51
|
Mortellaro A, Robinson L, Ricciardi-Castagnoli P. Spotlight on Mycobacteria and dendritic cells: will novel targets to fight tuberculosis emerge? EMBO Mol Med 2010; 1:19-29. [PMID: 20049700 PMCID: PMC3378112 DOI: 10.1002/emmm.200900008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Over thousands of years microbes and mammals have co-evolved, resulting in extraordinarily sophisticated molecular mechanisms permitting the organisms to survive together. Mycobacterium tuberculosis is one of the best examples of successful co-evolution, since the bacilli have infected one third of the human population, but in 90% of the cases without causing overt disease. Despite this, increasing incidence of Human Immunodeficiency Virus (HIV) infection and the emergence of drug-resistant strains means that tuberculosis is in fact an extremely serious emerging threat to global health. Decades of work have focused on the interaction of this pathogen with its established cellular host, the macrophage, but still novel therapeautics remain elusive. While the macrophage is clearly important, recent evidence suggests that understanding the role of dendritic cells, which are key regulators of immunity, may be a crucial step in identifying new means of controlling this disease. Novel technologies, in particular genome-wide transcriptome analyses, are advancing our ability to dissect the complex dynamic relationships between dendritic cells and mycobacteria, highlighting new areas for study that have not been previously explored.
Collapse
|
52
|
Astarie-Dequeker C, Nigou J, Passemar C, Guilhot C. The role of mycobacterial lipids in host pathogenesis. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ddmec.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
Torrelles JB, Schlesinger LS. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb) 2010; 90:84-93. [PMID: 20199890 PMCID: PMC2855779 DOI: 10.1016/j.tube.2010.02.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
Mycobacterium tuberculosis (the causal agent of TB) has co-evolved with humans for centuries. It infects via the airborne route and is a prototypic highly adapted intracellular pathogen of macrophages. Extensive sequencing of the M. tuberculosis genome along with recent molecular phylogenetic studies is enabling us to gain insight into the biologic diversity that exists among bacterial strains that impact the pathogenesis of latent infection and disease. The majority of the M. tuberculosis cell envelope is comprised of carbohydrates and lipids, and there is increasing evidence that these microbial determinants that are readily exposed to the host immune system play critical roles in disease pathogenesis. Studies from our laboratory and others have raised the possibility that M. tuberculosis is adapting to the human host by cloaking its cell envelope molecules with terminal mannosylated (i.e. Man-alpha-(1-->2)-Man) oligosaccharides that resemble the glycoforms of mammalian mannoproteins. These mannosylated biomolecules engage the mannose receptor (MR) on macrophages during phagocytosis and dictate the intracellular fate of M. tuberculosis by regulating formation of the unique vesicular compartment in which the bacterium survives. The MR is highly expressed on alveolar macrophages (predominant C-type lectin on human cells) and functions as a scavenger receptor to maintain the healthiness of the lung by clearing foreign particles and at the same time regulating dangerous inflammatory responses. Thus M. tuberculosis exploits MR functions to gain entry into the macrophage and survive. Key biochemical pathways and mycobacterial determinants involved in the development and maintenance of the M. tuberculosis phagosome are being identified. The phylogenetic diversity observed in M. tuberculosis strains that impact its cell wall structure together with the genetic diversity observed in human populations, including those elements that affect macrophage function, may help to explain the extraordinary evolutionary adaptation of this pathogen to the human host. Major developments in these areas are the focus of this review.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
54
|
Lipid profiling using two-dimensional heteronuclear single quantum coherence NMR. Methods Mol Biol 2009. [PMID: 19763472 DOI: 10.1007/978-1-60761-322-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The use of NMR spectroscopy in lipid research has been traditionally reserved for the analysis and structural elucidation of discrete lipid molecules. Although NMR analysis of organic molecules provides a plethora of structural information that is normally unattainable by most other techniques, its use for global analysis of mixed lipid pools has been hampered by its relatively low sensitivity and overlapping of signals in the spectrum. However, the last few decades have witnessed great advancements in NMR spectroscopy that generally resulted in greater sensitivity and offered more flexibility in sampling techniques. The method discussed in this chapter describes the use of NMR for global lipidome analysis. This methodology benefits from the quantitative nature of this technique together with the abundance of the structural information it can offer, while partially overcoming the problems of low sensitivity and overlapping signals through isotope-enrichment and the use of multidimensional NMR, respectively. We have applied this method successfully to the mycobacterial lipidome as an example of an organism with a very complex and chemically diverse lipid pool. The same concept is applicable to a wide range of prokaryotes that can grow in the laboratory in well-defined growth media.
Collapse
|
55
|
Boonyarattanakalin S, Liu X, Michieletti M, Lepenies B, Seeberger PH. Chemical synthesis of all phosphatidylinositol mannoside (PIM) glycans from Mycobacterium tuberculosis. J Am Chem Soc 2009; 130:16791-9. [PMID: 19049470 DOI: 10.1021/ja806283e] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of multidrug-resistant tuberculosis (TB) and problems with the BCG tuberculosis vaccine to protect humans against TB have prompted investigations into alternative approaches to combat this disease by exploring novel bacterial drug targets and vaccines. Phosphatidylinositol mannosides (PIMs) are biologically important glycoconjugates and represent common essential precursors of more complex mycobacterial cell wall glycolipids including lipomannan (LM), lipoarabinomannan (LAM), and mannan capped lipoarabinomannan (ManLAM). Synthetic PIMs constitute important biochemical tools to elucidate the biosynthesis of this class of molecules, to reveal PIM interactions with host cells, and to investigate the function of PIMs as potential antigens and/or adjuvants for vaccine development. Here, we report the efficient synthesis of all PIMs including phosphatidylinositol (PI) and phosphatidylinositol mono- to hexa-mannoside (PIM1 to PIM6). Robust synthetic protocols were developed for utilizing bicyclic and tricyclic orthoesters as well as mannosyl phosphates as glycosylating agents. Each synthetic PIM was equipped with a thiol-linker for immobilization on surfaces and carrier proteins for biological and immunological studies. The synthetic PIMs were immobilized on microarray slides to elucidate differences in binding to the dendritic cell specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN) receptor. Synthetic PIMs served as immune stimulators during immunization experiments in C57BL/6 mice when coupled to the model antigen keyhole-limpet hemocyanin (KLH).
Collapse
Affiliation(s)
- Siwarutt Boonyarattanakalin
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Str. 10, HCI F312, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
56
|
Carlson TK, Torrelles JB, Smith K, Horlacher T, Castelli R, Seeberger PH, Crouch EC, Schlesinger LS. Critical role of amino acid position 343 of surfactant protein-D in the selective binding of glycolipids from Mycobacterium tuberculosis. Glycobiology 2009; 19:1473-84. [PMID: 19684355 DOI: 10.1093/glycob/cwp122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Surfactant protein D (SP-D), a lectin that recognizes carbohydrates via its C-type carbohydrate recognition domains (CRDs), regulates Mycobacterium tuberculosis (M.tb)-macrophage interactions via recognition of M.tb mannosylated cell wall components. SP-D binds to, agglutinates, and reduces phagocytosis and intracellular growth of M.tb. Species-specific variations in the CRD amino acid sequence contribute to carbohydrate recognition preferences and have been exploited to enhance the antimicrobial properties of SP-D in vitro. Here, we characterized the binding interaction between several wild-type and mutant SP-D neck + CRD trimeric subunits (NCRDs) and pathogenic and nonpathogenic mycobacterial species. Specific amino acid substitutions (i.e., the 343-amino-acid position) that flank the carbohydrate binding groove led to significant increases in binding of only virulent and attenuated M.tb strains and to a lesser extent M. marinum, whereas there was negligible binding to M. avium complex and M. smegmatis. Moreover, a nonconserved mutation at the critical 321-amino-acid position (involved in Ca(2+) coordination) abrogated binding to M.tb and M. marinum. We further characterized the binding of NCRDs to the predominant surface-exposed mannosylated lipoglycans of the M.tb cell envelope. Results showed a binding pattern that is dependent on the nature of the side chain of the 343-amino-acid position flanking the SP-D CRD binding groove and the nature of the terminal mannosyl sugar linkages of the mycobacterial lipoglycans. We conclude that the 343 position is critical in defining the binding pattern of SP-D proteins to M.tb and its mannosylated cell envelope components.
Collapse
Affiliation(s)
- Tracy K Carlson
- Division of Infectious Diseases, Department of Internal Medicine, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DC-SIGN. Infect Immun 2009; 77:4538-47. [PMID: 19651855 DOI: 10.1128/iai.01256-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The C-type lectin dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is the major receptor on DCs for mycobacteria of the Mycobacterium tuberculosis complex. Recently, we have shown that although the mannose caps of the mycobacterial surface glycolipid lipoarabinomannan (ManLAM) are essential for the binding to DC-SIGN, genetic removal of these caps did not diminish the interaction of whole mycobacteria with DC-SIGN and DCs. Here we investigated the role of the structurally related glycolipids phosphatidylinositol mannosides (PIMs) as possible ligands for DC-SIGN. In a binding assay with both synthetic and natural PIMs, DC-SIGN exhibited a high affinity for hexamannosylated PIM(6), which contains terminal alpha(1-->2)-linked mannosyl residues identical to the mannose cap on ManLAM, but not for di- and tetramannosylated PIM(2) and PIM(4), respectively. To determine the role of PIM(6) in the binding of whole mycobacteria to DC-SIGN, a mutant strain of M. bovis bacillus Calmette-Guérin deficient in the production of PIM(6) (Delta pimE) was created, as well as a double knockout deficient in the production of both PIM(6) and the mannose caps on LAM (Delta pimE Delta capA). Compared to the wild-type strain, both mutant strains bound similarly well to DC-SIGN and DCs. Furthermore, the wild-type and mutant strains induced comparable levels of interleukin-10 and interleukin-12p40 when used to stimulate DCs. Hence, we conclude that, like ManLAM, PIM(6) represents a bona fide DC-SIGN ligand but that other, as-yet-unknown, ligands dominate in the interaction between mycobacteria and DCs.
Collapse
|
58
|
Guenin-Macé L, Siméone R, Demangel C. Lipids of Pathogenic Mycobacteria: Contributions to Virulence and Host Immune Suppression. Transbound Emerg Dis 2009; 56:255-68. [DOI: 10.1111/j.1865-1682.2009.01072.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
59
|
Torrelles JB, DesJardin LE, MacNeil J, Kaufman TM, Kutzbach B, Knaup R, McCarthy TR, Gurcha SS, Besra GS, Clegg S, Schlesinger LS. Inactivation of Mycobacterium tuberculosis mannosyltransferase pimB reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death. Glycobiology 2009; 19:743-55. [PMID: 19318518 PMCID: PMC2688391 DOI: 10.1093/glycob/cwp042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 11/12/2022] Open
Abstract
The Mycobacterium tuberculosis (M.tb) cell wall contains an important group of structurally related mannosylated lipoglycans called phosphatidyl-myo-inositol mannosides (PIMs), lipomannan (LM), and mannose-capped lipoarabinomannan (ManLAM), where the terminal alpha-[1-->2] mannosyl structures on higher order PIMs and ManLAM have been shown to engage C-type lectins such as the macrophage mannose receptor directing M.tb phagosome maturation arrest. An important gene described in the biosynthesis of these molecules is the mannosyltransferase pimB (Rv0557). Here, we disrupted pimB in a virulent strain of M.tb. We demonstrate that the inactivation of pimB in M.tb does not abolish the production of any of its cell wall mannosylated lipoglycans; however, it results in a quantitative decrease in the ManLAM and LM content without affecting higher order PIMs. This finding indicates gene redundancy or the possibility of an alternative biosynthetic pathway that may compensate for the PimB deficiency. Furthermore, infection of human macrophages by the pimB mutant leads to an alteration in macrophage phenotype concomitant with a significant increase in the rate of macrophage death.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Division of Infectious Diseases, Department of Medicine, The Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | - Lucy E DesJardin
- Departments of Medicine and Microbiology, University of Iowa, Iowa City, IA 52240, USA
| | - Jessica MacNeil
- Departments of Medicine and Microbiology, University of Iowa, Iowa City, IA 52240, USA
| | - Thomas M Kaufman
- Departments of Medicine and Microbiology, University of Iowa, Iowa City, IA 52240, USA
| | - Beth Kutzbach
- Departments of Medicine and Microbiology, University of Iowa, Iowa City, IA 52240, USA
| | - Rose Knaup
- Division of Infectious Diseases, Department of Medicine, The Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| | | | - Sudagar S Gurcha
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven Clegg
- Departments of Medicine and Microbiology, University of Iowa, Iowa City, IA 52240, USA
| | - Larry S Schlesinger
- Division of Infectious Diseases, Department of Medicine, The Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
60
|
Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 2009; 77:3389-401. [PMID: 19470749 DOI: 10.1128/iai.00143-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, initially contacts host cells with elements of its outer cell wall, or capsule. We have shown that capsular material from the surface of M. tuberculosis competitively inhibits the nonopsonic binding of whole M. tuberculosis bacilli to macrophages in a dose-dependent manner that is not acting through a global inhibition of macrophage binding. We have further demonstrated that isolated M. tuberculosis capsular proteins mediate a major part of this inhibition. Two-dimensional polyacrylamide gel electrophoresis analysis of the capsular proteins showed the presence of a wide variety of protein species, including proportionately high levels of the Cpn60.2 (Hsp65, GroEL2) and DnaK (Hsp70) molecular chaperones. Both of these proteins were subsequently detected on the bacterial surface. To determine whether these molecular chaperones play a role in bacterial binding, recombinant Cpn60.2 and DnaK were tested for their ability to inhibit the association of M. tuberculosis bacilli with macrophages. We found that recombinant Cpn60.2 can inhibit approximately 57% of bacterial association with macrophages, while DnaK was not inhibitory at comparable concentrations. Additionally, when polyclonal F(ab')(2) fragments of anti-Cpn60.2 and anti-DnaK were used to mask the surface presentation of these molecular chaperones, a binding reduction of approximately 34% was seen for anti-Cpn60.2 F(ab')(2), while anti-DnaK F(ab')(2) did not significantly reduce bacterial association with macrophages. Thus, our findings suggest that while M. tuberculosis displays both surface-associated Cpn60.2 and DnaK, only Cpn60.2 demonstrates adhesin functionality with regard to macrophage interaction.
Collapse
|
61
|
Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh FK, Chalut C, Lopez A, Guilhot C. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog 2009; 5:e1000289. [PMID: 19197369 PMCID: PMC2632888 DOI: 10.1371/journal.ppat.1000289] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
Phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), in particular during the early step of infection when bacilli encounter their host macrophages. However, their cellular and molecular mechanisms of action remain unknown. Using Mtb mutants deleted for genes involved in DIM biosynthesis, we demonstrated that DIM participate both in the receptor-dependent phagocytosis of Mtb and the prevention of phagosomal acidification. The effects of DIM required a state of the membrane fluidity as demonstrated by experiments conducted with cholesterol-depleting drugs that abolished the differences in phagocytosis efficiency and phagosome acidification observed between wild-type and mutant strains. The insertion of a new cholesterol-pyrene probe in living cells demonstrated that the polarity of the membrane hydrophobic core changed upon contact with Mtb whereas the lateral diffusion of cholesterol was unaffected. This effect was dependent on DIM and was consistent with the effect observed following DIM insertion in model membrane. Therefore, we propose that DIM control the invasion of macrophages by Mtb by targeting lipid organisation in the host membrane, thereby modifying its biophysical properties. The DIM-induced changes in lipid ordering favour the efficiency of receptor-mediated phagocytosis of Mtb and contribute to the control of phagosomal pH driving bacilli in a protective niche. Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is an extremely successful human pathogen. The pathogenesis of bacterium is associated with its ability to invade macrophages and to circumvent bactericidal functions of the host cell in order to survive within a protective niche. The cellular mechanisms are largely investigated but the bacterial factors are poorly known. The outermost layer of the mycobacterial cell envelope is particularly of interest because of its localization at the interface with macrophages. An interesting feature of this envelope is its high lipid content. One group of lipids, the phthiocerol dimycocerosates (DIM), has been studied intensively since being shown to promote Mtb virulence. We investigated the cellular and molecular mechanisms of DIM and demonstrated that DIM participate in the receptor-dependent phagocytosis of Mtb in human macrophages through a mechanism involving a reorganization of the plasma membrane following recognition of bacilli. This modification of the plasma membrane biophysical properties might help Mtb to create a protective niche by preventing acidification of its phagosome. Our results provide a first hint on the molecular mechanism of action of DIM, a key Mtb lipidic virulence factor.
Collapse
Affiliation(s)
- Catherine Astarie-Dequeker
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- * E-mail: (CAD); (CG)
| | - Laurent Le Guyader
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Wladimir Malaga
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Fam-Ky Seaphanh
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Christian Chalut
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - André Lopez
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Christophe Guilhot
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- * E-mail: (CAD); (CG)
| |
Collapse
|
62
|
Hwang SA, Kruzel ML, Actor JK. Influence of bovine lactoferrin on expression of presentation molecules on BCG-infected bone marrow derived macrophages. Biochimie 2009; 91:76-85. [PMID: 18486627 PMCID: PMC2626195 DOI: 10.1016/j.biochi.2008.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/21/2008] [Indexed: 01/14/2023]
Abstract
The current vaccine for tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is an attenuated strain of Mycobacterium bovis bacillus Calmette-Guerin (BCG). BCG has proven to be effective in children, however, efficacy wanes in adulthood. Lactoferrin, a natural protein with immunomodulatory properties, is a potential adjuvant candidate to enhance efficacy of BCG. These studies define bovine lactoferrin as an enhancer of the BCG vaccine, functioning in part by modulating macrophage ability to present antigen and stimulate T-cells. BCG-infected bone marrow derived macrophages (BMMs) cultured with bovine lactoferrin increased the number of MHC II(+) expressing cells. Addition of IFN-gamma and lactoferrin to BCG-infected BMMs enhanced MHC II expressiona dna increased the ratio of CD86/CD80. Lactoferrin treated BCG-infected BMMs were able to stimulate an increase in IFN-gamma production from presensitized CD3(+) splenocytes. Together, these results demonstrate that bovine lactoferrin is capable of modulating BCG-infected macrophages to enhance T-cell stimulation through increased surface expression of antigen presentation and co-stimulatory molecules, which potentially explains the observed in vivo bovine lactoferrin enhancement of BCG vaccine efficacy to protect against virulent MTB infection.
Collapse
Affiliation(s)
- Shen-An Hwang
- Department of Pathology, Medical School, University of Texas-Houston, Houston, TX 77030, USA.
| | | | | |
Collapse
|
63
|
Schäfer G, Jacobs M, Wilkinson RJ, Brown GD. Non-opsonic recognition of Mycobacterium tuberculosis by phagocytes. J Innate Immun 2008; 1:231-43. [PMID: 20375581 PMCID: PMC7312845 DOI: 10.1159/000173703] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/08/2008] [Indexed: 12/15/2022] Open
Abstract
The interactions between Mycobacterium tuberculosis and host phagocytes such as macrophages and dendritic cells are central to both immunity and pathogenesis. Many receptors have been implicated in recognition and binding of M. tuberculosis such as the mannose receptor, dendritic-cell-specific intercellular adhesion molecule-3 grabbing nonintegrin, dectin-1 and complement receptor 3 as well as Toll-like receptors, scavenger receptors and CD14. While in vitro studies have demonstrated clear roles for particular receptor(s), in vivo work in receptor-deficient animals often revealed only a minor, or no role, in infection with M. tuberculosis. The initial encounter of phagocytic cells with myco- bacteria appears to be complex and depends on various parameters. It seems likely that infection with M. tuberculosis does not occur via a single receptor-mediated pathway. Rather, multiple receptors play different roles in M. tuberculosis infection, and the overall effect depends on the expression and availability of a particular receptor on a particular cell type and its triggered downstream responses. Moreover, the role of membrane cholesterol for M. tuberculosis interactions with phagocytes adds to the complexity of mycobacterial recognition and response. This review summarizes current knowledge on non-opsonic receptors involved in binding of mycobacteria and discusses the contribution of individual receptors to the recognition process.
Collapse
Affiliation(s)
- Georgia Schäfer
- Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Muazzam Jacobs
- Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Robert J. Wilkinson
- Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
- National Institute for Medical Research, Imperial College London, London, UK
- Division of Medicine, Imperial College London, London, UK
| | - Gordon D. Brown
- Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
64
|
Schorey JS, Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 2008; 18:832-41. [PMID: 18723691 DOI: 10.1093/glycob/cwn076] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycopeptidolipids (GPLs) are a class of glycolipids produced by several nontuberculosis-causing members of the Mycobacterium genus including pathogenic and nonpathogenic species. GPLs are expressed in different forms with production of highly antigenic, typeable serovar-specific GPLs in members of the Mycobacterium avium complex (MAC). M. avium and M. intracellulare, which comprise this complex, are slow-growing mycobacteria noted for producing disseminated infections in AIDS patients and pulmonary infections in non-AIDS patients. Previous studies have defined the gene cluster responsible for GPL biosynthesis and more recent work has characterized the function of the individual genes. Current research has also focused on the GPL's role in colony morphology, sliding motility, biofilm formation, immune modulation and virulence. These topics, along with new information on the enzymes involved in GPL biosynthesis, are the subject of this review.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health and Infectious Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
65
|
Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis (Edinb) 2008; 88:390-8. [PMID: 18439873 DOI: 10.1016/j.tube.2008.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/18/2008] [Accepted: 02/16/2008] [Indexed: 11/20/2022]
Abstract
Natural modification of the colony appearance is a phenomenon that has not been fully understood in mycobacteria. Here, we show that Mycobacterium smegmatis ATCC607 displays a low-frequency spontaneous morphological variation that correlates with the acquisition of a panel of new phenotypes, such as aggregation, biofilm formation and sliding motility. These variants produce larger amounts of glycopeptidolipid (GPL), a cell-surface component, than did the wild-type strain. This conversion results from the transposition of two types of insertion sequences, IS1096 and ISMsm3, into two loci. One locus is the promoter region of the mps operon, the GPL biosynthesis gene cluster, leading to the overexpression of these genes. The other locus is the lsr2 gene, which encodes a small basic histone-like protein that likely plays a regulatory role at the mps promoter and also controls pigment production. This study demonstrates that insertion sequence mobility play a crucial role in the acquisition of new phenotypes.
Collapse
|
66
|
García-Pérez BE, Hernández-González JC, García-Nieto S, Luna-Herrera J. Internalization of a non-pathogenic mycobacteria by macropinocytosis in human alveolar epithelial A549 cells. Microb Pathog 2008; 45:1-6. [PMID: 18487035 DOI: 10.1016/j.micpath.2008.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 01/25/2008] [Indexed: 11/29/2022]
Abstract
Mycobacterium smegmatis (MSM) a non-pathogenic mycobacterium is often employed as a tool to understand many aspects of the mycobacterial infections. However, its own biology and particularly its mechanism of entry into non-phagocytic cells are not well known. Previously, we demonstrated that Mycobacterium tuberculosis (MTB) invades epithelial cells by macropinocytosis. In the present study, we investigated whether MSM also invades human epithelial type II pneumocytes (A549) by macropinocytosis. Infection of A549 cells with MSM elicited actin filaments redistribution, lamellipodia formation and increased fluid phase uptake, suggesting macropinocytosis. Furthermore, macropinocytosis inhibitors like cytochalasin D and amiloride caused inhibition of fluid phase and bacterial uptake. We can conclude that MSM, like MTB, takes advantage of macropinocytosis for entry into epithelial cells, however, unlike MTB, internalized MSM are killed by host cells. These findings suggest that induction of macropinocytosis and cell invasion is not an exclusive feature of pathogenic organisms.
Collapse
Affiliation(s)
- Blanca Estela García-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, 11340 México City, D.F., Mexico.
| | | | | | | |
Collapse
|
67
|
Expression of CD64, CD206, and RAGE in Adherent Cells of Diabetic Patients Infected with Mycobacterium tuberculosis. Arch Med Res 2008; 39:306-11. [DOI: 10.1016/j.arcmed.2007.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/29/2007] [Indexed: 11/23/2022]
|
68
|
Rojas RE, Thomas JJ, Gehring AJ, Hill PJ, Belisle JT, Harding CV, Boom WH. Phosphatidylinositol mannoside from Mycobacterium tuberculosis binds alpha5beta1 integrin (VLA-5) on CD4+ T cells and induces adhesion to fibronectin. THE JOURNAL OF IMMUNOLOGY 2006; 177:2959-68. [PMID: 16920931 DOI: 10.4049/jimmunol.177.5.2959] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.
Collapse
Affiliation(s)
- Roxana E Rojas
- Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Torrelles JB, Azad AK, Schlesinger LS. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. THE JOURNAL OF IMMUNOLOGY 2006; 177:1805-16. [PMID: 16849491 DOI: 10.4049/jimmunol.177.3.1805] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Mycobacterium tuberculosis (M.tb) envelope is highly mannosylated with phosphatidyl-myo-inositol mannosides (PIMs), lipomannan, and mannose-capped lipoarabinomannan (ManLAM). Little is known regarding the interaction between specific PIM types and host cell C-type lectin pattern recognition receptors. The macrophage mannose receptor (MR) and dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells engage ManLAM mannose caps and regulate several host responses. In this study, we analyzed the association of purified PIM families (f, separated by carbohydrate number) and individual PIM species (further separated by fatty acid number) from M.tb H(37)R(v) with human monocyte-derived macrophages (MDMs) and lectin-expressing cell lines using an established bead model. Higher-order PIMs preferentially associated with the MR as demonstrated by their reduced association with MDMs upon MR blockade and increased binding to COS-1-MR. In contrast, the lower-order PIM(2)f associated poorly with MDMs and did not bind to COS-1-MR. Triacylated PIM species were recognized by MDM lectins better than tetra-acylated species and the degree of acylation influenced higher-order PIM association with the MR. Moreover, only higher-order PIMs that bind the MR showed a significant increase in phagosome-lysosome fusion upon MR blockade. In contrast with the MR, the PIM(2)f and lipomannan were recognized by DC-SIGN comparable to higher-order PIMs and ManLAM, and the association was independent of their degree of acylation. Thus, recognition of M.tb PIMs by host cell C-type lectins is dependent on both the nature of the terminal carbohydrates and degree of acylation. Subtle structural differences among the PIMs impact host cell recognition and response and are predicted to influence the intracellular fate of M.tb.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Department of Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|