51
|
Ludovico ID, Gisonno RA, Gonzalez MC, Garda HA, Ramella NA, Tricerri MA. Understanding the role of apolipoproteinA-I in atherosclerosis. Post-translational modifications synergize dysfunction? Biochim Biophys Acta Gen Subj 2020; 1865:129732. [PMID: 32946930 DOI: 10.1016/j.bbagen.2020.129732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The identification of dysfunctional human apolipoprotein A-I (apoA-I) in atherosclerotic plaques suggests that protein structure and function may be hampered under a chronic pro inflammatory scenario. Moreover, the fact that natural mutants of this protein elicit severe cardiovascular diseases (CVD) strongly indicates that the native folding could shift due to the mutation, yielding a structure more prone to misfold or misfunction. To understand the events that determine the failure of apoA-I structural flexibility to fulfill its protective role, we took advantage of the study of a natural variant with a deletion of the residue lysine 107 (K107del) associated with atherosclerosis. METHODS Biophysical approaches, such as electrophoresis, fluorescence and spectroscopy were used to characterize proteins structure and function, either in native conformation or under oxidation or intramolecular crosslinking. RESULTS K107del structure was more flexible than the protein with the native sequence (Wt) but interactions with artificial membranes were preserved. Instead, structural restrictions by intramolecular crosslinking impaired the Wt and K107del lipid solubilization function. In addition, controlled oxidation decreased the yield of the native dimer conformation for both variants. CONCLUSIONS We conclude that even though mutations may alter protein structure and spatial arrangement, the highly flexible conformation compensates the mild shift from the native folding. Instead, post translational apoA-I modifications (probably chronic and progressive) are required to raise a protein conformation with significant loss of function and increased aggregation tendency. GENERAL SIGNIFICANCE The results learnt from this variant strength a close association between amyloidosis and atherosclerosis.
Collapse
Affiliation(s)
- Ivo Díaz Ludovico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Romina A Gisonno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Marina C Gonzalez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Horacio A Garda
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Nahuel A Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina.
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina.
| |
Collapse
|
52
|
Ng SS, Park JE, Meng W, Chen CP, Kalaria RN, McCarthy NE, Sze SK. Pulsed SILAM Reveals In Vivo Dynamics of Murine Brain Protein Translation. ACS OMEGA 2020; 5:13528-13540. [PMID: 32566817 PMCID: PMC7301365 DOI: 10.1021/acsomega.9b04439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Identification of proteins that are synthesized de novo in response to specific microenvironmental cues is critical for understanding molecular mechanisms that underpin vital physiological processes and pathologies. Here, we report that a brief period of SILAM (Stable Isotope Labeling of Mammals) diet enables the determination of biological functions corresponding to actively translating proteins in the mouse brain. Our results demonstrate that the synapse, dendrite, and myelin sheath are highly active neuronal structures that display rapid protein synthesis, producing key mediators of chemical signaling as well as nutrient sensing, lipid metabolism, and amyloid precursor protein processing/stability. Together, these findings confirm that protein metabolic activity varies significantly between brain functional units in vivo. Our data indicate that pulsed SILAM approaches can unravel complex protein expression dynamics in the murine brain and identify active synthetic pathways and associated functions that are likely impaired in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ser Sue Ng
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| | - Jung Eun Park
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| | - Wei Meng
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| | - Christopher P. Chen
- Memory,
Aging and Cognition Centre, National University
Health System, 1E Kent
Ridge Road, 119228 Singapore
- Department
of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, 117600 Singapore
| | - Raj N. Kalaria
- Institute
of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle
upon Tyne NE4 5PL, U.K.
| | - Neil E. McCarthy
- Centre
for Immunobiology, The Blizard Institute, Bart’s and The London
School of Medicine and Dentistry, Queen
Mary University of London, 4 Newark St, London E1
2AT, U.K.
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
53
|
Ouyang G, Yi B, Pan G, Chen X. A robust twelve-gene signature for prognosis prediction of hepatocellular carcinoma. Cancer Cell Int 2020; 20:207. [PMID: 32514252 PMCID: PMC7268417 DOI: 10.1186/s12935-020-01294-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background The prognosis of hepatocellular carcinoma (HCC) patients remains poor. Identifying prognostic markers to stratify HCC patients might help to improve their outcomes. Methods Six gene expression profiles (GSE121248, GSE84402, GSE65372, GSE51401, GSE45267 and GSE14520) were obtained for differentially expressed genes (DEGs) analysis between HCC tissues and non-tumor tissues. To identify the prognostic genes and establish risk score model, univariable Cox regression survival analysis and Lasso-penalized Cox regression analysis were performed based on the integrated DEGs by robust rank aggregation method. Then Kaplan-Meier and time-dependent receiver operating characteristic (ROC) curves were generated to validate the prognostic performance of risk score in training datasets and validation datasets. Multivariable Cox regression analysis was used to identify independent prognostic factors in liver cancer. A prognostic nomogram was constructed based on The Cancer Genome Atlas (TCGA) dataset. Finally, the correlation between DNA methylation and prognosis-related genes was analyzed. Results A twelve-gene signature including SPP1, KIF20A, HMMR, TPX2, LAPTM4B, TTK, MAGEA6, ANX10, LECT2, CYP2C9, RDH16 and LCAT was identified, and risk score was calculated by corresponding coefficients. The risk score model showed a strong diagnosis performance to distinguish HCC from normal samples. The HCC patients were stratified into high-risk and low-risk group based on the cutoff value of risk score. The Kaplan-Meier survival curves revealed significantly favorable overall survival in groups with lower risk score (P < 0.0001). Time-dependent ROC analysis showed well prognostic performance of the twelve-gene signature, which was comparable or superior to AJCC stage at predicting 1-, 3-, and 5-year overall survival. In addition, the twelve-gene signature was independent with other clinical factors and performed better in predicting overall survival after combining with age and AJCC stage by nomogram. Moreover, most of the prognostic twelve genes were negatively correlated with DNA methylation in HCC tissues, which SPP1 and LCAT were identified as the DNA methylation-driven genes. Conclusions We identified a twelve-gene signature as a robust marker with great potential for clinical application in risk stratification and overall survival prediction in HCC patients.
Collapse
Affiliation(s)
- Guoqing Ouyang
- Department of Hepatobiliary Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Bin Yi
- Department of Cardio-Vascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangdong Pan
- Department of Hepatobiliary Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Xiang Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
54
|
Structural analysis of lecithin:cholesterol acyltransferase bound to high density lipoprotein particles. Commun Biol 2020; 3:28. [PMID: 31942029 PMCID: PMC6962161 DOI: 10.1038/s42003-019-0749-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) catalyzes a critical step of reverse cholesterol transport by esterifying cholesterol in high density lipoprotein (HDL) particles. LCAT is activated by apolipoprotein A-I (ApoA-I), which forms a double belt around HDL, however the manner in which LCAT engages its lipidic substrates and ApoA-I in HDL is poorly understood. Here, we used negative stain electron microscopy, crosslinking, and hydrogen-deuterium exchange studies to refine the molecular details of the LCAT-HDL complex. Our data are consistent with LCAT preferentially binding to the edge of discoidal HDL near the boundary between helix 5 and 6 of ApoA-I in a manner that creates a path from the lipid bilayer to the active site of LCAT. Our results provide not only an explanation why LCAT activity diminishes as HDL particles mature, but also direct support for the anti-parallel double belt model of HDL, with LCAT binding preferentially to the helix 4/6 region.
Collapse
|
55
|
May-Zhang LS, Yermalitsky V, Melchior JT, Morris J, Tallman KA, Borja MS, Pleasent T, Amarnath V, Song W, Yancey PG, Davidson WS, Linton MF, Davies SS. Modified sites and functional consequences of 4-oxo-2-nonenal adducts in HDL that are elevated in familial hypercholesterolemia. J Biol Chem 2019; 294:19022-19033. [PMID: 31666337 PMCID: PMC6916491 DOI: 10.1074/jbc.ra119.009424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
The lipid aldehyde 4-oxo-2-nonenal (ONE) is a highly reactive protein crosslinker derived from peroxidation of n-6 polyunsaturated fatty acids and generated together with 4-hydroxynonenal (HNE). Lipid peroxidation product-mediated crosslinking of proteins in high-density lipoprotein (HDL) causes HDL dysfunction and contributes to atherogenesis. Although HNE is relatively well-studied, the role of ONE in atherosclerosis and in modifying HDL is unknown. Here, we found that individuals with familial hypercholesterolemia (FH) had significantly higher ONE-ketoamide (lysine) adducts in HDL (54.6 ± 33.8 pmol/mg) than healthy controls (15.3 ± 5.6 pmol/mg). ONE crosslinked apolipoprotein A-I (apoA-I) on HDL at a concentration of > 3 mol ONE per 10 mol apoA-I (0.3 eq), which was 100-fold lower than HNE, but comparable to the potent protein crosslinker isolevuglandin. ONE-modified HDL partially inhibited HDL's ability to protect against lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) gene expression in murine macrophages. At 3 eq, ONE dramatically decreased apoA-I exchange from HDL, from ∼46.5 to ∼18.4% (p < 0.001). Surprisingly, ONE modification of HDL or apoA-I did not alter macrophage cholesterol efflux capacity. LC-MS/MS analysis revealed that Lys-12, Lys-23, Lys-96, and Lys-226 in apoA-I are modified by ONE ketoamide adducts. Compared with other dicarbonyl scavengers, pentylpyridoxamine (PPM) most efficaciously blocked ONE-induced protein crosslinking in HDL and also prevented HDL dysfunction in an in vitro model of inflammation. Our findings show that ONE-HDL adducts cause HDL dysfunction and are elevated in individuals with FH who have severe hypercholesterolemia.
Collapse
Affiliation(s)
- Linda S May-Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Valery Yermalitsky
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - John T Melchior
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - Jamie Morris
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - Keri A Tallman
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Mark S Borja
- Department of Chemistry & Biochemistry, California State University East Bay, Hayward, California 94542
| | - Tiffany Pleasent
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Wenliang Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Patricia G Yancey
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - W Sean Davidson
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Ohio 45220
| | - MacRae F Linton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
56
|
Trusca VG, Dumitrescu M, Fenyo IM, Tudorache IF, Simionescu M, Gafencu AV. The Mechanism of Bisphenol A Atherogenicity Involves Apolipoprotein A-I Downregulation through NF-κB Activation. Int J Mol Sci 2019; 20:E6281. [PMID: 31842455 PMCID: PMC6941038 DOI: 10.3390/ijms20246281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein component of high-density lipoproteins (HDL), mediating many of its atheroprotective properties. Increasing data reveal the pro-atherogenic effects of bisphenol A (BPA), one of the most prevalent environmental chemicals. In this study, we investigated the mechanisms by which BPA exerts pro-atherogenic effects. For this, LDLR-/- mice were fed with a high-fat diet and treated with 50 µg BPA/kg body weight by gavage. After two months of treatment, the area of atherosclerotic lesions in the aorta, triglycerides and total cholesterol levels were significantly increased, while HDL-cholesterol was decreased in BPA-treated LDLR-/- mice as compared to control mice. Real-Time PCR data showed that BPA treatment decreased hepatic apoA-I expression. BPA downregulated the activity of the apoA-I promoter in a dose-dependent manner. This inhibitory effect was mediated by MEKK1/NF-κB signaling pathways. Transfection experiments using apoA-I promoter deletion mutants, chromatin immunoprecipitation, and protein-DNA interaction assays demonstrated that treatment of hepatocytes with BPA induced NF-κB signaling and thus the recruitment of p65/50 proteins to the multiple NF-κB binding sites located in the apoA-I promoter. In conclusion, BPA exerts pro-atherogenic effects downregulating apoA-I by MEKK1 signaling and NF-κB activation in hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | | | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania; (V.G.T.); (M.D.); (I.M.F.); (I.F.T.); (M.S.)
| |
Collapse
|
57
|
Musolino V, Gliozzi M, Nucera S, Carresi C, Maiuolo J, Mollace R, Paone S, Bosco F, Scarano F, Scicchitano M, Ruga S, Zito MC, Colica C, Macrì R, Palma E, Ragusa S, Muscoli C, Mollace V. The effect of bergamot polyphenolic fraction on lipid transfer protein system and vascular oxidative stress in a rat model of hyperlipemia. Lipids Health Dis 2019; 18:115. [PMID: 31101130 PMCID: PMC6525455 DOI: 10.1186/s12944-019-1061-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/29/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Experimental and epidemiological studies show that bergamot polyphenolic fraction (BPF) ameliorates the serum lipemic profile, normalizes blood pressure and improves non alcoholic fatty liver disease in patients suffering from metabolic syndrome. Despite this evidence, the molecular mechanisms responsible for these beneficial effects remain unclear. The aim of our study is to clarify the effects of BPF on the lipoprotein assembly and to identify oxidative stress biomarkers correlating hyperlipidaemia and BPF-induced metabolic changes. METHODS Male Wistar rats (180-200 g) were randomly assigned to receive a standard diet, a hypercholesterolemic diet or a hypercholesterolemic diet+BPF (20 mg/Kg/rat daily, gavage), respectively, for 90 days. Total cholesterol (tChol), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG) and fasting plasma glucose were evaluated at the baseline as well as at the end of the treatment. To assess the effect of BPF on the Lipid Transfer Protein System, detection of ACAT, LCAT, CETP, PON1, Apo A1 and Apo B have also been carried out. Finally, the lipid peroxidation biomarker (TBARS) and oxyLDL were also measured. RESULTS BPF prevented tChol, LDL-C, TG and fasting plasma glucose enhancement and improved HDL-C. Treatment of hyperlipæmic rats with BPF significantly restored altered the serum concentration of lipemic biomarkers and the activity of ACAT, LCAT, CETP and PON1, an effect accompanied by the concomitant normalization of Apo A1 and APO B levels. In addition, TBARS levels were reduced significantly by the treatment with BPF. CONCLUSIONS BPF prevents diet-induced alteration of the lipid profile in rats, counteracting oxidative stress and improving the dysregulation of the Lipid Transfer Protein System. These data add new insights into the molecular mechanisms underlying the beneficial role of BPF in the therapy of hyperlipidaemia, thus suggesting a novel approach in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy.
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Sara Paone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Carmen Colica
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, 88021, Roccelletta di Borgia, Catanzaro, Italy
| | - Salvatore Ragusa
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
- San Raffaele IRCCS Pisana, Rome, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
- San Raffaele IRCCS Pisana, Rome, Italy.
| |
Collapse
|
58
|
Li G, Zhao Y, Li Y, Chen Y, Jin W, Sun G, Han R, Tian Y, Li H, Kang X. Weighted gene coexpression network analysis identifies specific transcriptional modules and hub genes related to intramuscular fat traits in chicken breast muscle. J Cell Biochem 2019; 120:13625-13639. [PMID: 30937957 DOI: 10.1002/jcb.28636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Abstract
Intramuscular fat (IMF) traits are important factors that influence meat quality. However, the molecular regulatory mechanisms that underlie this trait in chickens are still poorly understood at the gene coexpression level. Here, we performed a weighted gene coexpression network analysis between IMF traits and transcriptome profile in breast muscle in the Chinese domestic Gushi chicken breed at 6, 14, 22, and 30 weeks. A total of 26 coexpressed gene modules were identified. Six modules, which included the dark gray, purple, cyan, pink, light cyan, and blue modules, showed a significant positive correlation (P < 0.05) with IMF traits. The strongest correlation was observed between the dark gray module and IMF content (r = 0.85; P = 4e-04) and between the blue module and different fatty acid content (r = 0.87~0.91; P = 5e-05~2e-04). Enrichment analysis showed that the enrichment of biological processes, such as fatty acid metabolic process, fat cell differentiation, acylglycerol metabolic process, and glycerolipid metabolism were significantly different in the six modules. In addition, the 32, 24, 4, 7, 6, and 25 hub genes were identified from the blue, pink, light cyan, cyan, dark gray, and purple modules, respectively. These hub genes are involved in multiple links to fatty acid metabolism, phospholipid metabolism, cholesterol metabolism, diverse cellular behaviors, and cell events. These results provide novel insights into the molecular regulatory mechanisms for IMF-related traits in chicken and may also help to uncover the formation mechanism for excellent meat quality traits in local breeds of Chinese chicken.
Collapse
Affiliation(s)
- Guoxi Li
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Yinli Zhao
- Department of Animal Science, College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan, P. R. China
| | - Yuanfang Li
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Yi Chen
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Wenjiao Jin
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Guirong Sun
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Ruili Han
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Yadong Tian
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Hong Li
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| | - Xiangtao Kang
- Department of Animal Production Systems and Engineering, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan, P. R. China
| |
Collapse
|
59
|
Manthei KA, Yang SM, Baljinnyam B, Chang L, Glukhova A, Yuan W, Freeman LA, Maloney DJ, Schwendeman A, Remaley AT, Jadhav A, Tesmer JJ. Molecular basis for activation of lecithin:cholesterol acyltransferase by a compound that increases HDL cholesterol. eLife 2018; 7:41604. [PMID: 30479275 PMCID: PMC6277198 DOI: 10.7554/elife.41604] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/06/2018] [Indexed: 01/29/2023] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients. Cholesterol is a fatty substance found throughout the body that is essential to our health. However, if too much cholesterol builds up in our blood vessels, it can cause blockages that lead to heart and kidney problems. The body removes excess cholesterol by sending out high-density lipoproteins (HDL) that capture the fatty molecules and carry them to the liver where they are eliminated. The first step in this process requires an enzyme called LCAT, which converts cholesterol into a form that HDL particles can efficiently pack and transport. The enzyme acts by interacting with HDL particles, and chemically joining cholesterol with another compound. Finding ways to make LCAT perform better and produce more HDL could improve treatments for heart disease. This could be particularly helpful to people with genetic changes that make LCAT defective. Several small molecules that ‘dial up’ the activity of LCAT have been identified, but how they act on the enzyme is not always well understood. Manthei et al. therefore set out to determine precisely how one such small activator promotes LCAT function. The experiments involved using a method known as crystallography to look at the structure of LCAT when it is attached to the small molecule. They also evaluated the activity of the enzyme and other aspects of the protein in the presence of the small molecule and HDL particles. Taken together, the results led Manthei et al. to suggest that the small molecule works by more efficiently bringing into LCAT the materials that this enzyme needs to create the transport-ready form of cholesterol. The small molecule also partially restored the activity of mutant LCAT found in human disease. This knowledge may help to design more drug-like chemicals to ‘boost’ the activity of LCAT and prevent heart and kidney disease, especially in people who carry a defective version of the enzyme.
Collapse
Affiliation(s)
- Kelly A Manthei
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Alisa Glukhova
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences and Biointerfaces Institute, University of Michigan, Ann Arbor, United States
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and Biointerfaces Institute, University of Michigan, Ann Arbor, United States
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, United States
| | - John Jg Tesmer
- Department of Biological Sciences, Purdue University, Indiana, United States
| |
Collapse
|
60
|
Zheng Y, Liu Y, Zhao S, Zheng Z, Shen C, An L, Yuan Y. Large-scale analysis reveals a novel risk score to predict overall survival in hepatocellular carcinoma. Cancer Manag Res 2018; 10:6079-6096. [PMID: 30538557 PMCID: PMC6252784 DOI: 10.2147/cmar.s181396] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major cause of cancer mortality and an increasing incidence worldwide; however, there are very few effective diagnostic approaches and prognostic biomarkers. Materials and methods One hundred forty-nine pairs of HCC samples from Gene Expression Omnibus (GEO) were obtained to screen differentially expressed genes (DEGs) between HCC and normal samples. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene ontology enrichment analyses, and protein–protein interaction network were used. Cox proportional hazards regression analysis was used to identify significant prognostic DEGs, with which a gene expression signature prognostic prediction model was identified in The Cancer Genome Atlas (TCGA) project discovery cohort. The robustness of this panel was assessed in the GSE14520 cohort. We verified details of the gene expression level of the key molecules through TCGA, GEO, and qPCR and used immunohistochemistry for substantiation in HCC tissues. The methylation states of these genes were also explored. Results Ninety-eight genes, consisting of 13 upregulated and 85 downregulated genes, were screened out in three datasets. KEGG and Gene ontology analysis for the DEGs revealed important biological features of each subtype. Protein–protein interaction network analysis was constructed, consisting of 64 nodes and 115 edges. A subset of four genes (SPINK1, TXNRD1, LCAT, and PZP) that formed a prognostic gene expression signature was established from TCGA and validated in GSE14520. Next, the expression details of the four genes were validated with TCGA, GEO, and clinical samples. The expression panels of the four genes were closely related to methylation states. Conclusion This study identified a novel four-gene signature biomarker for predicting the prognosis of HCC. The biomarkers may also reveal molecular mechanisms underlying development of the disease and provide new insights into interventional strategies.
Collapse
Affiliation(s)
- Yujia Zheng
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yulin Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Zhetian Zheng
- School of Computer Science, Yangtze University, Jingzhou, Hubei, China
| | - Chunyi Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li An
- Institute of Quality Standard and Testing Technology for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou, China,
| | - Yongliang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| |
Collapse
|
61
|
Tsujita M, Wolska A, Gutmann DAP, Remaley AT. Reconstituted Discoidal High-Density Lipoproteins: Bioinspired Nanodiscs with Many Unexpected Applications. Curr Atheroscler Rep 2018; 20:59. [PMID: 30397748 DOI: 10.1007/s11883-018-0759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW Summarize the initial discovery of discoidal high-density lipoprotein (HDL) in human plasma and review more recent innovations that span the use of reconstituted nanodisc HDL for membrane protein characterization to its use as a drug carrier and a novel therapeutic agent for cardiovascular disease. RECENT FINDINGS Using a wide variety of biophysical techniques, the structure and composition of endogenous discoidal HDL have now largely been solved. This has led to the development of new methods for the in vitro reconstitution of nanodisc HDL, which have proven to have a wide variety of biomedical applications. Nanodisc HDL has been used as a platform for mimicking the plasma membrane for the reconstitution and investigation of the structures of several plasma membrane proteins, such as cytochrome P450s and ABC transporters. Nanodisc HDL has also been designed as drug carriers to transport amphipathic, as well as hydrophobic small molecules, and has potential therapeutic applications for several diseases. Finally, nanodisc HDL itself like native discoidal HDL can mediate cholesterol efflux from cells and are currently being tested in late-stage clinical trials for cardiovascular disease. The discovery of the characterization of native discoidal HDL has inspired a new field of synthetic nanodisc HDL, which has offered a growing number of unanticipated biomedical applications.
Collapse
Affiliation(s)
- Maki Tsujita
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|