintain growth rate. However, as TDF reached to 24.11% (as feed basis), the apparent digestibility of fiber decreased and the positive effect on intestine microbiota in caecum were absent. Together, our data suggest that appropriate fiber level could increase the diversity and metabolic capacity of distal gut microbiota to improve the utilization efficiency of fiber resources without altering the growth rate of pigs.
Collapse
Affiliation(s)
- Guang Pu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
- Nanjing Agricultural University’s New Rural Research and Development Corporation of Huaian City, Huaian, China
| | - Taoran Du
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Qing Niu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Lijuan Fan
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Huan Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Hang Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Kaijun Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Chengwu Wu
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
- Nanjing Agricultural University’s New Rural Research and Development Corporation of Huaian City, Huaian, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| |
Collapse
|
61
|
Gum Arabic improves the reproductive capacity through upregulation of testicular glucose transporters (GLUTs) mRNA expression in Alloxan induced diabetic rat. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
62
|
Espinosa CD, Fry RS, Kocher ME, Stein HH. Effects of copper hydroxychloride and distillers dried grains with solubles on intestinal microbial concentration and apparent ileal and total tract digestibility of energy and nutrients by growing pigs1. J Anim Sci 2020; 97:4904-4911. [PMID: 31680139 DOI: 10.1093/jas/skz340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
An experiment was conducted to test the hypothesis that Cu hydroxychloride improves nutrient digestibility and alters the concentration of microbial protein in the small intestine or large intestine by pigs fed a corn-soybean meal diet or a diet based on corn, soybean meal, and distillers dried grains with solubles (DDGS). Twenty-four barrows (33.3 ± 3.4 kg) that had a T-cannula installed in the distal ileum were allotted to a 2 × 2 factorial design with 2 levels of DDGS (0% or 45%) and 2 levels of supplemental Cu from Cu hydroxychloride (0 or 150 mg/kg). A 2-period switch back design with the 4 diets and 6 replicate pigs per diet in each period was used resulting in 12 replicate pigs per diet for the 2 periods. The initial 9 d of each period was considered an adaptation period to the experimental diets. For each period, feces were collected on days 10, 11, and 12, and ileal digesta were collected for 8 h on days 13 and 14. Results indicated that inclusion of 45% DDGS to diets reduced (P < 0.05) the apparent ileal digestibility (AID) of AA and the AID and the apparent total tract digestibility (ATTD) of dry matter, gross energy, and crude protein. In contrast, inclusion of DDGS to diets increased (P < 0.05) the AID and the ATTD of acid hydrolyzed ether extract and the concentration of microbial protein in the hindgut (P < 0.05). However, the total concentration of volatile fatty acids (VFA) in ileal digesta and in feces from pigs fed the DDGS diets were not different from concentrations in pigs fed diets without DDGS. The AID and ATTD of dry matter, gross energy, and crude protein were not affected by dietary Cu concentrations, but the AID and ATTD of acid hydrolyzed ether extract were greater (P < 0.05) in diets supplemented with Cu hydroxychloride compared with diets without Cu hydroxychloride. There was also a reduction (P < 0.05) in the concentration of microbial protein and a tendency for a reduction (P < 0.10) in the total concentration of VFA in feces when diets were supplemented with Cu hydroxychloride. In conclusion, supplementation of Cu hydroxychloride to diets improved AID and ATTD of acid hydrolyzed ether extract and reduced the concentration of microbial protein in the large intestine and this effect was observed in diets containing DDGS as well as in diets without DDGS.
Collapse
Affiliation(s)
| | | | | | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
63
|
Shang Q, Liu H, Liu S, He T, Piao X. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets1. J Anim Sci 2020; 97:4922-4933. [PMID: 31722389 DOI: 10.1093/jas/skz278] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation with 2 sources of fiber, sugar beet pulp (SBP), and wheat bran (WB), on sow performance, milk quality, and intestinal health in piglets. Forty-five multiparous sows at day 85 of gestation were allocated to the following 3 treatments: 1) a corn-soybean meal basal diet (CON); 2) the CON diet supplemented with 20% SBP in gestation and 10% SBP in lactation (SBP); and 3) the CON diet supplemented with 30% WB in gestation and 15% WB in lactation (WB). The SBP diets increased (P < 0.05) sow ADFI during lactation, litter and piglet weaning weight, piglet ADG, immunoglobulin A (IgA), and interleukin-10 (IL-10) levels in the colostrum and IgA levels in the milk, while the WB diets only increased (P < 0.05) IL-10 levels in the milk when compared with the CON diets. Piglets from SBP-fed sows had greater (P < 0.05) serum growth hormone and insulin-like growth factor-1 levels than those from WB-fed or CON-fed sows, whereas piglets from WB-fed sows had greater (P < 0.05) serum GH levels than those from CON-fed sows. Serum diamine oxidase activity, endotoxin, IL-6, and tumor necrosis factor-α (TNF-α) levels were reduced (P < 0.05) in piglets from SBP-fed or WB-fed sows. Piglets from SBP-fed sows also had greater (P < 0.05) serum IL-10 levels than those from CON-fed sows. The ileal mRNA expression of TNF-α was reduced (P < 0.05) in piglets from SBP-fed or WB-fed sows. Piglets from SBP-fed sows had lower (P < 0.05) IL-6 expression, and greater (P < 0.05) IL-10 expression and secretory immunoglobulin A (SIgA) levels in the ileum than those from WB- or CON-fed sows. Piglets from WB-fed sows had greater (P < 0.05) IL-10 expression and SIgA levels compared with those from CON-fed sows. The ileal mRNA expression of occludin in the ileum was greater (P < 0.05) in piglets from SBP-fed sows than those from CON-fed sows. The ileal mRNA expression of ZO-1 was greater (P < 0.05) in piglets from WB-fed sows than those from CON-fed sows, but lower (P < 0.05) than those from SBP-fed sows. Piglets from SBP-fed sows had greater (P < 0.05) abundance of Christensenellaceae and butyrate levels in the colon, while piglets from WB-fed sows had greater (P < 0.05) abundance of Lactobacillaceae. Collectively, maternal SBP supplementation was more effective than WB in improving milk quality, enhancing growth performance and intestinal barrier function, and ameliorating intestinal inflammation in piglets.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hansuo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tengfei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
64
|
Partially defatted olive cake in finishing pig diets: implications on performance, faecal microbiota, carcass quality, slurry composition and gas emission. Animal 2019; 14:426-434. [PMID: 31566173 DOI: 10.1017/s1751731119002040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
One of the key factors to improve swine production sustainability is the use of agro-industrial by-products in feeds, such as olive by-products. However, it is necessary to assess its effects on the overall production process, including the animal and the environment. With this aim, an experiment was conducted to determine the effects of including a partially defatted olive cake (PDOC) in pig diets on growth performance, faecal microbiota, carcass quality and gas emission from the slurry. Two finishing diets were formulated, a control (C) diet and a diet with PDOC included at 120 g/kg. Eighty finishing male pigs Duroc-Danbred × (Landrace × Large White) of 60.4 ± 7.00 kg BW were divided between these two treatments. During the finishing period (60 to 110 kg BW, 55 days) average daily gain, average daily feed intake and feed conversion ratio were recorded. Faecal samples from the rectum of 16 animals per treatment were incubated for bacteria enumeration. At the end of finishing period, backfat thickness and loin depth (LD) were measured. Animals were slaughtered to obtain carcass weight and carcass composition parameters, and subcutaneous fat was sampled to analyse the fatty acid (FA) profile. In addition greenhouse gas and ammonia emissions were measured during pig slurry storage using the methodology of dynamic flux chambers. An initial slurry characterisation and biochemical methane potential (B0) were also determined. No significant differences between treatments were found in performance, carcass quality and microbial counts with the exception of LD, which was lower in PDOC compared with C animals (45.5 v. 47.5 mm, SEM: 0.62; P = 0.020). The FA profile of the subcutaneous fat did not differ between treatments, but the monounsaturated FA (MUFA) concentration was higher and the polyunsaturated FA was lower in the animals fed PDOC (50.9 v. 48.3, SEM: 0.48, P < 0.001; 17.6 v. 19.3, SEM: 0.30, P < 0.001 in mg/100 g of Total FA, for PDOC and C animals, respectively). The initial pig slurry characterisation only showed differences in ADF concentration that was higher (P < 0.05) in the slurry from PDOC treatment. Regarding gas emission, slurries from both treatments emitted similar amounts of ammonia (NH3), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as B0 values. The results obtained suggest that PDOC may be included in balanced pig diets at rates of up to 120 g/kg without negative effects on performance, carcass quality, gut microflora and slurry gas emission, while improving the MUFA concentration of subcutaneous fat.
Collapse
|
65
|
Edwards LE, Plush KJ, Ralph CR, Morrison RS, Acharya RY, Doyle RE. Enrichment with Lucerne Hay Improves Sow Maternal Behaviour and Improves Piglet Survival. Animals (Basel) 2019; 9:E558. [PMID: 31443165 PMCID: PMC6719939 DOI: 10.3390/ani9080558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
This study investigated the effects of providing lucerne hay on the behaviour and the performance of sows housed in farrowing crates during farrowing and lactation. Seventy-two mixed parity sows received either 1 kg lucerne hay daily from entry into the farrowing crate (-2 d from expected farrowing date) until weaning at 17 d (lucerne group, n = 36), or received no additional enrichment (control group, n = 36). In the 18 h prior to farrowing, the sows in the lucerne treatment spent more time performing nest-building behaviour (14.8% lucerne vs 11.1% control, p = 0.0009) and less time sham-chewing (1.0% lucerne vs 1.9% control, p = 0.01) than control sows, and gave birth to fewer stillborn piglets/litter (0.1 lucerne vs 0.4 control, p = 0.027). After farrowing (Day 3), the control sows spent less time lying than the lucerne sows (26% control vs 43% lucerne, p < 0.05). The control sows also spent less time interacting with their piglets during early lactation compared to late lactation (25.5% Day 5 vs 47.3% Day 12, p < 0.05), suggesting reduced maternal behaviour in this group. The lucerne sows continued to interact with the lucerne throughout lactation, indicating that they still found the enrichment rewarding after the nesting period had ceased. Based on these results, lucerne enrichment was considered to improve sow welfare during farrowing and lactation and reduce the number of stillborn piglets.
Collapse
Affiliation(s)
- Lauren E Edwards
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Kate J Plush
- SunPork Solutions, Shea-Oak Log, SA 5371, Australia
| | - Cameron R Ralph
- South Australian Research and Development Institute, Roseworthy, SA 5371, Australia
| | | | - Rutu Y Acharya
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Rebecca E Doyle
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|