51
|
Comparative Evaluation of Plasma Metabolomic Data from Multiple Laboratories. Metabolites 2022; 12:metabo12020135. [PMID: 35208210 PMCID: PMC8877229 DOI: 10.3390/metabo12020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In mass spectrometry-based metabolomics, the differences in the analytical results from different laboratories/machines are an issue to be considered because various types of machines are used in each laboratory. Moreover, the analytical methods are unique to each laboratory. It is important to understand the reality of inter-laboratory differences in metabolomics. Therefore, we have evaluated whether the differences in analytical methods, with the exception sample pretreatment and including metabolite extraction, are involved in the inter-laboratory differences or not. In this study, nine facilities are evaluated for inter-laboratory comparisons of metabolomic analysis. Identical dried samples prepared from human and mouse plasma are distributed to each laboratory, and the metabolites are measured without the pretreatment that is unique to each laboratory. In these measurements, hydrophilic and hydrophobic metabolites are analyzed using 11 and 7 analytical methods, respectively. The metabolomic data acquired at each laboratory are integrated, and the differences in the metabolomic data from the laboratories are evaluated. No substantial difference in the relative quantitative data (human/mouse) for a little less than 50% of the detected metabolites is observed, and the hydrophilic metabolites have fewer differences between the laboratories compared with hydrophobic metabolites. From evaluating selected quantitatively guaranteed metabolites, the proportion of metabolites without the inter-laboratory differences is observed to be slightly high. It is difficult to resolve the inter-laboratory differences in metabolomics because all laboratories cannot prepare the same analytical environments. However, the results from this study indicate that the inter-laboratory differences in metabolomic data are due to measurement and data analysis rather than sample preparation, which will facilitate the understanding of the problems in metabolomics studies involving multiple laboratories.
Collapse
|
52
|
Differential effect of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on slow and fast skeletal muscles from nondiabetic mice. Biochem J 2022; 479:425-444. [PMID: 35048967 PMCID: PMC8883489 DOI: 10.1042/bcj20210700] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
There has been a concern that sodium–glucose cotransporter 2 (SGLT2) inhibitors could reduce skeletal muscle mass and function. Here, we examine the effect of canagliflozin (CANA), an SGLT2 inhibitor, on slow and fast muscles from nondiabetic C57BL/6J mice. In this study, mice were fed with or without CANA under ad libitum feeding, and then evaluated for metabolic valuables as well as slow and fast muscle mass and function. We also examined the effect of CANA on gene expressions and metabolites in slow and fast muscles. During SGLT2 inhibition, fast muscle function is increased, as accompanied by increased food intake, whereas slow muscle function is unaffected, although slow and fast muscle mass is maintained. When the amount of food in CANA-treated mice is adjusted to that in vehicle-treated mice, fast muscle mass and function are reduced, but slow muscle was unaffected during SGLT2 inhibition. In metabolome analysis, glycolytic metabolites and ATP are increased in fast muscle, whereas glycolytic metabolites are reduced but ATP is maintained in slow muscle during SGLT2 inhibition. Amino acids and free fatty acids are increased in slow muscle, but unchanged in fast muscle during SGLT2 inhibition. The metabolic effects on slow and fast muscles are exaggerated when food intake is restricted. This study demonstrates the differential effects of an SGLT2 inhibitor on slow and fast muscles independent of impaired glucose metabolism, thereby providing new insights into how they should be used in patients with diabetes, who are at a high risk of sarcopenia.
Collapse
|
53
|
Si-Hung L, Bamba T. Current state and future perspectives of supercritical fluid chromatography. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
Wolrab D, Peterka O, Chocholoušková M, Holčapek M. Ultrahigh-Performance Supercritical Fluid Chromatography / Mass Spectrometry in the Lipidomic Analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
55
|
Tang Y, Ali MM, Sun X, Debrah AA, Wang M, Hou H, Guo Q, Du Z. Development of a high-throughput method for the comprehensive lipid analysis in milk using ultra-high performance supercritical fluid chromatography combined with quadrupole time-of-flight mass spectrometry. J Chromatogr A 2021; 1658:462606. [PMID: 34656840 DOI: 10.1016/j.chroma.2021.462606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Milk lipids are one of the most complex materials in nature and are associated with many physiological functions, hence it is important to comprehensively characterize lipids profiles to evaluate the nutritional value of milk. A quick method was developed by ultra-high performance supercritical fluid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UHPSFC-ESI-QTOF-MS) to analyze the non-polar and polar lipids profiles of cow, goat, buffalo, human milk, and infant formulas in 7 min. All chromatographic conditions were carefully optimized and their effect on the chromatographic behavior of lipid classes and species was discussed. Under optimized conditions, 12 lipid classes (triacylglycerols, diacylglycerols, monoglyceride, fatty acids, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, sphingomyelin, lyso-phosphatidylcholine, and lyso-phosphatidylethanolamine) were separated and each class was further separated in single analysis to facilitate the identification. 250 lipid species in real samples were characterized and quantified. This result demonstrates the applicability of the UHPSFC-ESI-QTOF-MS method in the high-throughput and comprehensive lipid analysis of milk, and will hopefully help to provide nutritionists with the lipid distribution in different types of milk, as well as help in the design of more suitable infant formula for babies.
Collapse
Affiliation(s)
- Yan Tang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Mujahid Ali
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Augustine Atta Debrah
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention & Control, Beijing 100013, China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
56
|
Toribio L, Bernal J, Martín MT, Ares AM. Supercritical fluid chromatography coupled to mass spectrometry: A valuable tool in food analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
57
|
Saigusa D, Hishinuma E, Matsukawa N, Takahashi M, Inoue J, Tadaka S, Motoike IN, Hozawa A, Izumi Y, Bamba T, Kinoshita K, Ekroos K, Koshiba S, Yamamoto M. Comparison of Kit-Based Metabolomics with Other Methodologies in a Large Cohort, towards Establishing Reference Values. Metabolites 2021; 11:652. [PMID: 34677367 PMCID: PMC8538467 DOI: 10.3390/metabo11100652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic profiling is an omics approach that can be used to observe phenotypic changes, making it particularly attractive for biomarker discovery. Although several candidate metabolites biomarkers for disease expression have been identified in recent clinical studies, the reference values of healthy subjects have not been established. In particular, the accuracy of concentrations measured by mass spectrometry (MS) is unclear. Therefore, comprehensive metabolic profiling in large-scale cohorts by MS to create a database with reference ranges is essential for evaluating the quality of the discovered biomarkers. In this study, we tested 8700 plasma samples by commercial kit-based metabolomics and separated them into two groups of 6159 and 2541 analyses based on the different ultra-high-performance tandem mass spectrometry (UHPLC-MS/MS) systems. We evaluated the quality of the quantified values of the detected metabolites from the reference materials in the group of 2541 compared with the quantified values from other platforms, such as nuclear magnetic resonance (NMR), supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) and UHPLC-Fourier transform mass spectrometry (FTMS). The values of the amino acids were highly correlated with the NMR results, and lipid species such as phosphatidylcholines and ceramides showed good correlation, while the values of triglycerides and cholesterol esters correlated less to the lipidomics analyses performed using SFC-MS/MS and UHPLC-FTMS. The evaluation of the quantified values by MS-based techniques is essential for metabolic profiling in a large-scale cohort.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
| | - Jin Inoue
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shu Tadaka
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ikuko N. Motoike
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan;
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kim Ekroos
- Lipidomics Consulting Ltd., 02230 Espoo, Finland;
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| |
Collapse
|
58
|
Porphyromonas gingivalis induces entero-hepatic metabolic derangements with alteration of gut microbiota in a type 2 diabetes mouse model. Sci Rep 2021; 11:18398. [PMID: 34526589 PMCID: PMC8443650 DOI: 10.1038/s41598-021-97868-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022] Open
Abstract
Periodontal infection induces systemic inflammation; therefore, aggravating diabetes. Orally administered periodontal pathogens may directly alter the gut microbiota. We orally treated obese db/db diabetes mice using Porphyromonas gingivalis (Pg). We screened for Pg-specific peptides in the intestinal fecal specimens and examined whether Pg localization influenced the intestinal microbiota profile, in turn altering the levels of the gut metabolites. We evaluated whether the deterioration in fasting hyperglycemia was related to the changes in the intrahepatic glucose metabolism, using proteome and metabolome analyses. Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05), with a significant (P < 0.01) increase in dental alveolar bone resorption. Pg-specific peptides were identified in fecal specimens following oral Pg treatment. The intestinal Pg profoundly altered the gut microbiome profiles at the phylum, family, and genus levels; Prevotella exhibited the largest increase in abundance. In addition, Pg-treatment significantly altered intestinal metabolite levels. Fasting hyperglycemia was associated with the increase in the levels of gluconeogenesis-related enzymes and metabolites without changes in the expression of proinflammatory cytokines and insulin resistance. Oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thus aggravating hyperglycemia in an obese type 2 diabetes mouse model.
Collapse
|
59
|
Lísa M, Řehulková H, Hančová E, Řehulka P. Lipidomic analysis using hydrophilic interaction liquid chromatography microgradient fractionation of total lipid extracts. J Chromatogr A 2021; 1653:462380. [PMID: 34348208 DOI: 10.1016/j.chroma.2021.462380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 06/26/2021] [Indexed: 01/04/2023]
Abstract
Lipidomic samples are complex mixtures of structurally different species of a wide range of concentrations providing challenges in their characterization. In this work, we present a proof of concept for the application of a simple microgradient liquid chromatography device on the detailed analysis of lipid classes. Our lipidomic analysis is based on a lipid class microgradient fractionation of a total lipid extract using an in-house-prepared hydrophilic interaction liquid chromatography microcolumn followed by RP-LC/MS of the collected lipid class fractions. The final fractionation method uses a 40-mm-long microcolumn of 500 μm ID with silica stationary phase obtained from a commercially available chromatographic column and the microgradient of the mobile phase prepared in a microsyringe using methyl tert-butyl ether (MTBE) - methanol - water - ammonium acetate mixtures of various elution strengths. MTBE total lipid extract is directly separated by microgradient elution into lipid classes according to their polarity, which enables the collection of isolated fractions of most lipid classes. The method has been applied to the fractionation of porcine brain extract into nonpolar lipids, hexosylceramides, phosphoethanolamines, phosphocholines, sphingomyelins, and lysophosphocholines classes. Achieved repeatability, recovery, and advanced lipid coverage prove the applicability of the microgradient fractionation of total lipid extract for the comprehensive lipidomic analysis.
Collapse
Affiliation(s)
- Miroslav Lísa
- University of Hradec Králové, Faculty of Science, Department of Chemistry, Rokitanského 62, 50003 Hradec Králové, Czech Republic.
| | - Helena Řehulková
- University of Hradec Králové, Faculty of Science, Department of Chemistry, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Eliška Hančová
- University of Hradec Králové, Faculty of Science, Department of Chemistry, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Pavel Řehulka
- University of Defence, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Trebešská 1575, 50001 Hradec Králové, Czech Republic
| |
Collapse
|
60
|
Donoso‐Quezada J, Ayala‐Mar S, González‐Valdez J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic 2021; 22:204-220. [PMID: 34053166 PMCID: PMC8361711 DOI: 10.1111/tra.12803] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Exosomes are extracellular vesicles that in recent years have received special attention for their regulatory functions in numerous biological processes. Recent evidence suggests a correlation between the composition of exosomes in body fluids and the progression of some disorders, such as cancer, diabetes and neurodegenerative diseases. In consequence, numerous studies have been performed to evaluate the composition of these vesicles, aiming to develop new biomarkers for diagnosis and to find novel therapeutic targets. On their part, lipids represent one of the most important components of exosomes, with important structural and regulatory functions during exosome biogenesis, release, targeting and cellular uptake. Therefore, exosome lipidomics has emerged as an innovative discipline for the discovery of novel lipid species with biomedical applications. This review summarizes the current knowledge about exosome lipids and their roles in exosome biology and intercellular communication. Furthermore, it presents the state-of-the-art analytical procedures used in exosome lipidomics while emphasizing how this emerging discipline is providing new insights for future applications of exosome lipids in biomedicine.
Collapse
Affiliation(s)
| | - Sergio Ayala‐Mar
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| | - José González‐Valdez
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| |
Collapse
|
61
|
Le Faouder P, Soullier J, Tremblay-Franco M, Tournadre A, Martin JF, Guitton Y, Carlé C, Caspar-Bauguil S, Denechaud PD, Bertrand-Michel J. Untargeted Lipidomic Profiling of Dry Blood Spots Using SFC-HRMS. Metabolites 2021; 11:metabo11050305. [PMID: 34064856 PMCID: PMC8151068 DOI: 10.3390/metabo11050305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
Lipids are essential cellular constituents that have many critical roles in physiological functions. They are notably involved in energy storage and cell signaling as second messengers, and they are major constituents of cell membranes, including lipid rafts. As a consequence, they are implicated in a large number of heterogeneous diseases, such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Due to the high structural diversity and complexity of lipid species, the presence of isomeric and isobaric lipid species, and their occurrence at a large concentration scale, a complete lipidomic profiling of biological matrices remains challenging, especially in clinical contexts. Using supercritical fluid chromatography coupled with high-resolution mass spectrometry, we have developed and validated an untargeted lipidomic approach to the profiling of plasma and blood. Moreover, we have tested the technique using the Dry Blood Spot (DBS) method and found that it allows for the easy collection of blood for analysis. To develop the method, we performed the optimization of the separation and detection of lipid species on pure standards, reference human plasma (SRM1950), whole blood, and DBS. These analyses allowed an in-house lipid data bank to be built. Using the MS-Dial software, we developed an automatic process for the relative quantification of around 500 lipids species belonging to the 6 main classes of lipids (including phospholipids, sphingolipids, free fatty acids, sterols, and fatty acyl-carnitines). Then, we compared the method using the published data for SRM 1950 and a mouse blood sample, along with another sample of the same blood collected using the DBS method. In this study, we provided a method for blood lipidomic profiling that can be used for the easy sampling of dry blood spots.
Collapse
Affiliation(s)
- Pauline Le Faouder
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
| | - Julia Soullier
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
| | - Marie Tremblay-Franco
- MetaboHUB-MetaToul-Axiom, MetaboHUB-ANR-11-INBS-0010, INRAE Toxalim, Université Paul Sabtier, 31027 Toulouse, France; (M.T.-F.); (J.-F.M.)
| | - Anthony Tournadre
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
| | - Jean-François Martin
- MetaboHUB-MetaToul-Axiom, MetaboHUB-ANR-11-INBS-0010, INRAE Toxalim, Université Paul Sabtier, 31027 Toulouse, France; (M.T.-F.); (J.-F.M.)
| | - Yann Guitton
- MELISA Core Facility, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRΑE, 44307 Nantes, France;
| | - Caroline Carlé
- Laboratoire de Biochimie, Hôpital Purpan, CHU Toulouse, 31059 Toulouse, France;
| | - Sylvie Caspar-Bauguil
- INSERM, UMR1297, Institute of Metabolic and Cardiovascular Diseases, University Paul Sabatier, 31432 Toulouse, France; (S.C.-B.); (P.-D.D.)
| | - Pierre-Damien Denechaud
- INSERM, UMR1297, Institute of Metabolic and Cardiovascular Diseases, University Paul Sabatier, 31432 Toulouse, France; (S.C.-B.); (P.-D.D.)
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
- Correspondence: ; Tel.: +33-671681650
| |
Collapse
|
62
|
Goh EXY, Guan XL. Targeted Lipidomics of Drosophila melanogaster During Development. Methods Mol Biol 2021; 2306:187-213. [PMID: 33954948 DOI: 10.1007/978-1-0716-1410-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Lipids play critical roles in developmental processes, and alterations in lipid metabolism are linked to a wide range of human diseases, including neurodegeneration, cancer, metabolic diseases, and microbial infections. Drosophila melanogaster, more commonly known as the fruit fly, is a powerful organism for developmental biology and human disease research. We have previously developed a comprehensive biochemical tool, based on liquid chromatography-mass spectrometry (LC-MS), to probe the dynamics of lipid remodeling during D. melanogaster development. This chapter introduces a step-by-step protocol for extracting and analyzing lipids across all developmental stages (embryo, larvae, pupa, and adult) of D. melanogaster. The targeted semi-quantitative approach offers a comprehensive coverage of more than 400 lipid species spanning the lipid classes, glycerophospholipids, sphingolipids, triacylglycerols, and sterols.
Collapse
Affiliation(s)
- Esther Xue Yi Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
63
|
Onoki T, Izumi Y, Takahashi M, Murakami S, Matsumaru D, Ohta N, Wati SM, Hatanaka N, Katsuoka F, Okutsu M, Yabe Y, Hagiwara Y, Kanzaki M, Bamba T, Itoi E, Motohashi H. Skeletal muscle-specific Keap1 disruption modulates fatty acid utilization and enhances exercise capacity in female mice. Redox Biol 2021; 43:101966. [PMID: 33857757 PMCID: PMC8050939 DOI: 10.1016/j.redox.2021.101966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle health is important for the prevention of various age-related diseases. The loss of skeletal muscle mass, which is known as sarcopenia, underlies physical disability, poor quality of life and chronic diseases in elderly people. The transcription factor NRF2 plays important roles in the regulation of the cellular defense against oxidative stress, as well as the metabolism and mitochondrial activity. To determine the contribution of skeletal muscle NRF2 to exercise capacity, we conducted skeletal muscle-specific inhibition of KEAP1, which is a negative regulator of NRF2, and examined the cell-autonomous and non-cell-autonomous effects of NRF2 pathway activation in skeletal muscles. We found that NRF2 activation in skeletal muscles increased slow oxidative muscle fiber type and improved exercise endurance capacity in female mice. We also observed that female mice with NRF2 pathway activation in their skeletal muscles exhibited enhanced exercise-induced mobilization and β-oxidation of fatty acids. These results indicate that NRF2 activation in skeletal muscles promotes communication with adipose tissues via humoral and/or neuronal signaling and facilitates the utilization of fatty acids as an energy source, resulting in increased mitochondrial activity and efficient energy production during exercise, which leads to improved exercise endurance. Systemic Keap1 knockdown enhances exercise endurance capacity in mice. Keap1 deficiency in skeletal muscle activates NRF2 pathway. Keap1 deficiency in skeletal muscle enhances endurance capacity in female mice. Keap1 deficiency in skeletal muscle promotes exercise-induced fatty acid utilization.
Collapse
Affiliation(s)
- Takahiro Onoki
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, 980-8575, Japan; Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shohei Murakami
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, 980-8575, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, 980-8575, Japan
| | - Nao Ohta
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, 980-8575, Japan
| | - Sisca Meida Wati
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, 980-8575, Japan
| | - Nozomi Hatanaka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Mitsuharu Okutsu
- Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8575, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
64
|
Hayasaka R, Tabata S, Hasebe M, Ikeda S, Ohnuma S, Mori M, Soga T, Tomita M, Hirayama A. Metabolomic Analysis of Small Extracellular Vesicles Derived from Pancreatic Cancer Cells Cultured under Normoxia and Hypoxia. Metabolites 2021; 11:metabo11040215. [PMID: 33915936 PMCID: PMC8066639 DOI: 10.3390/metabo11040215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) released from cancer cells contribute to various malignant phenotypes of cancer, including metastasis, cachexia, and angiogenesis. Although DNA, mRNAs, miRNAs, and proteins contained in EVs have been extensively studied, the function of metabolites in EVs remains unclear. In this study, we performed a comprehensive metabolomic analysis of pancreatic cancer cells, PANC-1, cultured under different oxygen concentrations, and small EVs (sEVs) released from them, considering the fact that hypoxia contributes to the malignant behavior of cells in pancreatic cancer, which is a poorly diagnosed cancer. sEVs were collected by ultracentrifugation, and hydrophilic metabolites were analyzed using capillary ion chromatography-mass spectrometry and liquid chromatography-mass spectrometry, and lipids were analyzed by supercritical fluid chromatography-tandem mass spectrometry. A total of 140 hydrophilic metabolites and 494 lipids were detected in sEVs, and their profiles were different from those in cells. In addition, the metabolomic profile of sEVs was observed to change under hypoxic stress, and an increase in metabolites involved in angiogenesis was also detected. We reveal the hallmark of the metabolites contained in sEVs and the effect of tumor hypoxia on their profiles, which may help in understanding EV-mediated cancer malignancy.
Collapse
Affiliation(s)
- Ryosuke Hayasaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
| | - Sumiko Ohnuma
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (R.H.); (S.T.); (M.H.); (S.I.); (S.O.); (M.M.); (T.S.); (M.T.)
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi 464-8603, Japan
- Correspondence: ; Tel.: +81-235-290-528
| |
Collapse
|
65
|
Coupling Machine Learning and Lipidomics as a Tool to Investigate Metabolic Dysfunction-Associated Fatty Liver Disease. A General Overview. Biomolecules 2021; 11:biom11030473. [PMID: 33810079 PMCID: PMC8004861 DOI: 10.3390/biom11030473] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatic biopsy is the gold standard for staging nonalcoholic fatty liver disease (NAFLD). Unfortunately, accessing the liver is invasive, requires a multidisciplinary team and is too expensive to be conducted on large segments of the population. NAFLD starts quietly and can progress until liver damage is irreversible. Given this complex situation, the search for noninvasive alternatives is clinically important. A hallmark of NAFLD progression is the dysregulation in lipid metabolism. In this context, recent advances in the area of machine learning have increased the interest in evaluating whether multi-omics data analysis performed on peripheral blood can enhance human interpretation. In the present review, we show how the use of machine learning can identify sets of lipids as predictive biomarkers of NAFLD progression. This approach could potentially help clinicians to improve the diagnosis accuracy and predict the future risk of the disease. While NAFLD has no effective treatment yet, the key to slowing the progression of the disease may lie in predictive robust biomarkers. Hence, to detect this disease as soon as possible, the use of computational science can help us to make a more accurate and reliable diagnosis. We aimed to provide a general overview for all readers interested in implementing these methods.
Collapse
|
66
|
Ddhd1 knockout mouse as a model of locomotive and physiological abnormality in familial spastic paraplegia. Biosci Rep 2021; 41:227847. [PMID: 33600578 PMCID: PMC7921290 DOI: 10.1042/bsr20204171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
We have previously reported a novel homozygous 4-bp deletion in DDHD1 as the responsible variant for spastic paraplegia type 28 (SPG28; OMIM#609340). The variant causes a frameshift, resulting in a functionally null allele in the patient. DDHD1 encodes phospholipase A1 (PLA1) catalyzing phosphatidylinositol to lysophosphatidylinositol (LPI). To clarify the pathogenic mechanism of SPG28, we established Ddhd1 knockout mice (Ddhd1[-/-]) carrying a 5-bp deletion in Ddhd1, resulting in a premature termination of translation at a position similar to that of the patient. We observed a significant decrease in foot-base angle (FBA) in aged Ddhd1(-/-) (24 months of age) and a significant decrease in LPI 20:4 (sn-2) in Ddhd1(-/-) cerebra (26 months of age). These changes in FBA were not observed in 14 months of age. We also observed significant changes of expression levels of 22 genes in the Ddhd1(-/-) cerebra (26 months of age). Gene Ontology (GO) terms relating to the nervous system and cell-cell communications were significantly enriched. We conclude that the reduced signaling of LPI 20:4 (sn-2) by PLA1 dysfunction is responsible for the locomotive abnormality in SPG28, further suggesting that the reduction of downstream signaling such as GPR55 which is agonized by LPI is involved in the pathogenesis of SPG28.
Collapse
|
67
|
Si‐Hung L, Bamba T. A review of retention mechanism studies for packed column supercritical fluid chromatography. ANALYTICAL SCIENCE ADVANCES 2021; 2:47-67. [PMID: 38715740 PMCID: PMC10989630 DOI: 10.1002/ansa.202000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/13/2024]
Abstract
The packed column supercritical fluid chromatography has risen as a promising alternative separation technique to the conventional liquid chromatography and gas chromatography. Although the packed column supercritical fluid chromatography has many advantages compared to other chromatographic techniques, its separation mechanism is not fully understood due to the complex combination effects of many chromatographic parameters on separation quality and the lacking of global strategies for studying separation mechanisms. This review aims to provide recent information regarding the chromatographic behaviors and the effects of the parameters on the separation, discuss the results, and point out the remaining bottlenecks in the packed column supercritical fluid chromatography retention mechanism studies.
Collapse
Affiliation(s)
- Le Si‐Hung
- Division of Metabolomics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
68
|
The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes. Nat Struct Mol Biol 2021; 28:825-834. [PMID: 34625749 PMCID: PMC8500837 DOI: 10.1038/s41594-021-00665-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/19/2021] [Indexed: 02/04/2023]
Abstract
Xkr8-Basigin is a plasma membrane phospholipid scramblase activated by kinases or caspases. We combined cryo-EM and X-ray crystallography to investigate its structure at an overall resolution of 3.8 Å. Its membrane-spanning region carrying 22 charged amino acids adopts a cuboid-like structure stabilized by salt bridges between hydrophilic residues in transmembrane helices. Phosphatidylcholine binding was observed in a hydrophobic cleft on the surface exposed to the outer leaflet of the plasma membrane. Six charged residues placed from top to bottom inside the molecule were essential for scrambling phospholipids in inward and outward directions, apparently providing a pathway for their translocation. A tryptophan residue was present between the head group of phosphatidylcholine and the extracellular end of the path. Its mutation to alanine made the Xkr8-Basigin complex constitutively active, indicating that it plays a vital role in regulating its scramblase activity. The structure of Xkr8-Basigin provides insights into the molecular mechanisms underlying phospholipid scrambling.
Collapse
|
69
|
Abstract
Over the last few decades, MS-based lipidomics has emerged as a powerful tool to study lipids in biological systems. This success is driven by the constant demand for complete and reliable data. The improvement of MS-based lipidomics will continue to be dependent on the advances in the technology of mass spectrometry and related techniques including separation and bioinformatics, and more importantly, on gaining insight into the knowledge of lipid chemistry essential to develop methodology for lipid analysis. It is hoped that the protocols in this book, collected from experts in their fields, can offer the beginner and the advanced user alike, useful tips toward successful lipidomic analysis.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
70
|
Alves MA, Lamichhane S, Dickens A, McGlinchey A, Ribeiro HC, Sen P, Wei F, Hyötyläinen T, Orešič M. Systems biology approaches to study lipidomes in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158857. [PMID: 33278596 DOI: 10.1016/j.bbalip.2020.158857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022]
Abstract
Lipids have many important biological roles, such as energy storage sources, structural components of plasma membranes and as intermediates in metabolic and signaling pathways. Lipid metabolism is under tight homeostatic control, exhibiting spatial and dynamic complexity at multiple levels. Consequently, lipid-related disturbances play important roles in the pathogenesis of most of the common diseases. Lipidomics, defined as the study of lipidomes in biological systems, has emerged as a rapidly-growing field. Due to the chemical and functional diversity of lipids, the application of a systems biology approach is essential if one is to address lipid functionality at different physiological levels. In parallel with analytical advances to measure lipids in biological matrices, the field of computational lipidomics has been rapidly advancing, enabling modeling of lipidomes in their pathway, spatial and dynamic contexts. This review focuses on recent progress in systems biology approaches to study lipids in health and disease, with specific emphasis on methodological advances and biomedical applications.
Collapse
Affiliation(s)
- Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | | | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Fang Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, PR China
| | | | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
71
|
van de Velde B, Guillarme D, Kohler I. Supercritical fluid chromatography - Mass spectrometry in metabolomics: Past, present, and future perspectives. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122444. [PMID: 33246285 DOI: 10.1016/j.jchromb.2020.122444] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022]
Abstract
Metabolomics, which consists of the comprehensive analysis of metabolites within a biological system, has been playing a growing role in the implementation of personalized medicine in modern healthcare. A wide range of analytical approaches are used in metabolomics, notably mass spectrometry (MS) combined to liquid chromatography (LC), gas chromatography (GC), or capillary electrophoresis (CE). However, none of these methods enable a comprehensive analysis of the metabolome, due to its extreme complexity and the large differences in physico-chemical properties between metabolite classes. In this context, supercritical fluid chromatography (SFC) represents a promising alternative approach to improve the metabolome coverage, while further increasing the analysis throughput. SFC, which uses supercritical CO2 as mobile phase, leads to numerous advantages such as improved kinetic performance and lower environmental impact. This chromatographic technique has gained a significant interest since the introduction of advanced instrumentation, together with the introduction of dedicated interfaces for hyphenating SFC to MS. Moreover, new developments in SFC column chemistry (including sub-2 µm particles), as well as the use of large amounts of organic modifiers and additives in the CO2-based mobile phase, significantly extended the application range of SFC, enabling the simultaneous analysis of a large diversity of metabolites. Over the last years, several applications have been reported in metabolomics using SFC-MS - from lipophilic compounds, such as steroids and other lipids, to highly polar compounds, such as carbohydrates, amino acids, or nucleosides. With all these advantages, SFC-MS is promised to a bright future in the field of metabolomics.
Collapse
Affiliation(s)
- Bas van de Velde
- VU Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Switzerland
| | - Isabelle Kohler
- VU Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
72
|
Xu T, Hu C, Xuan Q, Xu G. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta 2020; 1137:156-169. [PMID: 33153599 PMCID: PMC7525665 DOI: 10.1016/j.aca.2020.09.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Lipids are vital biological molecules and play multiple roles in cellular function of mammalian organisms such as cellular membrane anchoring, signal transduction, material trafficking and energy storage. Driven by the biological significance of lipids, lipidomics has become an emerging science in the field of omics. Lipidome in biological systems consists of hundreds of thousands of individual lipid molecules that possess complex structures, multiple categories, and diverse physicochemical properties assembled by different combinations of polar headgroups and hydrophobic fatty acyl chains. Such structural complexity poses a huge challenge for comprehensive lipidome analysis. Thanks to the great innovations in chromatographic separation techniques and the continuous advances in mass spectrometric detection tools, analytical strategies for lipidomics have been highly diversified so that the depth and breadth of lipidomics have been greatly enhanced. This review will present the current state of mass spectrometry-based analytical strategies including untargeted, targeted and pseudotargeted lipidomics. Recent typical applications of lipidomics in biomarker discovery, pathogenic mechanism and therapeutic strategy are summarized, and the challenges facing to the field of lipidomics are also discussed.
Collapse
Affiliation(s)
- Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
73
|
Gordillo R. Supercritical fluid chromatography hyphenated to mass spectrometry for metabolomics applications. J Sep Sci 2020; 44:448-463. [DOI: 10.1002/jssc.202000805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ruth Gordillo
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
74
|
Fushimi T, Izumi Y, Takahashi M, Hata K, Murano Y, Bamba T. Dynamic Metabolome Analysis Reveals the Metabolic Fate of Medium-Chain Fatty Acids in AML12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11997-12010. [PMID: 33073987 DOI: 10.1021/acs.jafc.0c04723] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several studies in hepatocyte cell lines reported that medium-chain fatty acids (MCFAs) with 6-12 carbons showed different metabolic properties from long-chain fatty acids (LCFAs). However, these studies reported unclear effects of different fatty acid molecules on hepatocyte metabolism. This study is aimed to capture the metabolic kinetics of MCFA assimilation in AML12 cells treated with octanoic acid (FA 8:0), decanoic acid (FA 10:0), or lauric acid (FA12:0) [LCFA; oleic acid (FA 18:1)] via metabolic profiling and dynamic metabolome analysis with 13C-labeling. The concentrations of total ketone bodies in the media of cells treated with FA 8:0 or FA 10:0 were 3.22- or 3.69-fold higher than those obtained with FA 18:1 treatment, respectively. FA 12:0 treatment did not significantly increase ketone body levels compared to DMSO treatment (control), whereas FA 12:0 treatment increased intracellular triacylglycerol (TG) levels 15.4 times compared to the control. Metabolic profiles of FA 12:0-treated samples differed from those of the FA 8:0-treated and FA 10:0-treated samples, suggesting that metabolic assimilation of MCFAs differed significantly depending on the MCFA type. Furthermore, the dynamic metabolome analysis clearly revealed that FA 8:0 was rapidly and quantitatively oxidized to acetyl-CoA and assimilated into ketone bodies, citrate cycle intermediates, and glucogenic amino acids but not readily into TGs.
Collapse
Affiliation(s)
- Tatsuya Fushimi
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., 1 Shinmori-cho, Isogo-ku, Yokohama 235-8558, Japan
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Murano
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., 1 Shinmori-cho, Isogo-ku, Yokohama 235-8558, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
75
|
Masuda K, Abe K, Murano Y. A Practical Method for Analysis of Triacylglycerol Isomers Using Supercritical Fluid Chromatography. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Koji Masuda
- Central Research Laboratory The Nisshin OilliO Group, Ltd 1 Shinmori‐cho, Isogo‐ku Yokohama Kanagawa 235‐8558 Japan
| | - Kosuke Abe
- Nisshin Global Research Center SDN. BHD c/o Intercontinental Specialty Fats Sdn Bhd 2nd Floor, Lot.1, Lebuh Sultan Hishamudin 2, Kawasan 20, Bandar Sultan Suleiman, 42009 Port Klang Selangor Darul Ehsan Malaysia
| | - Yoshihiro Murano
- Central Research Laboratory The Nisshin OilliO Group, Ltd 1 Shinmori‐cho, Isogo‐ku Yokohama Kanagawa 235‐8558 Japan
| |
Collapse
|
76
|
Broughton R, Tocher DR, Betancor MB. Development of a C18 Supercritical Fluid Chromatography-Tandem Mass Spectrometry Methodology for the Analysis of Very-Long-Chain Polyunsaturated Fatty Acid Lipid Matrices and Its Application to Fish Oil Substitutes Derived from Genetically Modified Oilseeds in the Aquaculture Sector. ACS OMEGA 2020; 5:22289-22298. [PMID: 32923786 PMCID: PMC7482240 DOI: 10.1021/acsomega.0c02631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/31/2020] [Indexed: 05/05/2023]
Abstract
Lipidomics methodologies traditionally utilize either reverse phase- or hydrophilic interaction liquid chromatography-type separations; however, supercritical fluid chromatography can offer a rapid normal phase type separation while reducing the dependence on organic solvents. However, normal phase type lipid separations typically lack pronounced intraclass separation, which is problematic for complex lipidomes containing very-long-chain polyunsaturated fatty acids, especially those from genetically modified organisms. A high-strength silica C18 method was developed, which benefitted from discrete class separation, as well as displaying intraclass selectivity sufficient for profiling flesh of salmon fed with a diet supplemented with oil from the genetically engineered oilseed Camelina sativa, a terrestrial oilseed with a fish oil-type profile. Salmon fed a diet containing this Camelina oil were found to have flesh enriched in triacylglycerols and phospholipids containing 18:3, 20:5, and 22:6, whereas salmon fed the control diet were differentiated by shorter chain plant-type fatty acids integrated within complex lipids. Coupled with active scanning quadrupole technology, data acquisition was enhanced, allowing for fragmentation data to be acquired in a data independent fashion, permitting acyl chain identification of resolved isomers. Therefore, we have developed a method, which is amenable for lipidomics studies of complex lipidomes, specifically those altered by synthetic biology approaches.
Collapse
|
77
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
78
|
Raetz M, Bonner R, Hopfgartner G. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Metabolomics 2020; 16:71. [PMID: 32504120 DOI: 10.1007/s11306-020-01692-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION While liquid chromatography coupled to mass spectrometric detection in the selected reaction monitoring detection mode offers the best quantification sensitivity for omics, the number of target analytes is limited, must be predefined and specific methods developed. Data independent acquisition (DIA), including SWATH using quadrupole time of flight or orbitrap mass spectrometers and generic acquisition methods, has emerged as a powerful alternative technique for quantitative and qualitative analyses since it can cover a wide range of analytes without predefinition. OBJECTIVES Here we review the current state of DIA, SWATH-MS and highlight novel acquisition strategies for metabolomics and lipidomics and opportunities for data analysis tools. METHOD Different databases were searched for papers that report developments and applications of DIA and in particular SWATH-MS in metabolomics and lipidomics. RESULTS DIA methods generate digital sample records that can be mined retrospectively as further knowledge is gained and, with standardized acquisition schemes, used in multiple studies. The different chemical spaces of metabolites and lipids require different specificities, hence different acquisition and data processing approaches must be considered for their analysis. CONCLUSIONS Although the hardware and acquisition modes are well defined for SWATH-MS, a major challenge for routine use remains the lack of appropriate software tools capable of handling large datasets and large numbers of analytes.
Collapse
Affiliation(s)
- Michel Raetz
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland
| | - Ron Bonner
- Ron Bonner Consulting, Newmarket, ON, L3Y 3C7, Canada
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland.
| |
Collapse
|
79
|
Abstract
Metabolomics is the comprehensive study of small-molecule metabolites. Obtaining a wide coverage of the metabolome is challenging because of the broad range of physicochemical properties of the small molecules. To study the compounds of interest spectroscopic (NMR), spectrometric (MS) and separation techniques (LC, GC, supercritical fluid chromatography, CE) are used. The choice for a given technique is influenced by the sample matrix, the concentration and properties of the metabolites, and the amount of sample. This review discusses the most commonly used analytical techniques for metabolomic studies, including their advantages, drawbacks and some applications.
Collapse
|
80
|
2SBP: overview of the trans-omics session-measure × analyze metabolic adaptation of biological systems-at the 2019 BSJ Meeting in Miyazaki. Biophys Rev 2020; 12:299-300. [PMID: 32124241 DOI: 10.1007/s12551-020-00660-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Elucidation of the molecular mechanism underlying the metabolic adaptation is critical to understand homeostasis of life. This review provides the concept, experimental and computational methods, to deal with this issue using "trans-omics" approaches.
Collapse
|
81
|
Lipidomic Analysis of Cells and Extracellular Vesicles from High- and Low-Metastatic Triple-Negative Breast Cancer. Metabolites 2020; 10:metabo10020067. [PMID: 32069969 PMCID: PMC7073695 DOI: 10.3390/metabo10020067] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted from almost all cells including cancer. Cancer-derived EVs contribute to cancer progression and malignancy via educating the surrounding normal cells. In breast cancer, epidemiological and experimental observations indicated that lipids are associated with cancer malignancy. However, lipid compositions of breast cancer EVs and their contributions to cancer progression are unexplored. In this study, we performed a widely targeted quantitative lipidomic analysis in cells and EVs derived from high- and low-metastatic triple-negative breast cancer cell lines, using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry. We demonstrated the differential lipid compositions between EVs and cells of their origin, and between high- and low-metastatic cell lines. Further, we demonstrated EVs from highly metastatic breast cancer accumulated unsaturated diacylglycerols (DGs) compared with EVs from lower-metastatic cells, without increasing the amount in cells. The EVs enriched with DGs could activate the protein kinase D signaling pathway in endothelial cells, which can lead to stimulated angiogenesis. Our results indicate that lipids are selectively loaded into breast cancer EVs to support tumor progression.
Collapse
|
82
|
Takeda H, Izumi Y, Tamura S, Koike T, Koike Y, Shiomi M, Bamba T. Lipid Profiling of Serum and Lipoprotein Fractions in Response to Pitavastatin Using an Animal Model of Familial Hypercholesterolemia. J Proteome Res 2020; 19:1100-1108. [PMID: 31965805 DOI: 10.1021/acs.jproteome.9b00602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Statins are widely used for the treatment of atherosclerotic cardiovascular diseases. They inhibit cholesterol biosynthesis in the liver and cause pleiotropic effects, including anti-inflammatory and antioxidant effects. To develop novel therapeutic drugs, the effect of blood-borne lipid molecules on the pleiotropic effects of statins must be elucidated. Myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits, an animal model for hypercholesterolemia, are suitable for the determination of lipid molecules in the blood in response to statins because their lipoprotein metabolism is similar to that of humans. Herein, lipid molecules were investigated by lipidome analysis in response to pitavastatin using WHHLMI rabbits. Various lipid molecules in the blood were measured using a supercritical fluid chromatography triple quadrupole mass spectrometry. Cholesterol and cholesterol ester blood concentrations decreased by reducing the secretion of very low density lipoproteins from the liver. Independent of the inhibition effects of cholesterol biosynthesis, the concentrations of some lipids with anti-inflammation and antioxidant effects (phospholipid molecules with n-6 fatty acid side chains, lysophosphatidylcholines, phosphatidylethanolamine plasmalogens, and ceramide molecules) were significantly altered. These findings may lead to further investigation of the mechanism of statin action.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Tamura
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tomonari Koike
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yui Koike
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.,Division of Comparative Pathophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
83
|
Teclemariam ET, Pergande MR, Cologna SM. Considerations for mass spectrometry-based multi-omic analysis of clinical samples. Expert Rev Proteomics 2020; 17:99-107. [PMID: 31996049 DOI: 10.1080/14789450.2020.1724540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The role of mass spectrometry in biomolecule analysis has become paramount over the last several decades ranging in the analysis across model systems and human specimens. Accordingly, the presence of mass spectrometers in clinical laboratories has also expanded alongside the number of researchers investigating the protein, lipid, and metabolite composition of an array of biospecimens. With this increase in the number of omic investigations, it is important to consider the entire experimental strategy from sample collection and storage, data collection and analysis.Areas covered: In this short review, we outline considerations for working with clinical (e.g. human) specimens including blood, urine, and cerebrospinal fluid, with emphasis on sample handling, profiling composition, targeted measurements and relevance to disease. Discussions of integrated genomic or transcriptomic datasets are not included. A brief commentary is also provided regarding new technologies with clinical relevance.Expert opinion: The role of mass spectrometry to investigate clinically related specimens is on the rise and the ability to integrate multiple omics datasets from mass spectrometry measurements will be crucial to further understanding human health and disease.
Collapse
Affiliation(s)
- Esei T Teclemariam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.,Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
84
|
Matsuda J, Takahashi A, Takabatake Y, Sakai S, Minami S, Yamamoto T, Fujimura R, Namba-Hamano T, Yonishi H, Nakamura J, Kimura T, Kaimori JY, Matsui I, Takahashi M, Nakao M, Izumi Y, Bamba T, Matsusaka T, Niimura F, Yanagita M, Yoshimori T, Isaka Y. Metabolic effects of RUBCN/Rubicon deficiency in kidney proximal tubular epithelial cells. Autophagy 2020; 16:1889-1904. [PMID: 31944172 DOI: 10.1080/15548627.2020.1712107] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy/autophagy is a lysosomal degradation system which plays a protective role against kidney injury. RUBCN/Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein) inhibits the fusion of autophagosomes and lysosomes. However, its physiological role in kidney proximal tubular epithelial cells (PTECs) remains uncertain. In the current study, we analyzed the phenotype of newly generated PTEC-specific rubcn-deficient (KO) mice. Additionally, we investigated the role of RUBCN in lipid metabolism using isolated rubcn-deficient PTECs. Although KO mice exhibited sustained high autophagic flux in PTECs, they were not protected from acute ischemic kidney injury. Unexpectedly, KO mice exhibited hallmark features of metabolic syndrome accompanied by expanded lysosomes containing multi-layered phospholipids in PTECs. RUBCN deficiency in cultured PTECs promoted the mobilization of phospholipids from cellular membranes to lysosomes via enhanced autophagy. Treatment of KO PTECs with oleic acid accelerated fatty acids transfer to mitochondria. Furthermore, KO PTECs promoted massive triglyceride accumulation in hepatocytes (BNL-CL2 cells) co-cultured in transwell, suggesting accelerated fatty acids efflux from the PTECs contributes to the metabolic syndrome in KO mice. This study shows that sustained high autophagic flux by RUBCN deficiency in PTECs leads to metabolic syndrome concomitantly with an accelerated mobilization of phospholipids from cellular membranes to lysosomes. Abbreviations: ABC: ATP binding cassette; ACADM: acyl-CoA dehydrogenase medium chain; ACTB: actin, beta; ATG: autophagy related; AUC: area under the curve; Baf: bafilomycin A1; BAT: brown adipose tissue; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; BW: body weight; CAT: chloramphenicol acetyltransferase; CM: complete medium; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; CTRL: control; EGFP: enhanced green fluorescent protein; CTSD: cathepsin D; EAT: epididymal adipose tissue; EGFR: epidermal growth factor receptor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FA: fatty acid; FBS: fetal bovine serum; GTT: glucose tolerance test; HE: hematoxylin and eosin; HFD: high-fat diet; I/R: ischemia-reperfusion; ITT: insulin tolerance test; KAP: kidney androgen regulated protein; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor related protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MAT: mesenteric adipose tissue; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NDRG1: N-myc downstream regulated 1; NDUFB5: NADH:ubiquinone oxidoreductase subunit B5; NEFA: non-esterified fatty acid; OA: oleic acid; OCT: optimal cutting temperature; ORO: Oil Red O; PAS: Periodic-acid Schiff; PFA: paraformaldehyde; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PPARA: peroxisome proliferator activated receptor alpha; PPARGC1A: PPARG coactivator 1 alpha; PTEC: proximal tubular epithelial cell; RAB7A: RAB7A, member RAS oncogene family; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RT: reverse transcription; RUBCN: rubicon autophagy regulator; SAT: subcutaneous adipose tissue; SFC: supercritical fluid chromatography; SQSTM1: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1; SV-40: simian virus-40; TFEB: transcription factor EB; TG: triglyceride; TS: tissue specific; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; UN: urea nitrogen; UQCRB: ubiquinol-cytochrome c reductase binding protein; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Ryuta Fujimura
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Tomonori Kimura
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan.,Reverse Translational Project, Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN) , Osaka, Japan
| | - Jun-Ya Kaimori
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Motonao Nakao
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Taiji Matsusaka
- Institute of Medical Science and Department of Basic Sciences, Tokai University School of Medicine , Isehara, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine , Isehara, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine , Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University , Kyoto, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| |
Collapse
|
85
|
Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem 2019; 412:2191-2209. [PMID: 31820027 PMCID: PMC7118050 DOI: 10.1007/s00216-019-02241-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
Lipids are amongst the most important organic compounds in living organisms, where they serve as building blocks for cellular membranes as well as energy storage and signaling molecules. Lipidomics is the science of the large-scale determination of individual lipid species, and the underlying analytical technology that is used to identify and quantify the lipidome is generally mass spectrometry (MS). This review article provides an overview of the crucial steps in MS-based lipidomics workflows, including sample preparation, either liquid–liquid or solid-phase extraction, derivatization, chromatography, ion-mobility spectrometry, MS, and data processing by various software packages. The associated concepts are discussed from a technical perspective as well as in terms of their application. Furthermore, this article sheds light on recent advances in the technology used in this field and its current limitations. Particular emphasis is placed on data quality assurance and adequate data reporting; some of the most common pitfalls in lipidomics are discussed, along with how to circumvent them.
Collapse
|
86
|
Izumi Y, Matsuda F, Hirayama A, Ikeda K, Kita Y, Horie K, Saigusa D, Saito K, Sawada Y, Nakanishi H, Okahashi N, Takahashi M, Nakao M, Hata K, Hoshi Y, Morihara M, Tanabe K, Bamba T, Oda Y. Inter-Laboratory Comparison of Metabolite Measurements for Metabolomics Data Integration. Metabolites 2019; 9:E257. [PMID: 31683650 PMCID: PMC6918145 DOI: 10.3390/metabo9110257] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND One of the current problems in the field of metabolomics is the difficulty in integrating data collected using different equipment at different facilities, because many metabolomic methods have been developed independently and are unique to each laboratory. METHODS In this study, we examined whether different analytical methods among 12 different laboratories provided comparable relative quantification data for certain metabolites. Identical samples extracted from two cell lines (HT-29 and AsPc-1) were distributed to each facility, and hydrophilic and hydrophobic metabolite analyses were performed using the daily routine protocols of each laboratory. RESULTS The results indicate that there was no difference in the relative quantitative data (HT-29/AsPc-1) for about half of the measured metabolites among the laboratories and assay methods. Data review also revealed that errors in relative quantification were derived from issues such as erroneous peak identification, insufficient peak separation, a difference in detection sensitivity, derivatization reactions, and extraction solvent interference. CONCLUSION The results indicated that relative quantification data obtained at different facilities and at different times would be integrated and compared by using a reference materials shared for data normalization.
Collapse
Affiliation(s)
- Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kanta Horie
- Translational Science, Neurology Business Group, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, 1-1-1 Hondo, Akita-city, Akita 010-8543, Japan.
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Motonao Nakao
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kosuke Hata
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yutaro Hoshi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., 17-2 Wadai, Tsukuba, Ibaraki 300-4247, Japan.
| | - Motohiko Morihara
- Translational Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, 3-30-1, Shimura, Itabashi-ku, Tokyo 174-8555, Japan.
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
87
|
Chollet C, Boutet-Mercey S, Laboureur L, Rincon C, Méjean M, Jouhet J, Fenaille F, Colsch B, Touboul D. Supercritical fluid chromatography coupled to mass spectrometry for lipidomics. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:791-801. [PMID: 31652381 DOI: 10.1002/jms.4445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Supercritical fluid chromatography (SFC) has experienced a particular revival in recent years thanks to the development of robust and efficient commercial systems. Because of its physico-chemical properties, supercritical carbon dioxide (CO2 ) mixed with cosolvents and additives is particularly suitable for SFC to allow the elution of compounds of different polarities and more particularly complex lipids. Hyphenation with mass spectrometry (MS) is increasingly described in the literature but still requires many further developments in order to be as user-friendly as coupling with liquid chromatography. The basic concepts of SFC and MS hyphenation will be first considered. Then a representative example of method development in lipidomics will be introduced. In conclusion, the challenges and future needs in this field of research will be discussed.
Collapse
Affiliation(s)
- Céline Chollet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris-Saclay. MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Stéphanie Boutet-Mercey
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Laurent Laboureur
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Carlos Rincon
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Marie Méjean
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Juliette Jouhet
- Univ. Grenoble Alpes, CNRS, INRA, CEA, IRIG-LPCV, 38000, Grenoble, France
| | - François Fenaille
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris-Saclay. MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Benoit Colsch
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris-Saclay. MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| |
Collapse
|
88
|
Takeda H, Takahashi M, Hara T, Izumi Y, Bamba T. Improved quantitation of lipid classes using supercritical fluid chromatography with a charged aerosol detector. J Lipid Res 2019; 60:1465-1474. [PMID: 31201290 DOI: 10.1194/jlr.d094516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Quantitatively and rapidly analyzing lipids is necessary to elucidate their biological functions. Herein, we developed a quantitative method for various lipid classes using supercritical fluid chromatography (SFC) coupled with a charged aerosol detector (CAD), providing high-throughput data analysis to detect a large number of molecules in each lipid class as one peak. Applying the CAD was useful for analyzing lipid molecules in the same lipid class with a constant response under the same mobile phase composition. First, we optimized the washing method for the diethylamine column, achieving baseline separation of lipid classes while maintaining good peak shapes. In addition, the CAD conditions (organic solvent evaporation and numerical correction of the CAD data) were optimized to improve the signal-to-noise ratio. We used an internal standard (ceramide phosphoethanolamine d17:1-12:0), which did not coelute with the lipid classes and showed high extraction efficiency. Based on a quantitative analysis of HepG2 cells, the concentration of lipid classes detected by CAD was adequate compared with that obtained by triple-quadrupole MS (QqQMS) in a previous study because the deviations of the concentrations were 0.6- to 2.3-fold. These results also supported the quantitative performance of SFC-QqQMS developed in our previous report.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Hara
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
89
|
Hybrid SWATH/MS and HR-SRM/MS acquisition for phospholipidomics using QUAL/QUANT data processing. Anal Bioanal Chem 2019; 411:5681-5690. [PMID: 31201456 DOI: 10.1007/s00216-019-01946-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
A hybrid SWATH/MS and HR-SRM/MS acquisition approach using multiple unit mass windows and 100 u precursor selection windows has been developed to interface with a chromatographic lipid class separation. The method allows for the simultaneous monitoring of sum compositions in MS1 and up to 48 lipids in MS2 per lipid class. A total of 240 lipid sum compositions from five phospholipid classes could be monitored in MS2 (HR-SRM/MS) while there was no limitation in the number of analytes in MS1 (HR-SIM/MS). On average, 92 lipid sum compositions and 75 lipid species could be quantified in human plasma samples. The robustness and precision of the workflow has been assessed using technical triplicates of the subject samples. Lipid identification was improved using a combined qualitative and quantitative data processing based on prediction instead of library search. Lipid class specific extracted ion currents of precursors and the corresponding molecular species fragments were extracted based on the information obtained from lipid building blocks and a combinatorial strategy. The SWATH/MS approach with the post-acquisition processing is not limited to the analyzed phospholipid classes and can be applied to other analytes and samples of interest. Graphical abstract.
Collapse
|
90
|
Yoshioka T, Izumi Y, Nagatomi Y, Miyamoto Y, Suzuki K, Bamba T. A highly sensitive determination method for acrylamide in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry. Food Chem 2019; 294:486-492. [PMID: 31126491 DOI: 10.1016/j.foodchem.2019.05.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Acrylamide (AA) analysis is an important topic in food safety. However, it is difficult to rapidly and accurately analyze low concentrations of AA with currently available methods. In the present study, we introduce a highly sensitive method that enables the determination of AA in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry (SFC/MS/MS). The sensitivity of the SFC/MS/MS technique is 11-times higher than that obtained by ultra-high performance liquid chromatography tandem mass spectrometry. We demonstrated that the highly sensitive SFC/MS/MS method was able to quantify low concentrations of AA in beverages (i.e., roasted barley tea and coffee) extracts at less than 10 µg kg-1 level without solid-phase purification. Furthermore, the simplification of the sample preparation procedure provided an improvement in data acquisition time (60 samples per 12 h). In conclusion, the developed analytical system is a potentially useful tool for practical AA determination.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan; Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasushi Nagatomi
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Yasuhisa Miyamoto
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Koji Suzuki
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
91
|
Identification of novel serum markers for the progression of coronary atherosclerosis in WHHLMI rabbits, an animal model of familial hypercholesterolemia. Atherosclerosis 2019; 284:18-23. [PMID: 30870703 DOI: 10.1016/j.atherosclerosis.2019.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The development of serum markers specific for coronary lesions is important to prevent coronary events. However, analyses of serum markers in humans are affected by environmental factors and non-target diseases. Using an appropriate model animal can reduce these effects. To identify specific markers for coronary atherosclerosis, we comprehensively analyzed the serum of WHHLMI rabbits, which spontaneously develop coronary atherosclerosis. METHODS Female WHHLMI rabbits were fed standard chow. Serum and plasma were collected under fasting at intervals of 4 months from 4 months old, and a total of 313 lipid molecules, 59 metabolites, lipoprotein lipid levels, and various plasma biochemical parameters were analyzed. The severity of coronary lesions was evaluated with cross-sectional narrowing (CSN) corrected with a frequency of 75%-89% CSN and CSN> 90%. RESULTS There was a large variation in the severity of coronary lesions in WHHLMI rabbits despite almost no differences in plasma biochemical parameters and aortic lesion area between rabbits with severe and mild coronary lesions. The metabolites and lipid molecules selected as serum markers for coronary atherosclerosis were lysophosphatidylcholine (LPC) 22:4 and diacylglycerol 18:0-18:0 at 4 months old, LPC 20:4 (sn-2), ceramide d18:1-18:2, citric acid plus isocitric acid, and pyroglutamic acid at 8 months old, and phosphatidylethanolamine plasminogen 16:1p-22:2 at 16 months old. CONCLUSIONS These serum markers were coronary lesion-specific markers independent of cholesterol levels and aortic lesions and may be useful to detect patients who develop cardiovascular disease.
Collapse
|
92
|
Yang Y, Liang Y, Yang J, Ye F, Zhou T, Gongke L. Advances of supercritical fluid chromatography in lipid profiling. J Pharm Anal 2019; 9:1-8. [PMID: 30740251 PMCID: PMC6355828 DOI: 10.1016/j.jpha.2018.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
Supercritical fluid chromatography (SFC) meets with great favor due to its high efficiency, low organic solvent consumption, and the specialty for the identification of the isomeric species. This review describes the advances of SFC in targeted and untargeted lipid profiling. The advancement of the SFC instruments and the stationary phases are summarized. Typical applications of SFC to the targeted and untargeted lipid profiling are discussed in detail. Moreover, the perspectives of SFC in the lipid profiling are also proposed. As a useful and promising tool for investigating lipids in vitro and in vivo, SFC will predictably obtain further development.
Collapse
Affiliation(s)
- Yang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanshan Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jina Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fengying Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Li Gongke
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
93
|
Takahashi H, Shimabukuro Y, Asakawa D, Korenaga A, Yamada M, Iwamoto S, Wada M, Tanaka K. Identifying Double Bond Positions in Phospholipids Using Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry Based on Oxygen Attachment Dissociation. ACTA ACUST UNITED AC 2019; 8:S0080. [PMID: 33299730 PMCID: PMC7709886 DOI: 10.5702/massspectrometry.s0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022]
Abstract
Lipids, a class of biomolecules, play a significant role in the physiological
system. In this study, gas-phase hydroxyl radicals (OH·) and atomic oxygens (O)
were introduced into the collision cell of a triple quadruple mass spectrometer
(TQ-MS) to determine the positions of the double bond in unsaturated
phospholipids. A microwave-driven compact plasma generator was used as the OH·/O
source. The reaction between OH·/O and the precursor ions passing through the
collision cell generates product ions that correspond to the double bond
positions in the fatty acyl chain. This double bond position specific
fragmentation process initiated by the attachment of OH·/O to the double bond of
a fatty acyl chain is a characteristic of oxygen attachment dissociation (OAD).
A TQ-MS incorporating OAD, in combination with liquid chromatography, permitted
a high throughput analysis of the double bond positions in complex biomolecules.
It is important to know the precise position of double bonds in lipids, since
these molecules can have widely different functionalities based on the position
of the double bonds. The assignment of double bond positions in a mixture of
eight standard samples of phosphatidylcholines (phospholipids with choline head
groups) with multiple saturated fatty acyl chains attached was successfully
demonstrated.
Collapse
Affiliation(s)
- Hidenori Takahashi
- Shimadzu Corporation, 1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Yuji Shimabukuro
- Graduate School of Science and Engineering, Doshisha University, 1-3 Kyotanabe, Kyoto 610-0321, Japan
| | - Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Akihito Korenaga
- Shimadzu Corporation, 1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Masaki Yamada
- Shimadzu Corporation, 1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Shimadzu Corporation, 1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Motoi Wada
- Graduate School of Science and Engineering, Doshisha University, 1-3 Kyotanabe, Kyoto 610-0321, Japan
| | - Koichi Tanaka
- Shimadzu Corporation, 1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
94
|
Lamont L, Eijkel GB, Jones EA, Flinders B, Ellis SR, Porta Siegel T, Heeren RMA, Vreeken RJ. Targeted Drug and Metabolite Imaging: Desorption Electrospray Ionization Combined with Triple Quadrupole Mass Spectrometry. Anal Chem 2018. [PMID: 30346139 DOI: 10.1021/acs.analchem.8b03857(2018)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Mass spectrometry imaging (MSI) has proven to be a valuable tool for drug and metabolite imaging in pharmaceutical toxicology studies and can reveal, for example, accumulation of drug candidates in early drug development. However, the lack of sample cleanup and chromatographic separation can hamper the analysis due to isobaric interferences. Multiple reaction monitoring (MRM) uses unique precursor ion-product ion transitions to add specificity which leads to higher selectivity. Here, we present a targeted imaging platform where desorption electrospray ionization is combined with a triple quadrupole (QqQ) system to perform MRM imaging. The platform was applied to visualize (i) lipids in mouse brain tissue sections and (ii) a drug candidate and metabolite in canine liver tissue. All QqQ modes were investigated to show the increased detection time provided by MRM as well as the possibility to perform dual polarity imaging. This is very beneficial for lipid imaging because some phospholipid classes ionize in opposite polarity (e.g., phosphatidylcholine/sphingomyelin in positive ion mode and phosphatidylserine/phosphatidylethanolamine in negative ion mode). Drug and metabolite images were obtained to show its strength in drug distribution studies. Multiple MRM transitions were used to confirm the local presence and selective detection of pharmaceutical compounds.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Gert B Eijkel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | | | - Bryn Flinders
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Shane R Ellis
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Tiffany Porta Siegel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Rob J Vreeken
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
- Janssen Research & Development , B-2340 Beerse , Belgium
| |
Collapse
|
95
|
Lamont L, Eijkel GB, Jones EA, Flinders B, Ellis SR, Porta Siegel T, Heeren RMA, Vreeken RJ. Targeted Drug and Metabolite Imaging: Desorption Electrospray Ionization Combined with Triple Quadrupole Mass Spectrometry. Anal Chem 2018; 90:13229-13235. [PMID: 30346139 PMCID: PMC6256344 DOI: 10.1021/acs.analchem.8b03857] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Mass
spectrometry imaging (MSI) has proven to be a valuable tool
for drug and metabolite imaging in pharmaceutical toxicology studies
and can reveal, for example, accumulation of drug candidates in early
drug development. However, the lack of sample cleanup and chromatographic
separation can hamper the analysis due to isobaric interferences.
Multiple reaction monitoring (MRM) uses unique precursor ion-product
ion transitions to add specificity which leads to higher selectivity.
Here, we present a targeted imaging platform where desorption electrospray
ionization is combined with a triple quadrupole (QqQ) system to perform
MRM imaging. The platform was applied to visualize (i) lipids in mouse
brain tissue sections and (ii) a drug candidate and metabolite in
canine liver tissue. All QqQ modes were investigated to show the increased
detection time provided by MRM as well as the possibility to perform
dual polarity imaging. This is very beneficial for lipid imaging because
some phospholipid classes ionize in opposite polarity (e.g., phosphatidylcholine/sphingomyelin
in positive ion mode and phosphatidylserine/phosphatidylethanolamine
in negative ion mode). Drug and metabolite images were obtained to
show its strength in drug distribution studies. Multiple MRM transitions
were used to confirm the local presence and selective detection of
pharmaceutical compounds.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Gert B Eijkel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | | | - Bryn Flinders
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Shane R Ellis
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Tiffany Porta Siegel
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands
| | - Rob J Vreeken
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry , Maastricht University , 6229 ER Maastricht , The Netherlands.,Janssen Research & Development , B-2340 Beerse , Belgium
| |
Collapse
|
96
|
Yamada M. Lipid Isomer Analysis on the Development of SRM Based Method for Diacylphospholipids Profiling. ACTA ACUST UNITED AC 2018. [DOI: 10.5702/massspec.18-96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masaki Yamada
- Global Application Development Center, Analytical & Measuring Instruments Division, Shimadzu Corporation
| |
Collapse
|
97
|
Giles C, Takechi R, Lam V, Dhaliwal SS, Mamo JCL. Contemporary lipidomic analytics: opportunities and pitfalls. Prog Lipid Res 2018; 71:86-100. [PMID: 29959947 DOI: 10.1016/j.plipres.2018.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/18/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
Recent advances in analytical techniques have greatly enhanced the depth of coverage, however lipidomic studies are still restricted to analysing only a subset of known lipids. Numerous complementary techniques are used for investigation of cellular lipidomes, including mass spectrometry (MS), nuclear magnetic resonance and vibrational spectroscopy. The development in electrospray ionization (ESI) MS has accelerated lipidomics research in the past two decades and represents one of the most widely used technique. The versatility of ESI-MS systems allows development of methods to detect and quantify a large diversity of lipid species and classes. However, highly targeted and specific approaches can preclude global analysis of many lipid classes. Indeed, experimental procedures are generally optimised for the lipid species, or lipid class of interest. Therefore, careful consideration of experimental procedures is required for characterisation of biological lipidomes. The current review will describe the lipidomic approaches for considering tissue lipid physiology. Discussion of the main sequences in a lipidomics workflow will be presented, including preparation of samples, accurate quantitation of lipid species and statistical modelling.
Collapse
Affiliation(s)
- Corey Giles
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - Satvinder S Dhaliwal
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia.
| |
Collapse
|