51
|
Bustillo JR, Jones T, Chen H, Lemke N, Abbott C, Qualls C, Stromberg S, Canive J, Gasparovic C. Glutamatergic and Neuronal Dysfunction in Gray and White Matter: A Spectroscopic Imaging Study in a Large Schizophrenia Sample. Schizophr Bull 2017; 43:611-619. [PMID: 27550776 PMCID: PMC5473520 DOI: 10.1093/schbul/sbw122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamine plus glutamate (Glx), as well as N-acetylaspartate compounds (NAAc, N-acetylaspartate plus N-acetyl-aspartyl-glutamate), a marker of neuronal viability, can be quantified with proton magnetic resonance spectroscopy (1H-MRS). We used 1H-MRS imaging to assess Glx and NAAc, as well as total-choline (glycerophospho-choline plus phospho-choline), myo-inositol and total-creatine (creatine plus phosphocreatine) from an axial supraventricular slab of gray matter (GM, medial-frontal and medial-parietal) and white matter (WM, bilateral-frontal and bilateral-parietal) voxels. Schizophrenia subjects (N = 104) and healthy controls (N = 97) with a broad age range (16 to 65) were studied. In schizophrenia, Glx was increased in GM (P < .001) and WM (P = .01), regardless of age. However, with greater age, NAAc increased in GM (P < .001) but decreased in WM (P < .001) in schizophrenia. In patients, total creatine decreased with age in WM (P < .001). Finally, overall cognitive score correlated positively with WM neurometabolites in controls but negatively in the schizophrenia group (NAAc, P < .001; and creatine [only younger], P < .001). We speculate the results support an ongoing process of increased glutamate metabolism in schizophrenia. Later in the illness, disease progression is suggested by increased cortical compaction without neuronal loss (elevated NAAc) and reduced axonal integrity (lower NAAc). Furthermore, this process is associated with fundamentally altered relationships between neurometabolite concentrations and cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Juan R Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Hongji Chen
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Nicholas Lemke
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Clifford Qualls
- Department of Mathematics & Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Shannon Stromberg
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Jose Canive
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry, VA Health Care System, Albuquerque, NM, USA
| | | |
Collapse
|
52
|
7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings. Biol Psychiatry 2017; 81:525-535. [PMID: 27316853 DOI: 10.1016/j.biopsych.2016.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. METHODS Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. RESULTS Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. CONCLUSIONS Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives.
Collapse
|
53
|
Desai SJ, Allman BL, Rajakumar N. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D 1 receptor antagonists impairs executive function. Behav Brain Res 2017; 323:24-31. [PMID: 28115219 DOI: 10.1016/j.bbr.2017.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 02/02/2023]
Abstract
Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function.
Collapse
Affiliation(s)
- Sagar J Desai
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Nagalingam Rajakumar
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Psychiatry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
54
|
Egerton A, Bhachu A, Merritt K, McQueen G, Szulc A, McGuire P. Effects of Antipsychotic Administration on Brain Glutamate in Schizophrenia: A Systematic Review of Longitudinal 1H-MRS Studies. Front Psychiatry 2017; 8:66. [PMID: 28503156 PMCID: PMC5408014 DOI: 10.3389/fpsyt.2017.00066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is associated with brain glutamate dysfunction, but it is currently unclear whether antipsychotic administration can reduce the extent of glutamatergic abnormality. We conducted a systematic review of proton magnetic resonance spectroscopy (1H-MRS) studies examining the effects of antipsychotic treatment on brain glutamate levels in schizophrenia. The Medline database was searched to identify relevant articles published until December 2016. Inclusion required that studies examined longitudinal changes in brain glutamate metabolites in patients with schizophrenia before and after initiation of first antipsychotic treatment or a switch in antipsychotic treatment. The searches identified eight eligible articles, with baseline and follow-up measures in a total of 168 patients. The majority of articles reported a numerical reduction in brain glutamate metabolites with antipsychotic treatment, and the estimated overall mean reduction of 6.5% in Glx (the combined signal from glutamate and glutamine) across brain regions. Significant reductions in glutamate metabolites in at least one brain region were reported in four of the eight studies, and none of the studies reported a significant glutamatergic increase after antipsychotic administration. Relationships between the degree of change in glutamate and the degree of improvement in symptoms have been inconsistent but may provide limited evidence that antipsychotic response may be associated with lower glutamate levels before treatment and a greater extent of glutamatergic reduction during treatment. Further longitudinal, prospective studies of glutamate and antipsychotic response are required to confirm these findings.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Akarmi Bhachu
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Kate Merritt
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Grant McQueen
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Philip McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
55
|
Taylor R, Osuch EA, Schaefer B, Rajakumar N, Neufeld RWJ, Théberge J, Williamson PC. Neurometabolic abnormalities in schizophrenia and depression observed with magnetic resonance spectroscopy at 7 T. BJPsych Open 2017; 3:6-11. [PMID: 28243459 PMCID: PMC5288640 DOI: 10.1192/bjpo.bp.116.003756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/26/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Examining neurometabolic abnormalities in critical brain areas in schizophrenia and major depressive disorder (MDD) may help guide future pharmacological interventions including glutamate-modulating treatments. AIMS To measure metabolite concentrations within the anterior cingulate cortex (ACC) and thalamus of people with schizophrenia and people with MDD. METHODS Spectra were acquired from 16 volunteers with schizophrenia, 17 with MDD and 18 healthy controls using magnetic resonance spectroscopy on a 7 Tesla scanner. RESULTS In the thalamus, there were lower glycine concentrations in the schizophrenia group relative to control (P=0.017) and MDD groups (P=0.012), and higher glutamine concentrations relative to healthy controls (P=0.009). In the thalamus and the ACC, the MDD group had lower myo-inositol concentrations than the control (P=0.014, P=0.009, respectively) and schizophrenia (P=0.004, P=0.002, respectively) groups. CONCLUSION These results support the glutamatergic theory of schizophrenia and indicate a potential glycine deficiency in the thalamus. In addition, reduced myo-inositol concentrations in MDD suggest its involvement in the disorder. DECLARATION OF INTEREST None. COPYRIGHT AND USAGE © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license.
Collapse
Affiliation(s)
- Reggie Taylor
- , PhD, Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Elizabeth A Osuch
- , MD, Department of Medical Biophysics; Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Betsy Schaefer
- , BSc, Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Nagalingam Rajakumar
- , PhD, Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Richard W J Neufeld
- , PhD, Department of Psychology; Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Jean Théberge
- , PhD, Department of Medical Biophysics, Department of Psychiatry, Department of Medical Imaging, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; St. Joseph's Health Care, Department of Diagnostic Imaging, London, Ontario, Canada
| | - Peter C Williamson
- , MD, Department of Medical Biophysics, Department of Psychiatry, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
56
|
Altered Glutamate and Regional Cerebral Blood Flow Levels in Schizophrenia: A 1H-MRS and pCASL study. Neuropsychopharmacology 2017; 42:562-571. [PMID: 27562377 PMCID: PMC5399238 DOI: 10.1038/npp.2016.172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/22/2016] [Accepted: 08/04/2016] [Indexed: 12/25/2022]
Abstract
The neurobiology of schizophrenia (SZ) may be altered in older versus younger adults with SZ, as less frequent episodes of symptom exacerbation and increased sensitivity to medications are observed in older age. The goal of this study was to examine the effect of age and diagnosis on glutamate and cerebral blood flow (rCBF) in adults with SZ and healthy controls. Young and older adults with SZ and healthy controls were recruited to participate in this study. Participants completed a neuropsychological battery and neuroimaging that included optimized magnetic resonance spectroscopy to measure anterior cingulate (AC) glutamate (Glu) and glutamine (Gln) and arterial spin labeling evaluation for rCBF. Regression analyses revealed significant effects of age with Glu, Gln, Gln/Glu, and AC white matter (WM) rCBF. Glu and WM rCBF decreased linearly with age while Gln and Gln/Glu increased linearly with age. Glu was lower in adults with SZ compared with healthy controls and in older adults versus younger adults but there was no interaction. Glu and WM rCBF were correlated with the UCSD Performance-Based Skills Assessment (UPSA) and processing speed, and the correlations were stronger in the SZ group. In the largest sample to date, lower Glu and elevated Gln/Glu levels were observed in adults with SZ and in older subjects. Contrary to expectation, these results do not show evidence of accelerated Glu aging in the anterior cingulate region in SZ compared with healthy controls.
Collapse
|
57
|
Reduced γ-Aminobutyric Acid and Glutamate+Glutamine Levels in Drug-Naïve Patients with First-Episode Schizophrenia but Not in Those at Ultrahigh Risk. Neural Plast 2016; 2016:3915703. [PMID: 28003912 PMCID: PMC5149697 DOI: 10.1155/2016/3915703] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/14/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Altered γ-aminobutyric acid (GABA), glutamate (Glu) levels, and an imbalance between GABAergic and glutamatergic neurotransmissions have been involved in the pathophysiology of schizophrenia. However, it remains unclear how these abnormalities impact the onset and course of psychosis. In the present study, 21 drug-naïve subjects at ultrahigh risk for psychosis (UHR), 16 drug-naïve patients with first-episode schizophrenia (FES), and 23 healthy controls (HC) were enrolled. In vivo GABA and glutamate+glutamine (Glx) levels in the medial prefrontal cortex were measured using proton magnetic resonance spectroscopy. Medial prefrontal GABA and Glx levels in FES patients were significantly lower than those in HC and UHR, respectively. GABA and Glx levels in UHR were comparable with those in HC. In each group, there was a positive correlation between GABA and Glx levels. Reduced medial prefrontal GABA and Glx levels thus may play an important role in the early stages of schizophrenia.
Collapse
|
58
|
Taylor R, Théberge J, Williamson PC, Densmore M, Neufeld RWJ. ACC Neuro-over-Connectivity Is Associated with Mathematically Modeled Additional Encoding Operations of Schizophrenia Stroop-Task Performance. Front Psychol 2016; 7:1295. [PMID: 27695425 PMCID: PMC5025455 DOI: 10.3389/fpsyg.2016.01295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging at 7.0 Tesla was undertaken among Schizophrenia participants (Sz), and clinical (major mood disorder; MDD) and healthy controls (HC), during performance of the Stoop task. Stroop conditions included congruent and incongruent word color items, color-only items, and word-only items. Previous modeling results extended to this most widely used selective-attention task. All groups executed item-encoding operations (subprocesses of the item encoding process) at the same rate (performance accuracy being similarly high throughout), thus displaying like processing capacity; Sz participants, however, employed more subprocesses for item completions than did the MDD participants, who in turn used more subprocesses than the HC group. The reduced efficiency in deploying cognitive-workload capacity among the Sz participants was paralleled by more diffuse neuroconnectivity (Blood-Oxygen-Level-Dependent co-activation) with the anterior cingulate cortex (ACC) (Broadman Area 32), spreading away from this encoding-intensive region; and by less evidence of network dissociation across Stroop conditions. Estimates of cognitive work done to accomplish item completion were greater for the Sz participants, as were estimates of entropy in both the modeled trial-latency distribution, and its associated neuro-circuitry. Findings are held to be symptom and assessment significant, and to have potential implications for clinical intervention.
Collapse
Affiliation(s)
- Reggie Taylor
- Department of Medical Biophysics, University of Western OntarioLondon, ON, Canada
- Lawson Health Research InstituteLondon, ON, Canada
| | - Jean Théberge
- Department of Medical Biophysics, University of Western OntarioLondon, ON, Canada
- Lawson Health Research InstituteLondon, ON, Canada
- Department of Psychiatry, University of Western OntarioLondon, ON, Canada
| | - Peter C. Williamson
- Department of Medical Biophysics, University of Western OntarioLondon, ON, Canada
- Lawson Health Research InstituteLondon, ON, Canada
- Department of Psychiatry, University of Western OntarioLondon, ON, Canada
| | - Maria Densmore
- Lawson Health Research InstituteLondon, ON, Canada
- Department of Psychiatry, University of Western OntarioLondon, ON, Canada
| | - Richard W. J. Neufeld
- Department of Psychiatry, University of Western OntarioLondon, ON, Canada
- Department of Psychology, University of Western OntarioLondon, ON, Canada
- Department of Neuroscience, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
59
|
Glutamatergic Metabolites, Volume and Cortical Thickness in Antipsychotic-Naive Patients with First-Episode Psychosis: Implications for Excitotoxicity. Neuropsychopharmacology 2016; 41:2606-13. [PMID: 27272768 PMCID: PMC4987861 DOI: 10.1038/npp.2016.84] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/06/2016] [Accepted: 05/27/2016] [Indexed: 01/24/2023]
Abstract
Neuroimaging studies investigating patients with schizophrenia often report appreciable volumetric reductions and cortical thinning, yet the cause of these deficits is unknown. The association between subcortical and cortical structural alterations, and glutamatergic neurometabolites is of particular interest due to glutamate's capacity for neurotoxicity; elevated levels may be related to neuroanatomical compromise through an excitotoxic process. To this end, we explored the relationships between glutamatergic neurometabolites and structural measures in antipsychotic-naive patients experiencing their first non-affective episode of psychosis (FEP). Sixty antipsychotic-naive patients with FEP and 60 age- and sex-matched healthy controls underwent a magnetic resonance imaging session, which included a T1-weighted volumetric image and proton magnetic resonance spectroscopy in the precommissural dorsal caudate. Group differences in precommissural caudate volume (PCV) and cortical thickness (CT), and the relationships between glutamatergic neurometabolites (ie, glutamate+glutamine (Glx) and glutamate) and these structural measures, were examined. PCV was decreased in the FEP group (p<0.001), yet did not differ when controlling for total brain volume. Cortical thinning existed in the FEP group within frontal, parietal, temporal, occipital, and limbic regions at a 5% false discovery rate. Glx levels were negatively associated with PCV only in the FEP group (p=0.018). The observed relationship between Glx and PCV in the FEP group is supportive of a focal excitotoxic mechanism whereby increased levels of glutamatergic markers are related to local structural losses. This process may be related to the prominent structural deficits that exist in patients with schizophrenia.
Collapse
|
60
|
Mouchlianitis E, Bloomfield MAP, Law V, Beck K, Selvaraj S, Rasquinha N, Waldman A, Turkheimer FE, Egerton A, Stone J, Howes OD. Treatment-Resistant Schizophrenia Patients Show Elevated Anterior Cingulate Cortex Glutamate Compared to Treatment-Responsive. Schizophr Bull 2016; 42:744-52. [PMID: 26683625 PMCID: PMC4838083 DOI: 10.1093/schbul/sbv151] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Resistance to antipsychotic treatment is a significant clinical problem in patients with schizophrenia with approximately 1 in 3 showing limited or no response to repeated treatments with antipsychotic medication. The neurobiological basis for treatment resistance is unknown but recent evidence implicates glutamatergic function in the anterior cingulate cortex. We examined glutamate levels of chronically ill treatment-resistant patients directly compared to treatment-responsive patients. METHODS We acquired proton magnetic resonance spectroscopy (1H-MRS) at 3 Tesla from 21 treatment-resistant and 20 treatment-responsive patients. All participants had a DSM-IV diagnosis of schizophrenia. Treatment-resistant patients were classified using the modified Kane criteria. The groups were matched for age, sex, smoking status, and illness duration. RESULTS Glutamate to creatine ratio levels were higher in treatment-resistant patients (Mean [SD] = 1.57 [0.24]) than in treatment-responsive patients (Mean[SD] = 1.38 [0.23]), (T[35] = 2.34, P = .025, 2-tailed), with a large effect size of d = 0.76. A model assuming 2 populations showed a 25% improvement in the fit of the Akaike weights (0.55) over a model assuming 1 population (0.44), producing group values almost identical to actual group means. DISCUSSION Increased anterior cingulate glutamate level is associated with treatment-resistant schizophrenia. This appears to be a stable neurobiological trait of treatment-resistant patients. We discuss possible explanations for glutamatergic dysfunction playing a significant role in resistance to conventional antipsychotic treatments, which are all dopamine-2 receptor blockers. Our findings suggest that glutamatergic treatments may be particularly effective in resistant patients and that 1H-MRS glutamate indices can potentially have clinical use.
Collapse
Affiliation(s)
- Elias Mouchlianitis
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK; Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King's College London, UK;
| | - Michael A. P. Bloomfield
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK;,University College London, Division of Psychiatry, London, UK
| | - Vincent Law
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK
| | - Katherine Beck
- Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas, Houston, TX
| | | | - Adam Waldman
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Federico E. Turkheimer
- Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - Alice Egerton
- Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - James Stone
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK;,Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - Oliver D. Howes
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK;,Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| |
Collapse
|
61
|
Karthick C, Periyasamy S, Jayachandran KS, Anusuyadevi M. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology. Front Mol Neurosci 2016; 9:28. [PMID: 27199654 PMCID: PMC4844917 DOI: 10.3389/fnmol.2016.00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 01/27/2023] Open
Abstract
Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal pyramidal layer thickness and live neurons in IBO induced rats, with slight pathological changes in the entorhinal cortex (EC) of rat brain, which was prevented on RSV administration. Our study thus concludes that RSV administration significantly ameliorated the deleterious effects in the IBO lesioned rat model for AD by alleviating cholinergic pathways, reducing oxidative stress and thereby improving spatial memory.
Collapse
Affiliation(s)
- Chennakesavan Karthick
- Molecular Gerontology Laboratory, Department of Biochemistry (DST-FIST Sponsored), Bharathidasan University Tiruchirappalli, India
| | - Sabapathy Periyasamy
- Molecular Gerontology Laboratory, Department of Biochemistry (DST-FIST Sponsored), Bharathidasan University Tiruchirappalli, India
| | - Kesavan S Jayachandran
- Molecular Cardiology and Drug Discovery Laboratory, Department of Bioinformatics, Bharathidasan University Tiruchirappalli, India
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Laboratory, Department of Biochemistry (DST-FIST Sponsored), Bharathidasan University Tiruchirappalli, India
| |
Collapse
|
62
|
Brandt AS, Unschuld PG, Pradhan S, Lim IAL, Churchill G, Harris AD, Hua J, Barker PB, Ross CA, van Zijl PCM, Edden RAE, Margolis RL. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla. Schizophr Res 2016; 172:101-5. [PMID: 26925800 PMCID: PMC4821673 DOI: 10.1016/j.schres.2016.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/27/2022]
Abstract
The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia.
Collapse
Affiliation(s)
- Allison S Brandt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul G Unschuld
- Laboratory for Aging Neuroscience and Neuroimaging, Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich, Zurich, Switzerland
| | - Subechhya Pradhan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Issel Anne L Lim
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Gregory Churchill
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jun Hua
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Russell L Margolis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
63
|
Penner J, Ford KA, Taylor R, Schaefer B, Théberge J, Neufeld RWJ, Osuch EA, Menon RS, Rajakumar N, Allman JM, Williamson PC. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models. Front Hum Neurosci 2016; 10:132. [PMID: 27064387 PMCID: PMC4811885 DOI: 10.3389/fnhum.2016.00132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Abstract
Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls.
Collapse
Affiliation(s)
- Jacob Penner
- Department of Psychiatry, University of Western Ontario, LondonON, Canada; Imaging Division, Lawson Health Research Institute, LondonON, Canada; First Episode Mood and Anxiety Program, London Health Sciences Centre, LondonON, Canada
| | - Kristen A Ford
- Department of Psychiatry, University of Western Ontario, LondonON, Canada; Imaging Division, Lawson Health Research Institute, LondonON, Canada; First Episode Mood and Anxiety Program, London Health Sciences Centre, LondonON, Canada
| | - Reggie Taylor
- Imaging Division, Lawson Health Research Institute, LondonON, Canada; Department of Medical Biophysics, University of Western Ontario, LondonON, Canada
| | - Betsy Schaefer
- Department of Psychiatry, University of Western Ontario, London ON, Canada
| | - Jean Théberge
- Department of Psychiatry, University of Western Ontario, LondonON, Canada; Imaging Division, Lawson Health Research Institute, LondonON, Canada; Department of Medical Biophysics, University of Western Ontario, LondonON, Canada
| | - Richard W J Neufeld
- Department of Psychiatry, University of Western Ontario, LondonON, Canada; Department of Psychology, University of Western Ontario, LondonON, Canada; Neuroscience Program, University of Western Ontario, LondonON, Canada
| | - Elizabeth A Osuch
- Department of Psychiatry, University of Western Ontario, LondonON, Canada; Imaging Division, Lawson Health Research Institute, LondonON, Canada; First Episode Mood and Anxiety Program, London Health Sciences Centre, LondonON, Canada; Department of Medical Biophysics, University of Western Ontario, LondonON, Canada
| | - Ravi S Menon
- Imaging Division, Lawson Health Research Institute, LondonON, Canada; Department of Medical Biophysics, University of Western Ontario, LondonON, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, LondonON, Canada
| | - Nagalingam Rajakumar
- Department of Psychiatry, University of Western Ontario, LondonON, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, LondonON, Canada
| | - John M Allman
- Division of Biology, California Institute of Technology, Pasadena CA, USA
| | - Peter C Williamson
- Department of Psychiatry, University of Western Ontario, LondonON, Canada; Imaging Division, Lawson Health Research Institute, LondonON, Canada; Department of Medical Biophysics, University of Western Ontario, LondonON, Canada; Tanna Schulich Chair in Neuroscience and Mental Health, Department of Psychiatry, University Hospital, London Health Sciences Centre, LondonON, Canada
| |
Collapse
|
64
|
Gallinat J, McMahon K, Kühn S, Schubert F, Schaefer M. Cross-sectional Study of Glutamate in the Anterior Cingulate and Hippocampus in Schizophrenia. Schizophr Bull 2016; 42:425-33. [PMID: 26333842 PMCID: PMC4753596 DOI: 10.1093/schbul/sbv124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND There has been growing support for dysfunctions of the excitatory glutamatergic system and its implications for the psychophysiology of schizophrenia. However, previous studies reported mixed results regarding glutamate concentrations in schizophrenia with varying deviations across brain regions. METHODS We used an optimized proton magnetic resonance spectroscopy procedure to measure absolute glutamate concentrations in the left hippocampal region and the anterior cingulate cortex (ACC) in 29 medicated patients with schizophrenia and in 29 control participants without mental disorder. RESULTS The glutamate concentrations were significantly lower in the ACC but higher in the hippocampus of patients compared to controls. ACC and hippocampal glutamate concentrations correlated positively in patients but not in controls. ACC glutamate was weakly associated with Clinical Global Impression score and duration of illness in patients. CONCLUSION Glutamate concentrations in schizophrenia deviate from controls and show associations with disease severity. A higher concentration of hippocampal glutamate in schizophrenia compared to controls is shown. The association between ACC and hippocampus glutamate concentrations in patients with schizophrenia suggests an abnormal coupling of excitatory systems compared to controls as predicted by previous glutamate models of schizophrenia.
Collapse
Affiliation(s)
- Jürgen Gallinat
- Clinic for Psychiatry and Psychotherapy, Charité University Medicine, St. Hedwig-Krankenhaus, Berlin, Germany;
| | - Kibby McMahon
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Psychology and Neuroscience, Duke University, Durham, NC
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Martin Schaefer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Essen, Germany
| |
Collapse
|
65
|
Abstract
This article reviews the results of longitudinal studies on frontal brain volume reduction in patients with schizophrenia spectrum disorders and focuses on the relationship with antipsychotic treatment. Based on a systematic literature search all studies were included in which results on changes of brain volumes over a longer period of time were correlated with antipsychotic treatment dose and disease severity. The findings indicate that there is evidence for grey and white matter volume changes of the frontal brain, which cannot be explained by the severity of the disease alone but are also very likely a manifestation of long-term effects of antipsychotics. Whether second generation antipsychotics have an advantage compared to first generation antipsychotics is currently unclear. Considering the contribution of antipsychotics to the changes in brain structure, which seem to depend on cumulative dosage and can exert adverse effects on neurocognition, negative and positive symptoms and psychosocial functioning, the guidelines for antipsychotic long-term drug treatment should be reconsidered. This is the reason why we and others recommend prescribing the lowest dose necessary to control symptoms. In non-schizophrenic psychiatric disorders, antipsychotics should be used only with great caution after a careful risk-benefit assessment. Moreover, treatment approaches which can help to minimize antipsychotic medication or even administer them only selectively are of increasing importance.
Collapse
|
66
|
Kinon BJ, Millen BA, Zhang L, McKinzie DL. Exploratory analysis for a targeted patient population responsive to the metabotropic glutamate 2/3 receptor agonist pomaglumetad methionil in schizophrenia. Biol Psychiatry 2015; 78:754-62. [PMID: 25890643 DOI: 10.1016/j.biopsych.2015.03.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/19/2015] [Accepted: 03/07/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Accumulating evidence indicates that glutamatergic tone in schizophrenia may vary as a function of illness duration or medication history. We conducted an exploratory analysis of the existing clinical trial database of pomaglumetad methionil (pomaglumetad) to demonstrate treatment response in targeted patient populations. METHODS Results of the H8Y-MC-HBBM (HBBM) study and an integrated analysis based on five placebo-controlled trials were summarized. Patients with schizophrenia were randomly assigned to receive either pomaglumetad, 40 or 80 mg twice daily (BID), placebo, or risperidone, 2 mg BID, for up to 6 weeks. Patient subgroups were analyzed to determine the efficacy of pomaglumetad treatment in patients early-in-disease (≤3 years) and late-in-disease (≥10 years) (HBBM, 40 mg, n = 206, 80 mg, n = 198; integrated analysis, 40 mg, n = 382, 80 mg, n = 381) and in patients previously treated with central nervous system drugs with prominent serotonin 2A receptor antagonist activity (S2 group) or with predominant dopamine D2 receptor antagonist activity (D2 group; HBBM, 40 mg, n = 275, 80 mg, n = 269; integrated analysis, 40 mg, n = 590, 80 mg, n = 506). RESULTS In the HBBM study and integrated analysis, only patients early-in-disease or previously treated with D2 drugs exhibited significantly greater improvement relative to those receiving placebo, when treated with pomaglumetad, 40 mg (but not 80 mg) BID. Treatment response to risperidone did not appear to depend upon these patient subgroups. CONCLUSIONS Demonstration of antipsychotic efficacy of a potential glutamate-based pharmacotherapy for schizophrenia may require the identification of appropriate patient subgroups whose treatment responsiveness may be fundamentally related to dysregulation of central nervous system glutamatergic tone.
Collapse
Affiliation(s)
- Bruce J Kinon
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; Lundbeck LLC, Deerfield, Illinois.
| | - Brian A Millen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Lu Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - David L McKinzie
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
67
|
Smesny S, Gussew A, Biesel NJ, Schack S, Walther M, Rzanny R, Milleit B, Gaser C, Sobanski T, Schultz CC, Amminger P, Hipler UC, Sauer H, Reichenbach JR. Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients. Schizophr Res 2015; 168:322-329. [PMID: 26255566 DOI: 10.1016/j.schres.2015.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glutamatergic dysfunction and altered membrane lipid and energy metabolism have been repeatedly demonstrated in the frontal/prefrontal and anterior cingulate cortex (ACC) in schizophrenia. Though having been already studied in animals, the presumed link between glutamatergic function and structural plasticity has not been investigated directly in the human brain yet. We measured glutamate (Glu), focal energy metabolism, and membrane phospholipid turnover to investigate main pathologies in those key brain regions of schizophrenia. METHODS (1)H- and (31)P-Chemical Shift Imaging (CSI) was combined in a single session to assess Glu and markers of energy (PCr, ATP) and membrane lipid (PME, PDE) metabolism in 31 neuroleptic-naïve first acute onset psychosis patients and 31 matched healthy controls. Multivariate analyses of covariance were used to assess disease effects on Glu and to investigate the impact of Glu alterations on phospholipid and energy metabolites. RESULTS Glu levels of patients were increased in the frontal and prefrontal cortex bilaterally and in the ACC. Higher Glu was associated with increased left frontal/prefrontal PME and right frontal/prefrontal PDE in patients, which was not observed in healthy controls. In contrast, higher Glu levels were associated with lower PCr or ATP values in the frontal/prefrontal cortex bilaterally and in the right ACC of controls. This was not observed in the right ACC and left frontal/prefrontal cortex of patients. CONCLUSION Frontal glutamatergic hyperactivity is disconnected from physiologically regulated energy metabolism and is associated with increased membrane breakdown in right and increased membrane restoration in left frontal and prefrontal cortical regions. As indicated by previous findings, this pathology is likely dynamic during the course of first acute illness and possibly associated with negative symptoms and cognitive impairment. Our findings underline the importance of further research on neuroprotective treatment options during the early acute or even better for the ultra-high risk state of psychotic illness.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany.
| | - Alexander Gussew
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| | - Natalie Joan Biesel
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Stephan Schack
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Mario Walther
- Institute of Medical Statistics, Computer Sciences and Documentation (IMSID), Jena University Hospital, Friedrich-Schiller University Jena, Bachstraße 18, D-07743 Jena, Germany
| | - Reinhard Rzanny
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| | - Berko Milleit
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany; Department of Psychiatry, Thüringen-Kliniken "Georgius Agricola" GmbH Rainweg 68, D-07318 Saalfeld/Saale, Germany
| | - Christian Gaser
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Thomas Sobanski
- Department of Psychiatry, Thüringen-Kliniken "Georgius Agricola" GmbH Rainweg 68, D-07318 Saalfeld/Saale, Germany
| | - Carl Christoph Schultz
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Paul Amminger
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Währingergürtel 18-20, A-1090 Vienna, Austria; Orygen Youth Health Research Centre, The University of Melbourne, Locked Bag 10, 35 Poplar Road Parkville, Victoria 3052, Melbourne, Australia
| | - Uta-Christina Hipler
- Department of Dermatology, Jena University Hospital, Erfurter Straße 35, D-07743 Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| |
Collapse
|
68
|
Taylor R, Neufeld RWJ, Schaefer B, Densmore M, Rajakumar N, Osuch EA, Williamson PC, Théberge J. Functional magnetic resonance spectroscopy of glutamate in schizophrenia and major depressive disorder: anterior cingulate activity during a color-word Stroop task. NPJ SCHIZOPHRENIA 2015; 1:15028. [PMID: 27336037 PMCID: PMC4849454 DOI: 10.1038/npjschz.2015.28] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/29/2022]
Abstract
Background: Glutamate abnormalities have been suggested to be associated with symptoms of schizophrenia. Using functional magnetic resonance spectroscopy (1H-fMRS), it is possible to monitor glutamate dynamically in the activated brain areas, which has yet to be reported in schizophrenia. It was hypothesized that subjects with schizophrenia would have weaker glutamatergic responses in the anterior cingulate to a color-word Stroop Task. AIMS: The aim of this study was to gain insight into the health of GLU neurotransmission and the GLU-GLN cycle in SZ using a 1H-fMRS protocol. Methods: Spectra were acquired from the anterior cingulate of 16 participants with schizophrenia, 16 healthy controls and 16 participants with major depressive disorder (MDD) while performing the Stroop task in a 7T magnetic resonance imaging scanner. 1H-fMRS spectra were acquired for 20 min in which there were three 4-min blocks of cross fixation interleaved with two 4-min blocks of the Stroop paradigm. Results: A repeated-measures analysis of variance revealed a main effect of time for glutamate concentrations of all groups (P<0.001). The healthy control group increased glutamate concentrations in the first run of the Stroop task (P=0.006) followed by a decrease in the recovery period (P=0.007). Neither the schizophrenia (P=0.107) nor MDD (P=0.081) groups had significant glutamate changes in the first run of the task, while the schizophrenia group had a significant increase in glutamine (P=0.005). The MDD group decreased glutamate concentrations in the second run of the task (P=0.003), as did all the groups combined (P=0.003). Conclusions: 1H-fMRS data were successfully acquired from psychiatric subjects with schizophrenia and mood disorder using a cognitive paradigm for the first time. Future study designs should further elucidate the glutamatergic response to functional activation in schizophrenia.
Collapse
Affiliation(s)
- Reggie Taylor
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Richard W J Neufeld
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Department of Psychology, University of Western Ontario, London, ON, Canada; Department of Neuroscience, University of Western Ontario, London, ON, Canada
| | - Betsy Schaefer
- Department of Psychiatry, University of Western Ontario , London, ON, Canada
| | - Maria Densmore
- Lawson Health Research Institute, London, ON, Canada; Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Nagalingam Rajakumar
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Elizabeth A Osuch
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Peter C Williamson
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Jean Théberge
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Psychiatry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
69
|
Dempster K, Norman R, Théberge J, Densmore M, Schaefer B, Williamson P. Glutamatergic metabolite correlations with neuropsychological tests in first episode schizophrenia. Psychiatry Res 2015; 233:180-5. [PMID: 26163385 DOI: 10.1016/j.pscychresns.2015.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/14/2015] [Accepted: 06/05/2015] [Indexed: 12/17/2022]
Abstract
Increased glutamatergic metabolites have been found in first episode schizophrenia. Although abnormal neuropsychological functioning has been demonstrated to be a core feature of schizophrenia, no studies have examined glutamatergic metabolites and neuropsychological function in drug-naïve patients. The present study addressed whether higher levels of glutamatergic metabolites would be associated with poorer neuropsychological performance and social functioning in first episode patients. Glutamatergic concentration estimates were obtained from the left anterior cingulate cortex (ACC) and thalamus at baseline and 10 months after treatment in 16 patients with psychosis using 4.0 T (1)H magnetic resonance spectroscopy. A neuropsychological test battery was administered at baseline and 1 year. In the ACC, baseline glutamine was associated with performance on the Paced Auditory Serial Addition Task (PASAT). Glutamate at 10 months was associated with Wisconsin Card Sorting Test (WCST) errors and Trail-Making Test-B duration. Glutamine at 10 months was positively associated with WCST errors and negatively associated with WCST categories completed. In the thalamus, baseline glutamine was negatively associated with performance on the PASAT. Thalamic glutamate at baseline showed a trend towards a negative association with social functioning at 5 years. Glutamatergic metabolites were associated with neuropsychological test deficits and impaired social functioning at 5-year follow-up in patients with first episode psychosis, findings suggestive of an association between glutamatergic alterations on neurotoxicity early in the course of schizophrenia.
Collapse
Affiliation(s)
- Kara Dempster
- Department of Psychiatry, Western University, London, Ontario, Canada.
| | - Ross Norman
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; St. Joseph's Health Care London, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; St. Joseph's Health Care London, London, Ontario, Canada
| | - Betsy Schaefer
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Peter Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; St. Joseph's Health Care London, London, Ontario, Canada
| |
Collapse
|
70
|
Batalla A, Bargalló N, Gassó P, Molina O, Pareto D, Mas S, Roca JM, Bernardo M, Lafuente A, Parellada E. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls. Transl Psychiatry 2015; 5:e626. [PMID: 26305477 PMCID: PMC4564572 DOI: 10.1038/tp.2015.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/03/2015] [Accepted: 07/11/2015] [Indexed: 01/22/2023] Open
Abstract
Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r = -0.90; P = 0.001; STS 0.25 μM: r = -0.73; P = 0.003), and between NAA and cells with CC (STS 0.5 μM induction r = -0.76; P = 0.002; STS 0.25 μM r = -0.62; P = 0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P < 0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness.
Collapse
Affiliation(s)
- A Batalla
- Department of Psychiatry and Psychology, Clinical Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain,Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain,Radboud University Medical Centre, Department of Psychiatry, Nijmegen, The Netherlands,Radboud University, Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands,Radboud University Medical Center, Department of Psychiatry, Reinier Postlaan 10, route 966, Nijmegen 6500 HB, The Netherlands.
| | - N Bargalló
- Medical Image Core facility Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centre de diagnòstic per la Imatge Clínic, Hospital Clinic of Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - P Gassó
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - O Molina
- Department of Psychiatry, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - D Pareto
- Magnetic Resonance Unit, Vall Hebron University Hospital IDI, Barcelona, Spain
| | - S Mas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - J M Roca
- Department of Psychiatry and Psychology, Clinical Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Bernardo
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain
| | - A Lafuente
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - E Parellada
- Department of Psychiatry and Psychology, Clinical Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain,Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain,Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
71
|
Wijtenburg SA, Yang S, Fischer BA, Rowland LM. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia. Neurosci Biobehav Rev 2015; 51:276-95. [PMID: 25614132 PMCID: PMC4427237 DOI: 10.1016/j.neubiorev.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
Abstract
In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy ((1)H MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3T or higher, and summarizes the neurochemical findings in schizophrenia. Overall, (1)H MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Radiology, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1601 W. Taylor Street, Suite 512, Chicago, IL 60612, USA
| | - Bernard A Fischer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Veterans Affairs Capital Network (VISN 5) Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs, 10 N. Greene Street, Baltimore, MD 21201, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD 21228, USA
| |
Collapse
|
72
|
Allen P, Chaddock CA, Egerton A, Howes OD, Barker G, Bonoldi I, Fusar-Poli P, Murray R, McGuire P. Functional outcome in people at high risk for psychosis predicted by thalamic glutamate levels and prefronto-striatal activation. Schizophr Bull 2015; 41:429-39. [PMID: 25123110 PMCID: PMC4332951 DOI: 10.1093/schbul/sbu115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about the neurobiological factors that determine functional outcome in people at high risk for psychosis. We use multimodal neuroimaging to investigate whether cortical responses during a cognitive task and thalamic glutamate levels were associated with subsequent functional outcome. Sixty subjects participated: 27 healthy controls (CTRL) and 33 at ultrahigh risk (UHR) for psychosis. At baseline, cortical responses during a verbal fluency task were measured using functional Magnetic Resonance Imaging (fMRI) and proton Magnetic Resonance Spectroscopy (1H-MRS) was used to measure thalamic glutamate levels. The UHR subjects were then followed clinically for a mean duration of 18 months, and subdivided into "good" and "poor" functional outcome subgroups according to their Global Assessment of Function score at follow-up. UHR subjects with a poor functional outcome showed greater cortical and subcortical activation than UHR subjects with a good functional outcome. They also had lower levels of thalamic glutamate and showed a negative relationship between thalamic glutamate levels and prefrontal-striatal activation that was not present in the good functional outcome or control groups. In people at high risk for psychosis, their subsequent level of functioning may depend on the extent to which neurophysiological and neurochemical function is perturbed when they first present to clinical services.
Collapse
Affiliation(s)
- Paul Allen
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK;,4These authors contributed equally to this work
| | - Christopher A. Chaddock
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK;,4These authors contributed equally to this work
| | - Alice Egerton
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK;,4These authors contributed equally to this work
| | - Oliver D. Howes
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK
| | - Gareth Barker
- 2Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King’s College London, London, UK
| | - Ilaria Bonoldi
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK;,3Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paolo Fusar-Poli
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK
| | - Robin Murray
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK
| | - Philip McGuire
- 1Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, Denmark Hill, London, UK
| |
Collapse
|
73
|
Abstract
The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an update on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on in vivo neuroimaging studies in patients and clinical high-risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally, the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed.
Collapse
Affiliation(s)
- Oliver Howes
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| | - Rob McCutcheon
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| | - James Stone
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
74
|
Goldstein ME, Anderson VM, Pillai A, Kydd RR, Russell BR. Glutamatergic neurometabolites in clozapine-responsive and -resistant schizophrenia. Int J Neuropsychopharmacol 2015; 18:pyu117. [PMID: 25603859 PMCID: PMC4438552 DOI: 10.1093/ijnp/pyu117] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/19/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND According to the current schizophrenia treatment guidelines, 3 levels of responsiveness to antipsychotic medication exist: those who respond to first-line antipsychotics, those with treatment-resistant schizophrenia who respond to clozapine, and those with clozapine-resistant or ultra-treatment resistant schizophrenia. Proton magnetic resonance spectroscopy studies indicate that antipsychotic medication decreases glutamate or total glutamate + glutamine in the brains of patients with schizophrenia and may represent a biomarker of treatment response; however, the 3 levels of treatment responsiveness have not been evaluated. METHODS Proton magnetic resonance spectroscopy spectra were acquired at 3 Tesla from patients taking a second generation non-clozapine antipsychotic (first-line responders), patients with treatment-resistant schizophrenia taking clozapine, patients with ultra-treatment resistant schizophrenia taking a combination of antipsychotics, and healthy comparison subjects. RESULTS Group differences in cerebrospinal fluid-corrected total glutamate + glutamine levels scaled to creatine were detected in the dorsolateral prefrontal cortex [df(3,48); F = 3.07, P = .04, partial η(2) = 0.16] and the putamen [df(3,32); F = 2.93, P = .05, partial η(2) = 0.22]. The first-line responder group had higher dorsolateral prefrontal cortex total glutamate + glutamine levels scaled to creatine than those with ultra-treatment resistant schizophrenia [mean difference = 0.25, standard error = 0.09, P = .04, family-wise error-corrected]. Those with treatment-resistant schizophrenia had higher total glutamate + glutamine levels scaled to creatine in the putamen than the first-line responders (mean difference = 0.31, standard error = 0.12, P = .05, family-wise error-corrected) and those with ultra-treatment-resistant schizophrenia (mean difference = 0.39, standard error = 0.12, P = .02, family-wise error-corrected). CONCLUSIONS Total glutamate + glutamine levels scaled to creatine in the putamen may represent a marker of response to clozapine. Future studies should investigate glutamatergic anomalies prior to clozapine initiation and following successful treatment.
Collapse
Affiliation(s)
- Meghan Elizabeth Goldstein
- Department of Psychiatry, University of California, San Diego, CA (Dr Goldstein); School of Pharmacy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Drs Goldstein, Anderson, and Russell and Mr Pillai); Centre for Brain Research and Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Dr Kydd)
| | - Valerie Margaret Anderson
- Department of Psychiatry, University of California, San Diego, CA (Dr Goldstein); School of Pharmacy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Drs Goldstein, Anderson, and Russell and Mr Pillai); Centre for Brain Research and Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Dr Kydd)
| | - Avinesh Pillai
- Department of Psychiatry, University of California, San Diego, CA (Dr Goldstein); School of Pharmacy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Drs Goldstein, Anderson, and Russell and Mr Pillai); Centre for Brain Research and Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Dr Kydd)
| | - Robert R Kydd
- Department of Psychiatry, University of California, San Diego, CA (Dr Goldstein); School of Pharmacy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Drs Goldstein, Anderson, and Russell and Mr Pillai); Centre for Brain Research and Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Dr Kydd)
| | - Bruce R Russell
- Department of Psychiatry, University of California, San Diego, CA (Dr Goldstein); School of Pharmacy and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Drs Goldstein, Anderson, and Russell and Mr Pillai); Centre for Brain Research and Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (Dr Kydd).
| |
Collapse
|
75
|
Salavati B, Rajji TK, Price R, Sun Y, Graff-Guerrero A, Daskalakis ZJ. Imaging-based neurochemistry in schizophrenia: a systematic review and implications for dysfunctional long-term potentiation. Schizophr Bull 2015; 41:44-56. [PMID: 25249654 PMCID: PMC4266301 DOI: 10.1093/schbul/sbu132] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cognitive deficits are commonly observed in patients with schizophrenia. Converging lines of evidence suggest that these deficits are associated with impaired long-term potentiation (LTP). In our systematic review, this hypothesis is evaluated using neuroimaging literature focused on proton magnetic resonance spectroscopy, positron emission tomography, and single-photon emission computed tomography. The review provides evidence for abnormal dopaminergic, GABAergic, and glutamatergic neurotransmission in antipsychotic-naive/free patients with schizophrenia compared with healthy controls. The review concludes with a model illustrating how these abnormalities could lead to impaired LTP in patients with schizophrenia and consequently cognitive deficits.
Collapse
Affiliation(s)
- Bahar Salavati
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tarek K. Rajji
- *To whom correspondence should be addressed; 80 Workman Way, Room 6312, Toronto, Ontario M6J 1H4, Canada; tel: +1 416 535 8501 x 33661; fax: +1 416 583 1307; e-mail:
| | - Rae Price
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yinming Sun
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J. Daskalakis
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada;,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
76
|
Egerton A, Stone JM, Chaddock CA, Barker GJ, Bonoldi I, Howard RM, Merritt K, Allen P, Howes OD, Murray RM, McLean MA, Lythgoe DJ, O'Gorman RL, McGuire PK. Relationship between brain glutamate levels and clinical outcome in individuals at ultra high risk of psychosis. Neuropsychopharmacology 2014; 39:2891-9. [PMID: 24917199 PMCID: PMC4180719 DOI: 10.1038/npp.2014.143] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022]
Abstract
Alterations in brain glutamate levels may be associated with psychosis risk, but the relationship to clinical outcome in at-risk individuals is unknown. Glutamate concentration was measured in the left thalamus and anterior cingulate cortex (ACC) using 3-Tesla proton magnetic resonance spectroscopy in 75 participants at ultra high risk (UHR) of psychosis and 56 healthy controls. The severity of attenuated positive symptoms and overall functioning were assessed. Measures were repeated in 51 UHR and 33 Control subjects after a mean of 18 months. UHR subjects were allocated to either remission (no longer meeting UHR criteria) or non-remission (meeting UHR or psychosis criteria) status on follow-up assessment. Thalamic glutamate levels at presentation were lower in the UHR non-remission (N=29) compared with the remission group (N=22) (t(49)=3.03; P=0.004), and were associated with an increase in the severity of total positive symptoms over time (r=-0.33; df=47; P=0.02), most notably abnormal thought content (r=-0.442; df=47; P=0.003). In the UHR group, ACC glutamate levels were lower at follow-up compared with baseline (F(80)=4.28; P=0.04). These findings suggest that measures of brain glutamate function may be useful as predictors of clinical outcome in individuals at high risk of psychosis.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK, Tel: +44 (0) 207 848 0879, Fax: +44 (0) 207 848 0976, E-mail:
| | - James M Stone
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Christopher A Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Rachel M Howard
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Kate Merritt
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - David J Lythgoe
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Ruth L O'Gorman
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK,MR-Center, University Children's Hospital, Zurich, Switzerland
| | - Philip K McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London, London, UK
| |
Collapse
|
77
|
Plitman E, Nakajima S, de la Fuente-Sandoval C, Gerretsen P, Chakravarty MM, Kobylianskii J, Chung JK, Caravaggio F, Iwata Y, Remington G, Graff-Guerrero A. Glutamate-mediated excitotoxicity in schizophrenia: a review. Eur Neuropsychopharmacol 2014; 24:1591-605. [PMID: 25159198 PMCID: PMC4470624 DOI: 10.1016/j.euroneuro.2014.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 12/16/2022]
Abstract
Findings from neuroimaging studies in patients with schizophrenia suggest widespread structural changes although the mechanisms through which these changes occur are currently unknown. Glutamatergic activity appears to be increased in the early phases of schizophrenia and may contribute to these structural alterations through an excitotoxic effect. The primary aim of this review was to describe the possible role of glutamate-mediated excitotoxicity in explaining the presence of neuroanatomical changes within schizophrenia. A Medline(®) literature search was conducted, identifying English language studies on the topic of glutamate-mediated excitotoxicity in schizophrenia, using the terms "schizophreni" and "glutam" and (("MRS" or "MRI" or "magnetic resonance") or ("computed tomography" or "CT")). Studies concomitantly investigating glutamatergic activity and brain structure in patients with schizophrenia were included. Results are discussed in the context of findings from preclinical studies. Seven studies were identified that met the inclusion criteria. These studies provide inconclusive support for the role of glutamate-mediated excitotoxicity in the occurrence of structural changes within schizophrenia, with the caveat that there is a paucity of human studies investigating this topic. Preclinical data suggest that an excitotoxic effect may occur as a result of a paradoxical increase in glutamatergic activity following N-methyl-D-aspartate receptor hypofunction. Based on animal literature, glutamate-mediated excitotoxicity may account for certain structural changes present in schizophrenia, but additional human studies are required to substantiate these findings. Future studies should adopt a longitudinal design and employ magnetic resonance imaging techniques to investigate whether an association between glutamatergic activity and structural changes exists in patients with schizophrenia.
Collapse
Affiliation(s)
- Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Camilo de la Fuente-Sandoval
- Experimental Psychiatry Laboratory, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jane Kobylianskii
- Department of Medicine, Queen׳s University, Kingston, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
78
|
Neurodegenerative Aspects in Vulnerability to Schizophrenia Spectrum Disorders. Neurotox Res 2014; 26:400-13. [DOI: 10.1007/s12640-014-9473-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/20/2023]
|
79
|
Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 2014; 152:325-32. [PMID: 24418122 PMCID: PMC3951718 DOI: 10.1016/j.schres.2013.12.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 01/13/2023]
Abstract
The last fifteen years have seen a great increase in our understanding of the role of glutamate in schizophrenia (SCZ). The glutamate hypothesis focuses on disturbances in brain glutamatergic pathways and impairment in signaling at glutamate receptors. Proton Magnetic Resonance Spectroscopy ((1)H-MRS) is an MR-based technique that affords investigators the ability to study glutamate function by measuring in vivo glutamatergic indices in the brains of individuals with SCZ. (1)H-MRS studies have been performed comparing glutamatergic levels of individuals with SCZ and healthy control subjects or studying the effect of antipsychotic medications on glutamatergic levels. In this article we summarize the results of these studies by brain region. We will review the contribution of (1)H-MRS studies to our knowledge about glutamatergic abnormalities in the brains of individuals with SCZ and discuss the implications for future research and clinical care.
Collapse
|
80
|
Newton-Howes G. The impact of mental state disorder and personality on social functioning in patients engaged in community mental health care. Australas Psychiatry 2014; 22:19-22. [PMID: 23996666 DOI: 10.1177/1039856213500093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to assess the degree to which mental state disorder and personality disorder impact on social functioning in patients engaged in secondary mental health care in New Zealand. METHOD Patients were interviewed using peer-reviewed instruments able to provide an indication of severity to assess their social functioning, personality status and diagnosis. Univariate correlations and linear regression was used to identify the association between social functioning, mental state disorder and personality. RESULTS Using simple correlations all diagnostic categories associated with declines in social functioning. In the regression analysis depression and personality dysfunction accounted for 48% of the variance in social functioning. CONCLUSIONS For patients engaged in secondary care, depression and personality dysfunction are significantly associated with poorer social functioning.
Collapse
Affiliation(s)
- Giles Newton-Howes
- Senior Lecturer, Department of Psychological Medicine, University of Otago, Wellington, New Zealand, and; Honorary Senior Lecturer, Imperial College, London, UK
| |
Collapse
|
81
|
Poels EMP, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA, Abi-Dargham A, Girgis RR. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 2014; 19:20-9. [PMID: 24166406 DOI: 10.1038/mp.2013.136] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/25/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022]
Abstract
Currently, all treatments for schizophrenia (SCZ) function primarily by blocking D(2)-type dopamine receptors. Given the limitations of these medications, substantial efforts have been made to identify alternative neurochemical targets for treatment development in SCZ. One such target is brain glutamate. The objective of this article is to review and synthesize the proton magnetic resonance spectroscopy ((1)H MRS) and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) investigations that have examined glutamatergic indices in SCZ, including those of modulatory compounds such as glutathione (GSH) and glycine, as well as data from ketamine challenge studies. The reviewed (1)H MRS and PET/SPECT studies support the theory of hypofunction of the N-methyl-D-aspartate receptor (NMDAR) in SCZ, as well as the convergence between the dopamine and glutamate models of SCZ. We also review several advances in MRS and PET technologies that have opened the door for new opportunities to investigate the glutamate system in SCZ and discuss some ways in which these imaging tools can be used to facilitate a greater understanding of the glutamate system in SCZ and the successful and efficient development of new glutamate-based treatments for SCZ.
Collapse
Affiliation(s)
- E M P Poels
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - L S Kegeles
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J T Kantrowitz
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - M Slifstein
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - D C Javitt
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J A Lieberman
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - A Abi-Dargham
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA [3] Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - R R Girgis
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
82
|
Müller M, Vetter S, Weiser M, Frey F, Ajdacic-Gross V, Stieglitz RD, Rössler W. Precursors of cognitive impairments in psychotic disorders: a population-based study. Psychiatry Res 2013; 210:329-37. [PMID: 23876280 DOI: 10.1016/j.psychres.2013.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 11/30/2022]
Abstract
Cognitive deficits have been found to be more prevalent in psychotic than in other disorders. Longitudinal research has shown that these deficits were generally already existent before onset of illness and are therefore not necessarily attributable to neurodegenerative processes. This study investigated whether both low IQ and markers of premorbid cognitive dysfunction independently contribute to an increased risk for psychoses. In a cross-sectional study about 50,000 young Swiss males completed a survey of intellectual problems in childhood/adolescence and other vulnerability factors during military call-up in 2005/2006. Subsequently, military IQ assessments were carried out on the entire sample. Diagnostic assessments were conducted according to International Classification of Diseases-10th edition (ICD-10). Low, especially performance, IQ was highly associated with an increased risk for psychotic disorders after adjusting for preexisting cognitive deficits and covariates, while in other disorders this association was less marked. Furthermore, preexisting intellectual problems emerged as important risk factors for psychoses. Our results confirm the importance of low IQ as characteristic of psychoses. Although premorbid intellectual deficits are common in people who go on to develop psychosis, neurodegenerative disease processes may also precipitate further declines in fluid cognitive functions. Assessment of cognitive functioning should be taken into account in early detection of psychoses.
Collapse
Affiliation(s)
- Mario Müller
- Centre for Disaster and Military Psychiatry, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
83
|
Merritt K, McGuire P, Egerton A. Relationship between Glutamate Dysfunction and Symptoms and Cognitive Function in Psychosis. Front Psychiatry 2013; 4:151. [PMID: 24324444 PMCID: PMC3840324 DOI: 10.3389/fpsyt.2013.00151] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/07/2013] [Indexed: 11/13/2022] Open
Abstract
The glutamate hypothesis of schizophrenia, proposed over two decades ago, originated following the observation that administration of drugs that block NMDA glutamate receptors, such as ketamine, could induce schizophrenia-like symptoms. Since then, this hypothesis has been extended to describe how glutamate abnormalities may disturb brain function and underpin psychotic symptoms and cognitive impairments. The glutamatergic system is now a major focus for the development of new compounds in schizophrenia. Relationships between regional brain glutamate function and symptom severity can be investigated using proton magnetic resonance spectroscopy (1H-MRS) to estimate levels of glutamatergic metabolites in vivo. Here we briefly review the 1H-MRS studies that have explored relationships between glutamatergic metabolites, symptoms, and cognitive function in clinical samples. While some of these studies suggest that more severe symptoms may be associated with elevated glutamatergic function in the anterior cingulate, studies in larger patient samples selected on the basis of symptom severity are required.
Collapse
Affiliation(s)
- Kate Merritt
- Department of Psychosis Studies, Institute of Psychiatry, King's College London , London , UK
| | | | | |
Collapse
|
84
|
Schwerk A, Alves FDS, Pouwels PJW, van Amelsvoort T. Metabolic alterations associated with schizophrenia: a critical evaluation of proton magnetic resonance spectroscopy studies. J Neurochem 2013; 128:1-87. [DOI: 10.1111/jnc.12398] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Anne Schwerk
- Department of Neurology; Charité - University Medicine; Berlin Germany
| | - Fabiana D. S. Alves
- Department of Psychiatry; Academic Medical Centre; Amsterdam The Netherlands
| | - Petra J. W. Pouwels
- Department of Physics& Medical Technology; VU University Medical Centre; Amsterdam The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology; Maastricht University; Maastricht The Netherlands
| |
Collapse
|
85
|
Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology 2012; 37:2515-21. [PMID: 22763619 PMCID: PMC3442346 DOI: 10.1038/npp.2012.113] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many patients with schizophrenia show a limited symptomatic response to treatment with dopaminergic antipsychotics. This may reflect the additional involvement of non-dopaminergic neurochemical dysfunction in the pathophysiology of the disorder. We tested the hypothesis that brain glutamate levels would differ between patients with first-episode psychosis who were symptomatic compared with those with minimal symptoms following antipsychotic treatment. Proton magnetic resonance spectroscopy (1H-MRS) spectra were acquired at 3 Tesla in the anterior cingulate cortex and left thalamus in 15 patients with first-episode psychosis in symptomatic remission, and 17 patients with first-episode psychosis who were still symptomatic following at least one course of antipsychotic treatment. Metabolite levels were estimated in ratio to creatine (Cr) using LCModel. Levels of glutamate/Cr in the anterior cingulate cortex were significantly higher in patients who were still symptomatic than in those in remission (T(30)=3.02; P=0.005). Across the entire sample, higher levels of glutamate/Cr in the anterior cingulate cortex were associated with a greater severity of negative symptoms (r=0.42; P=0.017) and a lower level of global functioning (r=-0.47; P=0.007). These findings suggest that clinical status following antipsychotic treatment in schizophrenia is linked to glutamate dysfunction. Treatment with compounds acting on the glutamatergic system might therefore be beneficial in patients who respond poorly to dopaminergic antipsychotics.
Collapse
|
86
|
Williamson PC, Allman JM. A framework for interpreting functional networks in schizophrenia. Front Hum Neurosci 2012; 6:184. [PMID: 22737116 PMCID: PMC3380255 DOI: 10.3389/fnhum.2012.00184] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/02/2012] [Indexed: 01/14/2023] Open
Abstract
Some promising genetic correlates of schizophrenia have emerged in recent years but none explain more than a small fraction of cases. The challenge of our time is to characterize the neuronal networks underlying schizophrenia and other neuropsychiatric illnesses. Early models of schizophrenia have been limited by the ability to readily evaluate large-scale networks in living patients. With the development of resting state and advanced structural magnetic resonance imaging, it has become possible to do this. While we are at an early stage, a number of models of intrinsic brain networks have been developed to account for schizophrenia and other neuropsychiatric disorders. This paper reviews the recent voxel-based morphometry (VBM), diffusion tensor imaging (DTI), and resting functional magnetic resonance imaging literature in light of the proposed networks underlying these disorders. It is suggested that there is support for recently proposed models that suggest a pivotal role for the salience network. However, the interactions of this network with the default mode network and executive control networks are not sufficient to explain schizophrenic symptoms or distinguish them from other neuropsychiatric disorders. Alternatively, it is proposed that schizophrenia arises from a uniquely human brain network associated with directed effort including the dorsal anterior and posterior cingulate cortex (PCC), auditory cortex, and hippocampus while mood disorders arise from a different brain network associated with emotional encoding including the ventral anterior cingulate cortex (ACC), orbital frontal cortex, and amygdala. Both interact with the dorsolateral prefrontal cortex and a representation network including the frontal and temporal poles and the fronto-insular cortex, allowing the representation of the thoughts, feelings, and actions of self and others across time.
Collapse
Affiliation(s)
- Peter C Williamson
- Tanna Schulich Chair in Neuroscience and Mental Health, University of Western Ontario, London ON, Canada
| | | |
Collapse
|
87
|
Spangaro M, Bosia M, Zanoletti A, Bechi M, Cocchi F, Pirovano A, Lorenzi C, Bramanti P, Benedetti F, Smeraldi E, Cavallaro R. Cognitive dysfunction and glutamate reuptake: effect of EAAT2 polymorphism in schizophrenia. Neurosci Lett 2012; 522:151-5. [PMID: 22728822 DOI: 10.1016/j.neulet.2012.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/15/2023]
Abstract
A disturbance of glutamatergic transmission has been suggested to contribute to the development of schizophrenic pathophysiology, based primarily on the ability of glutamate receptor antagonists to induce schizophrenic-like symptoms. The excitatory amino acid transporter 2 (EAAT2) is responsible for the majority of glutamate uptake. It also contributes to energy metabolism in the brain, by transporting glutamate into astrocytes for conversion into glutamine. A dysregulation of its level of expression has been associated with multiple neurological disorders. Blocking glutamate uptake by EAAT2 in cultured oligodendrocytes leads to cell death, demyelination and axonal damage, suggesting that it is crucial for normal oligodendrocyte function. Different studies focused on EAAT2 alterations among subjects affected by schizophrenia, reporting a decreased expression in the parahippocampal region and in the dorsolateral prefrontal cortex. Moreover, subjects with the high-risk metabotropic glutamate receptor 3 (GRM3) haplotype associated with schizophrenia had lower EAAT2 expression in the prefrontal cortex and also showed impaired cognitive performances for measures of verbal list learning and verbal fluency. EAAT2 protein activity is regulated by a SNP rs4354668 (-181T/G) which falls in the gene promoter region, with the G allele resulting in a lower activity of the transporter. Based on these data, we assessed possible effects of the -181T/G EAAT2 polymorphism on two core prefrontal cognitive performances, known to be impaired in schizophrenia, in a sample of 211 clinically stabilized patients. We observed better executive functions (WCST, no. of categories) and working memory (N-back: 1-back, 2-back) performances in subjects homozygous for the T allele, compared to the G carriers group. These observations suggest that the presence of the G allele is associated, among patients with schizophrenia, with a disadvantageous effect on core cognitive functions that depend on prefrontal cortex activity. These results are preliminary and need to be replicated by future and larger studies, however they suggest that EAAT2 inefficiency may represent a target of interest for development of pharmacological strategies aimed to improve prefrontal performances by compensating the impaired glutamate reuptake.
Collapse
Affiliation(s)
- Marco Spangaro
- San Raffaele Scientific Institute, Department of Clinical Neurosciences, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|