51
|
Pande AH, Tripathy RK, Nankar SA. Membrane surface charge modulates lipoprotein complex forming capability of peptides derived from the C-terminal domain of apolipoprotein E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1366-76. [DOI: 10.1016/j.bbamem.2009.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/19/2009] [Accepted: 03/29/2009] [Indexed: 11/26/2022]
|
52
|
White CR, Datta G, Mochon P, Zhang Z, Kelly O, Curcio C, Parks D, Palgunachari M, Handattu S, Gupta H, Garber DW, Anantharamaiah GM. Vasculoprotective Effects of Apolipoprotein Mimetic Peptides: An Evolving Paradigm In Hdl Therapy (Vascular Disease Prevention, In Press.). ACTA ACUST UNITED AC 2009; 6:122-130. [PMID: 20084185 DOI: 10.2174/1567270000906010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Anti-atherogenic effects of high density lipoprotein (HDL) and its major protein component apolipoprotein A-I (apoA-I) are principally thought to be due to their ability to mediate reverse cholesterol transport. These agents also possess anti-oxidant properties that prevent the oxidative modification of low density lipoprotein (LDL) and anti-inflammatory properties that include inhibition of endothelial cell adhesion molecule expression. Results of the Framingham study revealed that a reduction in HDL levels is an independent risk factor for coronary artery disease (CAD). Accordingly, there has been considerable interest in developing new therapies that specifically elevate HDL cholesterol. However, recent evidence suggests that increasing circulating HDL cholesterol levels alone is not sufficient as a mode of HDL therapy. Rather, therapeutic approaches that increase the functional properties of HDL may be superior to simply raising the levels of HDL per se. Our laboratory has pioneered the development of synthetic, apolipoprotein mimetic peptides which are structurally and functionally similar to apoA-I but possess unique structural homology to the lipid-associating domains of apoA-I. The apoA-I mimetic peptide 4F inhibits atherogenic lesion formation in murine models of atherosclerosis. This effect is related to the ability of 4F to induce the formation of pre-β HDL particles that are enriched in apoA-I and paraoxonase. 4F also possesses anti-inflammatory and anti-oxidant properties that are independent of its effect on HDL quality per se. Recent studies suggest that 4F stimulates the expression of the antioxidant enzymes heme oxygenase and superoxide dismutase and inhibits superoxide anion formation in blood vessels of diabetic, hypercholesterolemic and sickle cell disease mice. The goal of this review is to discuss HDL-dependent and -independent mechanisms by which apoA-I mimetic peptides reduce vascular injury in experimental animal models.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Alexander ET, Tanaka M, Kono M, Saito H, Rader DJ, Phillips MC. Structural and functional consequences of the Milano mutation (R173C) in human apolipoprotein A-I. J Lipid Res 2009; 50:1409-19. [PMID: 19318685 DOI: 10.1194/jlr.m800578-jlr200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carriers of the apolipoprotein A-I(Milano) (apoA-I(M)) variant, R173C, have reduced levels of plasma HDL but no increase in cardiovascular disease. Despite intensive study, it is not clear whether the removal of the arginine or the introduction of the cysteine is responsible for this altered functionality. We investigated this question using two engineered variations of the apoA-I(M) mutation: R173S apoA-I, similar to apoA-I(M) but incapable of forming a disulfide bond, and R173K apoA-I, a conservative mutation. Characterization of the lipid-free proteins showed that the order of stability was wild type approximately R173K>R173S>R173C. Compared with wild-type apoA-I, apoA-I(M) had a lower affinity for lipids, while R173S apoA-I displayed intermediate affinity. The in vivo effects of the apoA-I variants were measured by injecting apoA-I-expressing adeno-associated virus into apoA-I-null mice. Mice that expressed the R173S variant again showed an intermediate phenotype. Thus, both the loss of the arginine and its replacement by a cysteine contribute to the altered properties of apoA-I(M). The arginine is potentially involved in an intrahelical salt bridge with E169 that is disrupted by the loss of the positively charged arginine and repelled by the cysteine, destabilizing the helix bundle domain in the apoA-I molecule and modifying its lipid binding characteristics.
Collapse
Affiliation(s)
- Eric T Alexander
- Gastroenterology/Nutrition/Hepatology Division, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | |
Collapse
|
54
|
Tubb MR, Smith LE, Davidson WS. Purification of recombinant apolipoproteins A-I and A-IV and efficient affinity tag cleavage by tobacco etch virus protease. J Lipid Res 2009; 50:1497-504. [PMID: 19318686 DOI: 10.1194/jlr.d900003-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of recombinant apolipoproteins provides experimental avenues that are not possible with plasma purified protein. The ability to specifically mutate residues or delete entire regions has proven to be a valuable tool for understanding the structure and function of apolipoproteins. A common feature of many recombinant systems is an affinity tag that allows for straightforward and high-yield purification of the target protein. A specific protease can then cleave the tag and yield the native recombinant protein. However, the application of this strategy to apolipoproteins has proven somewhat problematic because of the tendency for these highly flexible proteins to be nonspecifically cleaved at undesired sites within the native protein. Although systems have been developed using a variety of proteases, many suffer from low yield and, especially, the high cost of the enzyme.We developed a method that utilizes the tobacco etch virus protease to cleave a histidine-tag from apolipoproteins A-I and A-IV expressed in Escherichia coli. This protease can be easily and inexpensively expressed within most laboratories. We found that the protease efficiently cleaved the affinity tags from both apolipoproteins without nonspecific cleavage. All structural and functional measurements showed that the proteins were equivalent to native or previously characterized protein preparations. In addition to cost-effectiveness, advantages of the tobacco etch virus protease include a short cleavage time, low reaction temperature, and easy removal using the protease's own histidine-tag.
Collapse
Affiliation(s)
- Matthew R Tubb
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237-0507, USA
| | | | | |
Collapse
|
55
|
Gorshkova IN, Kypreos KE, Gantz DL, Zannis VI, Atkinson D. Biophysical properties of apolipoprotein E4 variants: implications in molecular mechanisms of correction of hypertriglyceridemia. Biochemistry 2009; 47:12644-54. [PMID: 18959431 DOI: 10.1021/bi8015857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans and animal models, high plasma concentrations of apolipoprotein (apo) E are associated with hypertriglyceridemia. It has been shown that overexpression of human wild-type (WT) apoE4 in apoE-deficient mice induces hypertriglyceridemia. In contrast, overexpression of an apoE4 variant, apoE4-mut1 (apoE4(L261A, W264A, F265A, L268A, V269A)), does not induce hypertriglyceridemia and corrects hypercholesterolemia. Furthermore, overexpression of another variant, apoE4-mut2 (apoE4(W276A, L279A, V280A, V283A)), induces mild hypertriglyceridemia and does not correct hypercholesterolemia. To better understand how these mutations improve the function of apoE4, we investigated the conformation and stability of apoE4-mut1 and apoE4-mut2 and their binding to dimyristoyl phosphatidylcholine (DMPC) vesicles and to triglyceride (TG)-rich emulsion particles. We found that the mutations introduced in apoE4-mut1 lead to a more stable and compactly folded conformation of apoE4. These structural changes are associated with a slower rate of solubilization of DMPC vesicles by apoE4-mut1 and reduced binding of the protein to emulsion particles compared with WT apoE4. Under conditions of apoE4 overexpression, the reduced binding of apoE4-mut1 to TG-rich lipoprotein particles may facilitate the lipolysis of these particles and may alter the conformation of the lipoprotein-bound apoE in a way that favors the efficient clearance of the lipoprotein remnants. Mutations introduced in apoE4-mut2 result in smaller structural alterations compared with those observed in apoE4-mut1. The slightly altered structural properties of apoE4-mut2 are associated with slightly reduced binding of this protein to TG-rich lipoprotein particles and milder hypertriglyceridemia as compared with WT apoE4.
Collapse
Affiliation(s)
- Irina N Gorshkova
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
56
|
Tanaka M, Tanaka T, Ohta S, Kawakami T, Konno H, Akaji K, Aimoto S, Saito H. Evaluation of lipid-binding properties of the N-terminal helical segments in human apolipoprotein A-I using fragment peptides. J Pept Sci 2009; 15:36-42. [DOI: 10.1002/psc.1092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
57
|
White CR, Datta G, Zhang Z, Gupta H, Garber DW, Mishra VK, Palgunachari MN, Handattu SP, Chaddha M, Anantharamaiah GM. HDL therapy for cardiovascular diseases: the road to HDL mimetics. Curr Atheroscler Rep 2008; 10:405-12. [PMID: 18706282 DOI: 10.1007/s11883-008-0063-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are currently the drug of choice for the clinical management of elevated low-density lipoprotein (LDL) cholesterol. Although statin treatment provides an overall improvement in outcomes, clinical trial data reveal a significant number of cardiac events despite reaching targeted LDL levels. A low serum high-density lipoprotein (HDL) cholesterol level is an independent predictor of cardiovascular risk. Accordingly, there has been interest in determining whether HDL elevation, in addition to LDL lowering, further reduces risk in patients with coronary artery disease. Several commonly prescribed lipid-lowering therapies modestly raise HDL, but their use may be limited by the development of adverse reactions. Emerging data suggest that HDL quality and function may also be significantly reduced by atherosclerosis and other inflammatory diseases. The goal of this review is to discuss the current status of HDL therapeutics, with emphasis on a novel class of agent, the apolipoprotein A-I mimetic peptides, which improve the functional properties of HDL cholesterol.
Collapse
Affiliation(s)
- C Roger White
- Vascular Biology and Hypertension Program, University of Alabama, Birmingham, 1046 Zeigler Research Building, 703 South 19th Street, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. ACTA ACUST UNITED AC 2008; 3:505-530. [PMID: 19649144 DOI: 10.2217/17460875.3.5.505] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol can be detrimental or vital, and must be present in the right place at the right time and in the right amount. This is well known in the heart and the vascular system. However, in the CNS cholesterol is still an enigma, although several of its fundamental functions in the brain have been identified. Brain cholesterol has attracted additional attention owing to its close connection to ApoE, a key polymorphic transporter of extracellular cholesterol in humans. Indeed, both cholesterol and ApoE are so critical to fundamental activities of the brain, that the brain regulates their synthesis autonomously. Yet, similar control mechanisms of ApoE and cholesterol homeostasis may exist on either sides of the blood-brain barrier. One indication is that the APOE ε4 allele is associated with hypercholesterolemia and a proatherogenic profile on the vascular side and with increased risk of Alzheimer's disease on the CNS side. In this review, we draw attention to the association between cholesterol and ApoE in the aging and diseased brain, and to the behavior of the ApoE4 protein at the molecular level. The attempt to correlate in vivo and in vitro observations is challenging but crucial for developing future strategies to address ApoE-related aberrations in cholesterol metabolism selectively in the brain.
Collapse
|
59
|
Chroni A, Pyrpassopoulos S, Thanassoulas A, Nounesis G, Zannis VI, Stratikos E. Biophysical analysis of progressive C-terminal truncations of human apolipoprotein E4: insights into secondary structure and unfolding properties. Biochemistry 2008; 47:9071-80. [PMID: 18690708 DOI: 10.1021/bi800469r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease and has been associated with a variety of neuropathological processes. ApoE4 C-terminally truncated forms have been found in brains of Alzheimer's disease patients. Structural rearrangements in apoE4 are known to be key to its physiological functions. To understand the effect of C-terminal truncations on apoE4 lipid-free structure, we produced a series of recombinant apoE4 forms with progressive C-terminal deletions between residues 166 and 299. Circular dichroism measurements show a dramatic loss in helicity upon removal of the last 40 C-terminal residues, whereas further truncations of residues 203-259 lead to recovery of helical content. Further deletion of residues 186-202 leads to a small increase in helical content. Thermal denaturation indicated that removal of residues 260-299 leads to an increase in melting temperature but truncations down to residue 186 did not further affect the melting temperature. The progressive C-terminal truncations, however, gradually increased the cooperativity of thermal unfolding. Chemical denaturation of the apoE4 forms revealed a two-step process with a clear intermediate stage that is progressively lost as the C-terminus is truncated down to residue 230. Hydrophobic fluorescent probe binding suggested that regions 260-299 and 186-202 contain hydrophobic sites, the former being solvent accessible in the wild-type molecule and the latter being accessible only upon truncation. Taken together, our results show an important but complex role of apoE4 C-terminal segments in secondary structure stability and unfolding and suggest that interactions mediated by the C-terminal segments are important for the structural integrity and conformational changes of apoE4.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biology, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15310, Greece.
| | | | | | | | | | | |
Collapse
|
60
|
Cholesterol is a determinant of the structures of discoidal high density lipoproteins formed by the solubilization of phospholipid membranes by apolipoprotein A-I. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:245-53. [PMID: 18406360 DOI: 10.1016/j.bbalip.2008.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 02/18/2008] [Accepted: 03/10/2008] [Indexed: 11/23/2022]
Abstract
Formation of discoidal high density lipoproteins (rHDL) by apolipoprotein A-I (apoA-I) mediated solubilization of dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles (MLV) was dramatically affected by bilayer cholesterol concentration. At a low ratio of DMPC/apoA-I (2 mg DMPC/mg apoA-I, 84/1 mol/mol), sterols (cholesterol, lathosterol, and beta-sitosterol) that form ordered lipid phases increase the rate of solubilization similarly, yielding rHDL with similar structures. By changing the temperature and sterol concentration, the rates of solubilization varied almost 3 orders of magnitude; however, the sizes of the rHDL were independent of the rate of their formation and dependent upon the bilayer sterol concentration. At a high ratio of DMPC/apoA-I (10/1 mg DMPC/mg apoA-I, 420/1 mol/mol), changing the temperature and cholesterol concentration yielded rHDL that varied greatly in size, phospholipid/protein ratio, mol% cholesterol, and number of apoA-I molecules per particle. rHDL were isolated that had 2, 4, 6, and 8 molecules of apoA-I per particle, mean diameters of 117, 200, 303, and 396 A, and a mol% cholesterol that was similar to the original MLV. Kinetic studies demonstrated that the different sized rHDL are formed independently and concurrently. The rate of formation, lipid composition, and three-dimensional structures of cholesterol-rich rHDL is dictated primarily by the original membrane phase properties and cholesterol content. The size speciation of rHDL and probably nascent HDL formed via the activity of the ABCA1 lipid transporter is mechanistically linked to the cholesterol content of the membranes from which they were formed.
Collapse
|
61
|
Duong PT, Weibel GL, Lund-Katz S, Rothblat GH, Phillips MC. Characterization and properties of pre beta-HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I. J Lipid Res 2008; 49:1006-14. [PMID: 18252847 DOI: 10.1194/jlr.m700506-jlr200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The contribution of ABCA1-mediated efflux of cellular phospholipid (PL) and cholesterol to human apolipoprotein A-I (apoA-I) to the formation of pre beta 1-HDL (or lipid-poor apoA-I) is not well defined. To explore this issue, we characterized the nascent HDL particles formed when lipid-free apoA-I was incubated with fibroblasts in which expression of the ABCA1 was upregulated. After a 2 h incubation, the extracellular medium contained small apoA-I/PL particles (pre beta 1-HDL; diameter = 7.5 +/- 0.4 nm). The pre beta 1-HDL (or lipid-poor apoA-I) particles contained a single apoA-I molecule and three to four PL molecules and one to two cholesterol molecules. An apoA-I variant lacking the C-terminal alpha-helix did not form such particles when incubated with the cell, indicating that this helix is critical for the formation of lipid-poor apoA-I particles. These pre beta 1-HDL particles were as effective as lipid-free apoA-I molecules in mediating both the efflux of cellular lipids via ABCA1 and the formation of larger, discoidal HDL particles. In conclusion, pre beta 1-HDL is both a product and a substrate in the ABCA1-mediated reaction to efflux cellular PL and cholesterol to apoA-I. A monomeric apoA-I molecule associated with three to four PL molecules (i.e., lipid-poor apoA-I) has similar properties to the lipid-free apoA-I molecule.
Collapse
Affiliation(s)
- Phu T Duong
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
| | | | | | | | | |
Collapse
|
62
|
Dergunov AD, Visvikis-Siest S, Siest G. Statins as effectors of key activities involved in apoE-dependent VLDL metabolism: Review and hypothesis. Vascul Pharmacol 2008; 48:70-5. [DOI: 10.1016/j.vph.2007.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 10/31/2007] [Accepted: 12/05/2007] [Indexed: 11/26/2022]
|
63
|
Sakamoto T, Tanaka M, Vedhachalam C, Nickel M, Nguyen D, Dhanasekaran P, Phillips MC, Lund-Katz S, Saito H. Contributions of the carboxyl-terminal helical segment to the self-association and lipoprotein preferences of human apolipoprotein E3 and E4 isoforms. Biochemistry 2008; 47:2968-77. [PMID: 18201068 DOI: 10.1021/bi701923h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To understand the molecular basis for the different self-association and lipoprotein preferences of apolipoprotein (apo) E isoforms, we compared the effects of progressive truncation of the C-terminal domain in human apoE3 and apoE4 on their lipid-free structure and lipid binding properties. A VLDL/HDL distribution assay demonstrated that apoE3 binds much better than apoE4 to HDL 3, whereas both isoforms bind similarly to VLDL. Removal of the C-terminal helical regions spanning residues 273-299 weakened the ability of both isoforms to bind to lipoproteins; this led to the elimination of the isoform lipoprotein preference, indicating that the C-terminal helices mediate the lipoprotein selectivity of apoE3 and apoE4 isoforms. Gel filtration chromatography experiments demonstrated that the monomer-tetramer distribution is different for the two isoforms with apoE4 being more monomeric than apoE3 and that removal of the C-terminal helices favors the monomeric state in both isoforms. Consistent with this, fluorescence measurements of Trp-264 in single-Trp mutants revealed that the C-terminal domain in apoE4 is less organized and more exposed to the aqueous environment than in apoE3. In addition, the solubilization of dimyristoylphosphatidylcholine multilamellar vesicles is more rapid with apoE4 than with apoE3; removal of the C-terminal helices significantly affected solubilization rates with both isoforms. Taken together, these results indicate that the C-terminal domain is organized differently in apoE3 and apoE4 so that apoE4 self-associates less and binds less than apoE3 to HDL surfaces; these alterations may lead to the pathological sequelae for cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Takaaki Sakamoto
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Tubb MR, Silva RAGD, Pearson KJ, Tso P, Liu M, Davidson WS. Modulation of apolipoprotein A-IV lipid binding by an interaction between the N and C termini. J Biol Chem 2007; 282:28385-28394. [PMID: 17686771 DOI: 10.1074/jbc.m704070200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a 376-amino acid exchangeable apolipoprotein made in the small intestine of humans. Although it has many proposed roles in vascular disease, satiety, and chylomicron metabolism, there is no known structural basis for these functions. The ability to associate with lipids may be a key step in apoA-IV functionality. We recently identified a single amino acid, Phe(334), which seems to inhibit the lipid binding capability of apoA-IV. We also found that an intact N terminus was necessary for increased lipid binding of Phe(334) mutants. Here, we identify Trp(12) and Phe(15) as the N-terminal amino acids required for the fast lipid binding seen with the F334A mutant. Furthermore, we found that individual disruption of putative amphipathic alpha-helices 3-11 had little effect on lipid binding, suggesting that the N terminus of apoA-IV may be the operational site for initial lipid binding. We also provide three independent pieces of experimental evidence supporting a direct intramolecular interaction between sequences near amino acids 12/15 and 334. This interaction could represent a unique "switch" mechanism by which apoA-IV changes lipid avidity in vivo.
Collapse
Affiliation(s)
- Matthew R Tubb
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - R A Gangani D Silva
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Kevin J Pearson
- Laboratory of Experimental Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237.
| |
Collapse
|
65
|
Vedhachalam C, Duong PT, Nickel M, Nguyen D, Dhanasekaran P, Saito H, Rothblat GH, Lund-Katz S, Phillips MC. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J Biol Chem 2007; 282:25123-30. [PMID: 17604270 DOI: 10.1074/jbc.m704590200] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.
Collapse
Affiliation(s)
- Charulatha Vedhachalam
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zhu K, Brubaker G, Smith JD. Large disk intermediate precedes formation of apolipoprotein A-I-dimyristoylphosphatidylcholine small disks. Biochemistry 2007; 46:6299-307. [PMID: 17474718 PMCID: PMC2518397 DOI: 10.1021/bi700079w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small approximately 8.5 nm disks formed spontaneously when dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles (LUVs) were incubated with apolipoprotein A-I (apoA-I) (100:1 molar ratio). However, in a time course study, the transient production of approximately 11 nm large disks was detected and isolated by gel filtration. The intermediate large disks contained three apoA-I molecules and were stable over time; however, when additional apoA-I was added, they formed small disks containing two molecules of apoA-I. The reaction kinetics of apoA-I with DMPC LUVs was monitored by fluorescence resonance energy transfer, and two phases were observed, supporting the presence of the intermediate in the formation of small disks. The lipid dynamics of LUVs and disks were assayed, revealing the presence of sequestered lipid-protein domains upon apoA-I binding to DMPC LUVs. In addition, the lipids in the intermediate large disks were more constrained than those in the small disks. We propose that apoA-I binds with DMPC LUVs to form small lipid-protein domains on the LUV; then the domains are released to form large disks, which can mature in the presence of additional apoA-I to form small disks. Thus, the formation of small apoA-I lipid disks proceeds through the formation of a large disk intermediate.
Collapse
Affiliation(s)
- Keng Zhu
- Dept. of Cell Biology, Cleveland Clinic, Cleveland OH, 44195
| | | | - Jonathan D. Smith
- Dept. of Cell Biology, Cleveland Clinic, Cleveland OH, 44195
- Dept. of Cardiovascular Medicine, Cleveland Clinic, Cleveland OH, 44195
- Dept. of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case School of Medicine, Cleveland, OH 44195,USA
- Corresponding author: Jonathan D. Smith, Department of Cell Biology, Lerner Research Institute / NC10, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA, Telephone: 216-444-2248, Fax: 216-444-9404, E-mail:
| |
Collapse
|
67
|
Benjwal S, Jayaraman S, Gursky O. Role of secondary structure in protein-phospholipid surface interactions: reconstitution and denaturation of apolipoprotein C-I:DMPC complexes. Biochemistry 2007; 46:4184-94. [PMID: 17341095 PMCID: PMC2584444 DOI: 10.1021/bi062175c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of protein to a phospholipid surface is commonly mediated by amphipathic alpha-helices. To understand the role of alpha-helical structure in protein-lipid interactions, we used discoidal lipoproteins reconstituted from dimyristoylphosphatidylcholine (DMPC) and human apolipoprotein C-I (apoC-I, 6 kDa) or its mutants containing single Pro substitutions along the sequence and differing in their alpha-helical content in solution (0-48%) and on DMPC (40-75%). Thermal denaturation revealed that lipoprotein stability correlates weakly with the protein helix content: proteins with higher alpha-helical content on DMPC may form more stable complexes. Lipoprotein reconstitution upon cooling from the heat-denatured state and DMPC clearance studies revealed that protein secondary structure in solution and on DMPC correlates strongly with the maximal temperature of lipoprotein reconstitution: more helical proteins can reconstitute lipoproteins at higher temperatures. Interestingly, at Tc = 24 degrees C of the DMPC gel-to-liquid crystal transition, the clearance rate is independent of the protein helical content. Consequently, if the packing defects at the phospholipid surface are readily available (e.g., at the lipid phase boundary), insertion of protein into these defects is independent of the secondary structure in solution. However, if hydrophobic defects are limited, protein binding and insertion are aided by other surface-bound proteins and depend on their helical propensity: the larger the propensity, the faster the binding and the broader its temperature range. This positive cooperativity in binding of alpha-helices to phospholipid surface, which may result from direct and/or lipid-mediated protein-protein interactions, may be important for lipoprotein metabolism and for protein-membrane binding.
Collapse
Affiliation(s)
- Sangeeta Benjwal
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
68
|
Vedhachalam C, Narayanaswami V, Neto N, Forte TM, Phillips MC, Lund-Katz S, Bielicki JK. The C-terminal lipid-binding domain of apolipoprotein E is a highly efficient mediator of ABCA1-dependent cholesterol efflux that promotes the assembly of high-density lipoproteins. Biochemistry 2007; 46:2583-93. [PMID: 17305370 DOI: 10.1021/bi602407r] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was undertaken to identify the alpha-helical domains of human apoE that mediate cellular cholesterol efflux and HDL assembly via ATP-binding cassette transporter A1 (ABCA1). The C-terminal (CT) domain (residues 222-299) of apoE was found to stimulate ABCA1-dependent cholesterol efflux in a manner similar to that of intact apoE2, -E3, and -E4 in studies using J774 macrophages and HeLa cells. The N-terminal (NT) four-helix bundle domain (residues 1-191) was a relatively poor mediator of cholesterol efflux. On a per molecule basis, the CT domain stimulated cholesterol efflux with the same efficiency (Km approximately 0.2 microM) as intact apoA-I and apoE. Gel filtration chromatography of conditioned medium from ABCA1-expressing J774 cells revealed that, like the intact apoE isoforms, the CT domain promoted the assembly of HDL particles with diameters of 8 and 13 nm. Removal of the CT domain abolished the formation of HDL-sized particles, and only larger particles eluting in the void volume were formed. Studies with CT truncation mutants of apoE3 and peptides indicated that hydrophobic helical segments governed the efficiency of cellular cholesterol efflux and that conjoined class A and G amphipathic alpha-helices were required for optimal efflux activity. Collectively, the data suggest that the CT lipid-binding domain of apoE encompassing amino acids 222-299 is necessary and sufficient for mediating ABCA1 lipid efflux and HDL particle assembly.
Collapse
Affiliation(s)
- Charulatha Vedhachalam
- GI/Nutrition Division, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Chou CY, Jen WP, Hsieh YH, Shiao MS, Chang GG. Structural and functional variations in human apolipoprotein E3 and E4. J Biol Chem 2006; 281:13333-13344. [PMID: 16540478 DOI: 10.1074/jbc.m511077200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There are three major apolipoprotein E (apoE) isoforms. Although APOE-epsilon3 is considered a longevity gene, APOE-epsilon4 is a dual risk factor to atherosclerosis and Alzheimer disease. We have expressed full-length and N- and C-terminal truncated apoE3 and apoE4 tailored to eliminate helix and domain interactions to unveil structural and functional disturbances. The N-terminal truncated apoE4-(72-299) and C-terminal truncated apoE4-(1-231) showed more complicated or aggregated species than those of the corresponding apoE3 counterparts. This isoformic structural variation did not exist in the presence of dihexanoylphosphatidylcholine. The C-terminal truncated apoE-(1-191) and apoE-(1-231) proteins greatly lost lipid binding ability as illustrated by the dimyristoylphosphatidylcholine turbidity clearance. The low density lipoprotein (LDL) receptor binding ability, determined by a competition binding assay of 3H-LDL to the LDL receptor of HepG2 cells, showed that apoE4 proteins with N-terminal (apoE4-(72-299)), C-terminal (apoE4-(1-231)), or complete C-terminal truncation (apoE4-(1-191)) maintained greater receptor binding abilities than their apoE3 counterparts. The cholesterol-lowering abilities of apoE3-(72-299) and apoE3-(1-231) in apoE-deficient mice were decreased significantly. The structural preference of apoE4 to remain functional in solution may explain the enhanced opportunity of apoE4 isoform to display its pathophysiologic functions in atherosclerosis and Alzheimer disease.
Collapse
Affiliation(s)
- Chi-Yuan Chou
- Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Wei-Ping Jen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yi-Hui Hsieh
- Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Ming-Shi Shiao
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Gu-Gang Chang
- Faculty of Life Sciences, Institute of Biochemistry, Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
70
|
Clément-Collin V, Barbier A, Dergunov AD, Visvikis A, Siest G, Desmadril M, Takahashi M, Aggerbeck LP. The structure of human apolipoprotein E2, E3 and E4 in solution. 2. Multidomain organization correlates with the stability of apoE structure. Biophys Chem 2006; 119:170-85. [PMID: 16125836 DOI: 10.1016/j.bpc.2005.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 06/02/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
The stabilities toward thermal and chemical denaturation of three recombinant isoforms of human apolipoprotein E (r-apoE2, r-apoE3 and r-apoE4), human plasma apoE3, the recombinant amino-terminal (NT) and the carboxyl-terminal (CT) domains of plasma apoE3 at pH 7 were studied using near and far ultraviolet circular dichroism (UV CD), fluorescence and size-exclusion chromatography. By far UV CD, thermal unfolding was irreversible for the intact apoE isoforms and consisted of a single transition. The r-apoE3 was found to be less stable as compared to the plasma protein and the stability of recombinant isoforms was r-apoE4<r-apoE3<r-apoE2. The thermal denaturation of the isolated NT- and CT-domains of apoE3 was largely reversible and included two transitions. The NT-domain was more resistant to heating than the CT-domain, both of which were more resistant than the intact protein. By near UV CD, the thermal unfolding was biphasic. When compared, thermal unfolding of the secondary and tertiary structures appeared to occur concurrently in r-apoE2 whereas heating affected the tertiary structure, initially, in r-apoE3 and r-apoE4. Denaturation with guanidine hydrochloride did not follow a two-state transition. A three-state treatment of the denaturation curves revealed the order of stability as r-apoE4<r-apoE3<r-apoE2 for the whole proteins as well as that for the NT-domains, as established by fluorescence and far UV CD spectroscopy, whereas the CT-domains had roughly similar stabilities. There are isoform-specific differences in the stability and in the state of association and the unfolding of both the NT- and CT-domains may be more complex than a two-state transition.
Collapse
Affiliation(s)
- Vanessa Clément-Collin
- Centre de Génétique Moléculaire UPR 2167, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Stratman NC, Castle CK, Taylor BM, Epps DE, Melchior GW, Carter DB. Isoform-specific interactions of human apolipoprotein E to an intermediate conformation of human Alzheimer amyloid-beta peptide. Chem Phys Lipids 2005; 137:52-61. [PMID: 16140289 DOI: 10.1016/j.chemphyslip.2005.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 06/22/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Brain plaque deposits of amyloid-beta peptide (Abeta) is a pathological hallmark of Alzheimer's disease (AD) and apolipoprotein E (apoE) is thought to be involved in its deposition. One hypothesis for the role of apoE in the pathogenesis of AD is that apoE may be involved in deposition or clearance of Abeta by direct protein-to-protein interaction. Lipidated apoE4 bound preferentially to an intermediate aggregated form of Abeta and formed two- to three-fold more binding complexes than isoforms apoE2 or apoE3. The interaction was detected by a sandwich ELISA with capture antibodies specific for the N-terminus of apoE, whereas the interaction was not recognized with a C-terminal antibody. The observations indicate that the C-terminus of apoE4 interacts with the intermediate form of Abeta. The differential risk of AD related to apoE genotype may be the result of an enhanced capacity of apoE4 binding to an intermediate aggregated form of Abeta.
Collapse
|
72
|
Schneeweis LA, Koppaka V, Lund-Katz S, Phillips MC, Axelsen PH. Structural analysis of lipoprotein E particles. Biochemistry 2005; 44:12525-34. [PMID: 16156664 DOI: 10.1021/bi050872j] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apolipoprotein E (apoE) is a key regulator of cholesterol homeostasis. Human apoE has three common isoforms, each with different risk implications for cardiovascular and neurodegenerative disease. Neither the structure of lipoprotein E particles nor the structural consequences of the isoform differences are known. In this investigation, synthetic lipoprotein particles were prepared by complexing phospholipids with full-length apoE isoforms, or with truncated N-terminal and C-terminal domains of apoE. These particles were examined with calorimetry, electron microscopy, circular dichroism spectroscopy, and internal reflection infrared spectroscopy. Results indicate that particles made with the three full-length apoE isoforms are discoidal in shape, and structurally indistinguishable. Thus, differences in their pathological consequences are not due to gross differences in particle structure. Although apoE is predominantly helical, and the axes of the helices are parallel to the flat surfaces of the particles, the orientational order of lipid acyl chains is low and inconsistent with the belt model of lipoprotein A-I structure. Instead, the data suggest that there are at least two different types of apoE-lipid interactions within lipoprotein E particles. One type occurs between apoE helices and the edge of the lipid bilayer as in the belt model, while a second type involves apoE helices that situate in the plane of the membrane and disturb acyl chain order. These interactions allow LpE particles to form with different protein/lipid ratios, and they account for the structure of LpE particles made with only the truncated domains.
Collapse
|
73
|
Peters-Libeu CA, Newhouse Y, Hatters DM, Weisgraber KH. Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine. J Biol Chem 2005; 281:1073-9. [PMID: 16278220 DOI: 10.1074/jbc.m510851200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo)E plays a critical role in cholesterol transport, through high affinity binding to the low density lipoprotein receptor. This interaction requires apoE to be associated with a lipoprotein particle. To determine the structure of biologically active apoE on a lipoprotein particle, we crystallized dipalmitoylphosphatidylcholine particles containing two apoE molecules and determined the molecular envelope of apoE at 10 Angstroms resolution. On the basis of the molecular envelope and supporting biochemical evidence, we propose a model in which each apoE molecule is folded into a helical hairpin with the binding region for the low density lipoprotein receptor at its apex.
Collapse
Affiliation(s)
- Clare A Peters-Libeu
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
74
|
Davidson WS, Ghering AB, Beish L, Tubb MR, Hui DY, Pearson K. The biotin-capture lipid affinity assay: a rapid method for determining lipid binding parameters for apolipoproteins. J Lipid Res 2005; 47:440-9. [PMID: 16267343 DOI: 10.1194/jlr.d500034-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid affinity of plasma apolipoproteins is an important modulator of lipoprotein metabolism. Mutagenesis techniques have been widely used to modulate apolipoprotein lipid affinity for studying biological function, but the approach requires rapid and reliable lipid affinity assays to compare the mutants. Here, we describe a novel method that measures apolipoprotein binding to a standardized preparation of small unilamellar vesicles (SUVs) containing trace biotinylated and fluorescent phospholipids. After a 30 min incubation at various apolipoprotein concentrations, vesicle-bound protein is rapidly separated from free protein on columns of immobilized streptavidin in a 96-well microplate format. Vesicle-bound protein and lipid are eluted and measured in a fluorescence microplate reader for calculation of a dissociation constant and the maximum number of potential binding sites on the SUVs. Using human apolipoprotein A-I (apoA-I), apoA-IV, and mutants of each, we show that the assay generates binding constants that are comparable to other methods and is reproducible across time and apolipoprotein preparations. The assay is easy to perform and can measure triplicate binding parameters for up to 10 separate apolipoproteins in 3.5 h, consuming only 120 microg of apolipoprotein in total. The benefits and potential drawbacks of the assay are discussed.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237-0507, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Pearson K, Tubb MR, Tanaka M, Zhang XQ, Tso P, Weinberg RB, Davidson WS. Specific Sequences in the N and C Termini of Apolipoprotein A-IV Modulate Its Conformation and Lipid Association. J Biol Chem 2005; 280:38576-82. [PMID: 16159879 DOI: 10.1074/jbc.m506802200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apoA-IV) is a 376-residue exchangeable apolipoprotein that may play a number of important roles in lipid metabolism, including chylomicron assembly, reverse cholesterol transport, and appetite regulation. In vivo, apoA-IV exists in both lipid-poor and lipid-associated forms, and the balance between these states may determine its function. We examined the structural elements that modulate apoA-IV lipid binding by producing a series of deletion mutants and determining their ability to interact with phospholipid liposomes. We found that the deletion of residues 333-343 strongly increased the lipid association rate versus native apoA-IV. Additional mutagenesis revealed that two phenylalanine residues at positions 334 and 335 mediated this lipid binding inhibitory effect. We also observed that residues 11-20 in the N terminus were required for the enhanced lipid affinity induced by deletion of the C-terminal sequence. We propose a structural model in which these sequences can modulate the conformation and lipid affinity of apoA-IV.
Collapse
Affiliation(s)
- Kevin Pearson
- Department of Pathology and Laboratory Medicine, The University of Cincinnati, Cincinnati, Ohio 45237-0507, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Hatters DM, Peters-Libeu CA, Weisgraber KH. Engineering conformational destabilization into mouse apolipoprotein E. A model for a unique property of human apolipoprotein E4. J Biol Chem 2005; 280:26477-82. [PMID: 15890642 DOI: 10.1074/jbc.m503910200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E4 is a major risk factor for Alzheimer and cardiovascular diseases. ApoE4 differs from the two other common isoforms (apoE2 and apoE3) by its lower resistance to denaturation and greater propensity to form partially folded intermediates. As a first step to determine the importance of stability differences in vivo, we reengineered a partially humanized variant of the amino-terminal domain of mouse apoE (T61R mouse apoE) to acquire a destabilized conformation like that of apoE4. For this process, we determined the crystal structure of wild-type mouse apoE, which, like apoE4, forms a four-helix bundle, and identified two structural differences in the turn between helices 2 and 3 and in the middle of helix 3 as potentially destabilizing sites. Introducing mutations G83T and N113G at these sites destabilized the mouse apoE conformation. The mutant mouse apoE more rapidly remodeled phospholipid than T61R mouse apoE, which supports the hypothesis that a destabilized conformation promotes apoE4 lipid binding.
Collapse
Affiliation(s)
- Danny M Hatters
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | | | | |
Collapse
|
77
|
Raussens V, Drury J, Forte T, Choy N, Goormaghtigh E, Ruysschaert JM, Narayanaswami V. Orientation and mode of lipid-binding interaction of human apolipoprotein E C-terminal domain. Biochem J 2005; 387:747-54. [PMID: 15588256 PMCID: PMC1135005 DOI: 10.1042/bj20041536] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 12/02/2004] [Accepted: 12/10/2004] [Indexed: 11/17/2022]
Abstract
ApoE (apolipoprotein E) is an anti-atherogenic lipid transport protein that plays an integral role in lipoprotein metabolism and cholesterol homoeostasis. Lipid association educes critical functional features of apoE, mediating reduction in plasma and cellular cholesterol levels. The 10-kDa CT (C-terminal) domain of apoE facilitates helix-helix interactions in lipid-free state to promote apoE self-association and helix-lipid interactions during binding with lipoproteins, although the mode of lipid-binding interaction is not well understood. We investigated the mode of lipid-binding interaction and orientation of apoE CT domain on reconstituted lipoproteins. Isolated recombinant human apoE CT domain (residues 201-299) possesses a strong ability to interact with phospholipid vesicles, yielding lipoprotein particles with an apparent molecular mass of approximately 600 kDa, while retaining the overall alpha-helical content. Electron microscopy and non-denaturing PAGE analysis of DMPC (dimyristoylphosphatidylcholine)--apoE CT domain lipoprotein complexes revealed discoidal complexes with a diameter of approx. 17 nm. Cross-linking apoE CT domain on discoidal particles yielded dimeric species as the major product. Attenuated total reflectance Fourier transform IR spectroscopy of phospholipid-apoE CT domain complexes reveals that the helical axis is oriented perpendicular to fatty acyl chains of the phospholipid. Fluorescence quenching analysis of DMPC-apoE CT domain discoidal complexes by spin-labelled stearic acid indicated a relatively superficial location of the native tryptophan residues with respect to the plane of the phospholipid bilayer. Taken together, we propose that apoE CT domain interacts with phospholipid vesicles, forming a long extended helix that circumscribes the discoidal bilayer lipoprotein complex.
Collapse
Key Words
- apolipoprotein e
- cross-linking
- electron microscopy
- ir spectroscopy
- lipid-bound conformation
- lipoprotein-binding surface
- apoa-i, apolipoprotein a-i
- apoe, apolipoprotein e
- atr-ftir, attenuated total reflectance fourier transform ir
- ct, c-terminal
- dmpc, dimyristoylphosphatidylcholine
- dmpg, dimyristoylphosphatidylglycerol
- 5-dsa, 5-doxyl stearic acid
- 12-dsa, 12-doxyl stearic acid
- dss, disuccinimidyl suberate
- hdl, high-density lipoprotein
- ldl, low-density lipoprotein
- nt, n-terminal
Collapse
Affiliation(s)
- Vincent Raussens
- *Structure and Function of Biological Membranes, Université Libre de Bruxelles, CP-206/2, bd. Du Triomphe, B-1050 Brussels, Belgium
| | - Jessica Drury
- †Lipid Biology in Health and Disease Research Group, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, U.S.A
| | - Trudy M. Forte
- †Lipid Biology in Health and Disease Research Group, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, U.S.A
| | - Nicole Choy
- †Lipid Biology in Health and Disease Research Group, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, U.S.A
| | - Erik Goormaghtigh
- *Structure and Function of Biological Membranes, Université Libre de Bruxelles, CP-206/2, bd. Du Triomphe, B-1050 Brussels, Belgium
| | - Jean-Marie Ruysschaert
- *Structure and Function of Biological Membranes, Université Libre de Bruxelles, CP-206/2, bd. Du Triomphe, B-1050 Brussels, Belgium
| | - Vasanthy Narayanaswami
- †Lipid Biology in Health and Disease Research Group, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, U.S.A
| |
Collapse
|
78
|
Saito H, Lund-Katz S, Phillips MC. Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Prog Lipid Res 2004; 43:350-80. [PMID: 15234552 DOI: 10.1016/j.plipres.2004.05.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Exchangeable apolipoproteins function in lipid transport as structural components of lipoprotein particles, cofactors for enzymes and ligands for cell-surface receptors. Recent findings with apoA-I and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related. Characteristically, these proteins contain a series of proline-punctuated, 11- or 22-amino acid, amphipathic alpha-helical repeats that can adopt a helix bundle conformation in the lipid-free state. The amino- and carboxyl-terminal regions form separate domains with the latter being primarily responsible for lipid binding. Interaction with lipid induces changes in the conformation of the amino-terminal domain leading to alterations in function; for example, opening of the amino-terminal four-helix bundle in apolipoprotein E upon lipid binding is associated with enhanced receptor-binding activity. The concept of a two-domain structure for the larger exchangeable apolipoproteins is providing new molecular insights into how these apolipoproteins interact with lipids and other proteins, such as receptors. The ways in which structural changes induced by lipid interaction modulate the functionality of these apolipoproteins are reviewed.
Collapse
Affiliation(s)
- Hiroyuki Saito
- Lipid Research Group, The Children's Hospital of Philadelphia, Abramson Research Center, Suite 1102, 3615 Civic Center Boulevard, University of Pennsylvania School of Medicine, Philadelphia, 19104-4318, USA
| | | | | |
Collapse
|
79
|
Weers PMM, Ryan RO. Apolipophorin III: a lipid-triggered molecular switch. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1249-1260. [PMID: 14599497 DOI: 10.1016/j.ibmb.2003.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Apolipophorin III (apoLp-III) is a low molecular weight exchangeable apolipoprotein that plays an important role in the enhanced neutral lipid transport during insect flight. The protein exists in lipid-free and lipid-bound states. The lipid-bound state is the active form of the protein and occurs when apoLp-III associates with lipid-enriched lipophorins. ApoLp-III is well characterized in two evolutionally divergent species: Locusta migratoria and Manduca sexta. The two apolipoproteins interact in a similar manner with model phospholipid vesicles, and transform them into discoidal particles. Their low intrinsic stability in the lipid-free state likely facilitates interaction with lipid surfaces. Low solution pH also favors lipid binding interaction through increased exposure of hydrophobic surfaces on apoLp-III. While secondary structure is maintained under acidic conditions, apoLp-III tertiary structure is altered, adopting molten globule-like characteristics. In studies of apoLp-III interaction with natural lipoproteins, we found that apoLp-III is readily displaced from the surface of L. migratoria low-density lipophorin by recombinant apoLp-III proteins from either L. migratoria or M. sexta. Thus, despite important differences between these two apoLp-IIIs (amino acid sequence, presence of carbohydrate), their functional similarity is striking. This similarity is also illustrated by the recently published NMR solution structure of M. sexta apoLp-III wherein its molecular architecture closely parallels that of L. migratoria apoLp-III.
Collapse
Affiliation(s)
- Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA.
| | | |
Collapse
|
80
|
Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC, Lund-Katz S. Effects of polymorphism on the lipid interaction of human apolipoprotein E. J Biol Chem 2003; 278:40723-9. [PMID: 12917433 DOI: 10.1074/jbc.m304814200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ApoE exists as three common isoforms, apoE2, apoE3, and apoE4; apoE2 and apoE3 preferentially bind to high density lipoproteins, whereas apoE4 prefers very low density lipoproteins (VLDL). To understand the molecular basis for the different lipoprotein distributions of these isoforms in human plasma, we examined the lipid-binding properties of the apoE isoforms and some mutants using lipid emulsions. With both large (120 nm) and small (35 nm) emulsion particles, the binding affinity of apoE4 was much higher than that of apoE2 and apoE3, whereas the maximal binding capacities were similar among the three isoforms. The 22-kDa N-terminal fragment of apoE4 displayed a much higher binding capacity than did apoE2 and apoE3. The apoE4(E255A) mutant, which has no electrostatic interaction between Arg61 and Glu255, showed binding behavior similar to that of apoE3, indicating that N- and C-terminal domain interaction in apoE4 is responsible for its high affinity for lipid. In addition, the apoE3(P267A) mutant, which is postulated to contain a long alpha-helix in the C-terminal domain, had significantly decreased binding capacities for both sizes of emulsion particle, suggesting that the apoE4 preference for VLDL is not due to a stabilized long alpha-helical structure. Isothermal titration calorimetry measurements showed that there is no significant difference in thermodynamic parameters for emulsion binding among the apoE isoforms. However, fluorescence measurements of 8-anilino-1-naphthalenesulfonic acid binding to apoE indicated that apoE4 has more exposed hydrophobic surface compared with apoE3 mainly due to the different tertiary organization of the C-terminal domain. The less organized structure in the C-terminal domain of apoE4 leads to the higher affinity for lipid, contributing to its preferential association with VLDL. In fact, we found that apoE4 binds to VLDL with higher affinity compared with apoE3.
Collapse
Affiliation(s)
- Hiroyuki Saito
- National Institute of Health Sciences, Osaka Branch, Osaka 540-0006, Japan
| | | | | | | | | | | |
Collapse
|
81
|
Saito H, Dhanasekaran P, Nguyen D, Holvoet P, Lund-Katz S, Phillips MC. Domain structure and lipid interaction in human apolipoproteins A-I and E, a general model. J Biol Chem 2003; 278:23227-32. [PMID: 12709430 DOI: 10.1074/jbc.m303365200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.
Collapse
Affiliation(s)
- Hiroyuki Saito
- National Institute of Health Sciences, Osaka Branch, Osaka 540-0006, Japan
| | | | | | | | | | | |
Collapse
|
82
|
Morrow JA, Hatters DM, Lu B, Hochtl P, Oberg KA, Rupp B, Weisgraber KH. Apolipoprotein E4 forms a molten globule. A potential basis for its association with disease. J Biol Chem 2002; 277:50380-5. [PMID: 12393895 DOI: 10.1074/jbc.m204898200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino-terminal domain of apolipoprotein (apo) E4 is less susceptible to chemical and thermal denaturation than the apoE3 and apoE2 domains. We compared the urea denaturation curves of the 22-kDa amino-terminal domains of the apoE isoforms at pH 7.4 and 4.0. At pH 7.4, apoE3 and apoE4 reflected an apparent two-state denaturation. The midpoints of denaturation were 5.2 and 4.3 m urea, respectively. At pH 4.0, a pH value known to stabilize folding intermediates, apoE4 and apoE3 displayed the same order of denaturation but with distinct plateaus, suggesting the presence of a stable folding intermediate. In contrast, apoE2 proved the most stable and lacked the distinct plateau observed with the other two isoforms and could be fitted to a two-state unfolding model. Analysis of the curves with a three-state unfolding model (native, intermediate, and unfolded) showed that the apoE4 folding intermediate reached its maximal concentration ( approximately 90% of the mixture) at 3.75 m, whereas the apoE3 intermediate was maximal at 4.75 m ( approximately 80%). These results are consistent with apoE4 being more susceptible to unfolding than apoE3 and apoE2 and more prone to form a stable folding intermediate. The structure of the apoE4 folding intermediate at pH 4.0 in 3.75 m urea was characterized using pepsin proteolysis, Fourier transform infrared spectroscopy, and dynamic light scattering. From these studies, we conclude that the apoE4 folding intermediate is a single molecule with the characteristics of a molten globule. We propose a model of the apoE4 molten globule in which the four-helix bundle of the amino-terminal domain is partially opened, generating a slightly elongated structure and exposing the hydrophobic core. Since molten globules have been implicated in both normal and abnormal physiological function, the differential abilities of the apoE isoforms to form a molten globule may contribute to the isoform-specific effects of apoE in disease.
Collapse
Affiliation(s)
- Julie A Morrow
- Gladstone Institutes of Cardiovascular Disease and Neurological Disease, San Francisco, California 94141-9100, USA
| | | | | | | | | | | | | |
Collapse
|