51
|
He PP, Ouyang XP, Tang YY, Liao L, Wang ZB, Lv YC, Tian GP, Zhao GJ, Huang L, Yao F, Xie W, Tang YL, Chen WJ, Zhang M, Li Y, Wu JF, Peng J, Liu XY, Zheng XL, Yin WD, Tang CK. MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie 2014; 106:81-90. [PMID: 25149060 DOI: 10.1016/j.biochi.2014.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Accumulating evidence suggests that microRNA-590 (miR-590) has protective effects on cardiovascular diseases, but the mechanism is unknown. Interestingly, previous studies from our laboratory and others have shown that macrophage-derived lipoprotein lipase (LPL) might accelerate atherosclerosis by promoting lipid accumulation and inflammatory response. However, the regulation of LPL at the post-transcriptional level by microRNAs has not been fully understood. In this study, we explored whether miR-590 affects the expression of LPL and its potential subsequent effects on lipid accumulation and pro-inflammatory cytokine secretion in human THP-1 macrophages. METHODS AND RESULTS Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-590 directly inhibited LPL protein and mRNA expression by targeting LPL 3'UTR. LPL Activity Assays showed that miR-590 reduced LPL activity in the culture media. Oil Red O staining and high-performance liquid chromatography assays showed that miR-590 had inhibitory effects on the lipid accumulation in human THP-1 macrophages. We also illustrated that miR-590 alleviated pro-inflammatory cytokine secretion in human THP-1 macrophages as measured by ELISA. With the method of small interfering RNA, we found that LPL siRNA can inhibit the miR-590 inhibitor-induced increase in lipid accumulation and secretion of pro-inflammatory cytokines in oxLDL-treated human THP-1 macrophages. CONCLUSIONS MiR-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting LPL gene in human THP-1 macrophages. Therefore, targeting miR-590 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Li Liao
- School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Zong-Bao Wang
- Pharmacy and Biological Science College, University of South China, Hengyang, Hunan 421001, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Guo-Ping Tian
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Liang Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Yu Lin Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Wu-Jun Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Jian-Feng Wu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Juan Peng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xiang-Yu Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Pharmacy and Biological Science College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
52
|
Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 2014; 237:597-608. [PMID: 25463094 DOI: 10.1016/j.atherosclerosis.2014.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism and responsible for catalyzing lipolysis of triglycerides in lipoproteins. LPL is produced mainly in adipose tissue, skeletal and heart muscle, as well as in macrophage and other tissues. After synthesized, it is secreted and translocated to the vascular lumen. LPL expression and activity are regulated by a variety of factors, such as transcription factors, interactive proteins and nutritional state through complicated mechanisms. LPL with different distributions may exert distinct functions and have diverse roles in human health and disease with close association with atherosclerosis. It may pose a pro-atherogenic or an anti-atherogenic effect depending on its locations. In this review, we will discuss its gene, protein, synthesis, transportation and biological functions, and then focus on its regulation and relationship with atherosclerosis and potential underlying mechanisms. The goal of this review is to provide basic information and novel insight for further studies and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Fracisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
53
|
Aouadi M, Vangala P, Yawe JC, Tencerova M, Nicoloro SM, Cohen JL, Shen Y, Czech MP. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am J Physiol Endocrinol Metab 2014; 307:E374-83. [PMID: 24986598 PMCID: PMC4137117 DOI: 10.1152/ajpendo.00187.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.
Collapse
Affiliation(s)
- Myriam Aouadi
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pranitha Vangala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Joseph C Yawe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Michaela Tencerova
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jessica L Cohen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yuefei Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
54
|
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:919-33. [PMID: 24721265 DOI: 10.1016/j.bbalip.2014.03.013] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/01/2023]
Abstract
The enzyme lipoprotein lipase (LPL), originally identified as the clearing factor lipase, hydrolyzes triglycerides present in the triglyceride-rich lipoproteins VLDL and chylomicrons. LPL is primarily expressed in tissues that oxidize or store fatty acids in large quantities such as the heart, skeletal muscle, brown adipose tissue and white adipose tissue. Upon production by the underlying parenchymal cells, LPL is transported and attached to the capillary endothelium by the protein GPIHBP1. Because LPL is rate limiting for plasma triglyceride clearance and tissue uptake of fatty acids, the activity of LPL is carefully controlled to adjust fatty acid uptake to the requirements of the underlying tissue via multiple mechanisms at the transcriptional and post-translational level. Although various stimuli influence LPL gene transcription, it is now evident that most of the physiological variation in LPL activity, such as during fasting and exercise, appears to be driven via post-translational mechanisms by extracellular proteins. These proteins can be divided into two main groups: the liver-derived apolipoproteins APOC1, APOC2, APOC3, APOA5, and APOE, and the angiopoietin-like proteins ANGPTL3, ANGPTL4 and ANGPTL8, which have a broader expression profile. This review will summarize the available literature on the regulation of LPL activity in various tissues, with an emphasis on the response to diverse physiological stimuli.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| |
Collapse
|
55
|
Bouvy-Liivrand M, Heinäniemi M, John E, Schneider JG, Sauter T, Sinkkonen L. Combinatorial regulation of lipoprotein lipase by microRNAs during mouse adipogenesis. RNA Biol 2014; 11:76-91. [PMID: 24457907 PMCID: PMC3929427 DOI: 10.4161/rna.27655] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-forward motifs where a miRNA and a transcription factor act on shared targets to achieve accurate regulation of processes such as cell differentiation. Here we show that the expression levels of miR-27a and miR-29a inversely correlate with the mRNA levels of lipoprotein lipase (Lpl), their predicted combinatorial target, and its key transcriptional regulator peroxisome proliferator-activated receptor gamma (Pparg) during 3T3-L1 adipocyte differentiation. More importantly, we show that Lpl, a key lipogenic enzyme, can be negatively regulated by the two miRNA families in a combinatorial fashion on the mRNA and functional level in maturing adipocytes. This regulation is mediated through the Lpl 3'UTR as confirmed by reporter gene assays. In addition, a small mathematical model captures the dynamics of this feed-forward motif and predicts the changes in Lpl mRNA levels upon network perturbations. The obtained results might offer an explanation to the dysregulation of LPL in diabetic conditions and could be extended to quantitative modeling of regulation of other metabolic genes under similar regulatory network motifs.
Collapse
Affiliation(s)
- Maria Bouvy-Liivrand
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine; University of Luxembourg; Esch-Sur-Alzette, Luxembourg
| | - Merja Heinäniemi
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
- Institute of Biomedicine; School of Medicine; University of Eastern Finland; Kuopio, Finland
| | - Elisabeth John
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine; University of Luxembourg; Esch-Sur-Alzette, Luxembourg
- Saarland University Medical Center; Department of Medicine II; Homburg, Saar, Germany
| | - Thomas Sauter
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| |
Collapse
|
56
|
Gong H, Dong W, Rostad SW, Marcovina SM, Albers JJ, Brunzell JD, Vuletic S. Lipoprotein lipase (LPL) is associated with neurite pathology and its levels are markedly reduced in the dentate gyrus of Alzheimer's disease brains. J Histochem Cytochem 2013; 61:857-68. [PMID: 24004859 PMCID: PMC3840745 DOI: 10.1369/0022155413505601] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lipoprotein lipase (LPL) is involved in regulation of fatty acid metabolism, and facilitates cellular uptake of lipoproteins, lipids and lipid-soluble vitamins. We evaluated LPL distribution in healthy and Alzheimer’s disease (AD) brain tissue and its relative levels in cerebrospinal fluid. LPL immunostaining is widely present in different neuronal subgroups, microglia, astrocytes and oligodendroglia throughout cerebrum, cerebellum and spinal cord. LPL immunoreactivity is also present in leptomeninges, small blood vessels, choroid plexus and ependymal cells, Schwann cells associated with cranial nerves, and in anterior and posterior pituitary. In vitro studies have shown presence of secreted LPL in conditioned media of human cortical neuronal cell line (HCN2) and neuroblastoma cells (SK-N-SH), but not in media of cultured primary human astrocytes. LPL was present in cytoplasmic and nuclear fractions of neuronal cells and astrocytes in vitro. LPL immunoreactivity strongly associates with AD-related pathology, staining diffuse plaques, dystrophic and swollen neurites, possible Hirano bodies and activated glial cells. We observed no staining associated with neurofibrillary tangles or granulovacuolar degeneration. Granule cells of the dentate gyrus and the associated synaptic network showed significantly reduced staining in AD compared to control tissue. LPL was also reduced in AD CSF samples relative to those in controls.
Collapse
Affiliation(s)
- Huilin Gong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, WA (HG, WD, SMM, JJA, SV)
| | | | | | | | | | | | | |
Collapse
|
57
|
Georgiadi A, Wang Y, Stienstra R, Tjeerdema N, Janssen A, Stalenhoef A, van der Vliet JA, de Roos A, Tamsma JT, Smit JW, Tan NS, Müller M, Rensen PC, Kersten S. Overexpression of Angiopoietin-Like Protein 4 Protects Against Atherosclerosis Development. Arterioscler Thromb Vasc Biol 2013; 33:1529-37. [DOI: 10.1161/atvbaha.113.301698] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anastasia Georgiadi
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Yanan Wang
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Rinke Stienstra
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Nathanja Tjeerdema
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Aafke Janssen
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Anton Stalenhoef
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - J. Adam van der Vliet
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Albert de Roos
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Jouke T. Tamsma
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Johannes W.A. Smit
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Nguan Soon Tan
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Michael Müller
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Patrick C.N. Rensen
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| | - Sander Kersten
- From the Nutrition, Metabolism, and Genomics Group, Wageningen University, Wageningen, The Netherlands (A.G., R.S., A.J., M.M., S.K.); Department of Endocrinology and Metabolic Diseases and Einthoven Laboratory for Experimental Vascular Medicine (Y.W., N.T., J.T.T., J.W.A.S., P.C.N.R.), and Department of Radiology (A.d.R.), Leiden University Medical Center, Leiden, The Netherlands; Department of Medicine (R.S., A.S., J.W.A.S.), and Department of Surgery (J.A.v.d.V.), Radboud University Nijmegen
| |
Collapse
|
58
|
Garcia-Arcos I, Hiyama Y, Drosatos K, Bharadwaj KG, Hu Y, Son NH, O'Byrne SM, Chang CL, Deckelbaum RJ, Takahashi M, Westerterp M, Obunike JC, Jiang H, Yagyu H, Blaner WS, Goldberg IJ. Adipose-specific lipoprotein lipase deficiency more profoundly affects brown than white fat biology. J Biol Chem 2013; 288:14046-14058. [PMID: 23542081 DOI: 10.1074/jbc.m113.469270] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution.
Collapse
Affiliation(s)
- Itsaso Garcia-Arcos
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Yaeko Hiyama
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Konstantinos Drosatos
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Kalyani G Bharadwaj
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Yunying Hu
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ni Huiping Son
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Sheila M O'Byrne
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Chuchun L Chang
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Manabu Takahashi
- Department of Medicine, Jichii University, Tochigi 329-0498, Japan
| | - Marit Westerterp
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032; Department of Medical Biochemistry, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Joseph C Obunike
- Department of Biological Sciences, New York City College of Technology, City University of New York, Brooklyn, New York 11201
| | - Hongfeng Jiang
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Hiroaki Yagyu
- Department of Medicine, Jichii University, Tochigi 329-0498, Japan
| | - William S Blaner
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ira J Goldberg
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032.
| |
Collapse
|