51
|
Biochemical characterization of human acyl coenzyme A: 2-monoacylglycerol acyltransferase-3 (MGAT3). Biochem Biophys Res Commun 2016; 475:264-70. [PMID: 27184406 DOI: 10.1016/j.bbrc.2016.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND MGAT3 catalyzes the synthesis of 1,2-diacylglycerol from 2-monoacylglycerol in an acyl CoA-dependent reaction. Although initially identified as an MGAT enzyme, MGAT3 is more closely related to DGAT2 than to MGAT1 and MGAT2. Furthermore, MGAT3 possesses both DGAT and MGAT activities, in vitro. MGAT3 is almost exclusively expressed in the small intestine in humans, suggesting that it has a role in dietary fat absorption. Although identified many years ago, little information is available regarding the contribution of MGAT3 to triacylglycerol biosynthesis. RESULTS This study confirmed the initial observations that MGAT3 possessed both MGAT and DGAT activities. When expressed in cells in culture, MGAT3 stimulated lipid droplet growth, but unlike DGAT2, does not become concentrated around the lipid droplet surface. We also characterized the MGAT activity of an MGAT3 mutant in which a conserved cysteine was changed to a tyrosine residue. Lastly, although they share significant sequence identity, MGAT3 is a much more stable protein than DGAT2, yet they are both polyubiquitinated and degraded through ER-associated degradation by the proteasome. CONCLUSION Our findings provide additional evidence that MGAT3 likely functions as a TG synthase in cells.
Collapse
|
52
|
Lubura M, Hesse D, Kraemer M, Hallahan N, Schupp M, von Löffelholz C, Kriebel J, Rudovich N, Pfeiffer A, John C, Scheja L, Heeren J, Koliaki C, Roden M, Schürmann A. Diabetes prevalence in NZO females depends on estrogen action on liver fat content. Am J Physiol Endocrinol Metab 2015; 309:E968-80. [PMID: 26487005 DOI: 10.1152/ajpendo.00338.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023]
Abstract
In humans and rodents, risk of metabolic syndrome is sexually dimorphic, with an increased incidence in males. Additionally, the protective role of female gonadal hormones is ostensible, as prevalence of type 2 diabetes mellitus (T2DM) increases after menopause. Here, we investigated the influence of estrogen (E2) on the onset of T2DM in female New Zealand obese (NZO) mice. Diabetes prevalence (defined as blood glucose levels >16.6 mmol/l) of NZO females on high-fat diet (60 kcal% fat) in week 22 was 43%. This was markedly dependent on liver fat content in week 10, as detected by computed tomography. Only mice with a liver fat content >9% in week 10 plus glucose levels >10 mmol/l in week 9 developed hyperglycemia by week 22. In addition, at 11 wk, diacylglycerols were elevated in livers of diabetes-prone mice compared with controls. Hepatic expression profiles obtained from diabetes-prone and -resistant mice at 11 wk revealed increased abundance of two transcripts in diabetes-prone mice: Mogat1, which catalyzes the synthesis of diacylglycerols from monoacylglycerol and fatty acyl-CoA, and the fatty acid transporter Cd36. E2 treatment of diabetes-prone mice for 10 wk prevented any further increase in liver fat content and reduced diacylglycerols and the abundance of Mogat1 and Cd36, leading to a reduction of diabetes prevalence and an improved glucose tolerance compared with untreated mice. Our data indicate that early elevation of hepatic Cd36 and Mogat1 associates with increased production and accumulation of triglycerides and diacylglycerols, presumably resulting in reduced hepatic insulin sensitivity and leading to later onset of T2DM.
Collapse
Affiliation(s)
- Marko Lubura
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Deike Hesse
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Maria Kraemer
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Michael Schupp
- Institute of Pharmacology, Center for Cardiovascular Research, Charité University Medicine, Berlin, Germany
| | - Christian von Löffelholz
- German Center for Diabetes Research, Neuherberg, Germany; Department of Clinical Nutrition, DIfE, Nuthetal, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Friedrich Schiller University, and Department of Anaesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| | - Jennifer Kriebel
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, German Center for Diabetes Research, and Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Natalia Rudovich
- German Center for Diabetes Research, Neuherberg, Germany; Department of Clinical Nutrition, DIfE, Nuthetal, Germany
| | - Andreas Pfeiffer
- German Center for Diabetes Research, Neuherberg, Germany; Department of Clinical Nutrition, DIfE, Nuthetal, Germany
| | - Clara John
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chryssi Koliaki
- German Center for Diabetes Research, Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; and Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research, Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; and Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany;
| |
Collapse
|
53
|
Khatun I, Clark RW, Vera NB, Kou K, Erion DM, Coskran T, Bobrowski WF, Okerberg C, Goodwin B. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis. J Biol Chem 2015; 291:2602-15. [PMID: 26644473 DOI: 10.1074/jbc.m115.683359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism.
Collapse
Affiliation(s)
- Irani Khatun
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Ronald W Clark
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Nicholas B Vera
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Kou Kou
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Derek M Erion
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Timothy Coskran
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Walter F Bobrowski
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Carlin Okerberg
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Bryan Goodwin
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| |
Collapse
|
54
|
Huard K, Londregan AT, Tesz G, Bahnck KB, Magee TV, Hepworth D, Polivkova J, Coffey SB, Pabst BA, Gosset JR, Nigam A, Kou K, Sun H, Lee K, Herr M, Boehm M, Carpino PA, Goodwin B, Perreault C, Li Q, Jorgensen CC, Tkalcevic GT, Subashi TA, Ahn K. Discovery of Selective Small Molecule Inhibitors of Monoacylglycerol Acyltransferase 3. J Med Chem 2015; 58:7164-72. [PMID: 26258602 DOI: 10.1021/acs.jmedchem.5b01008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inhibition of triacylglycerol (TAG) biosynthetic enzymes has been suggested as a promising strategy to treat insulin resistance, diabetes, dyslipidemia, and hepatic steatosis. Monoacylglycerol acyltransferase 3 (MGAT3) is an integral membrane enzyme that catalyzes the acylation of both monoacylglycerol (MAG) and diacylglycerol (DAG) to generate DAG and TAG, respectively. Herein, we report the discovery and characterization of the first selective small molecule inhibitors of MGAT3. Isoindoline-5-sulfonamide (6f, PF-06471553) selectively inhibits MGAT3 with high in vitro potency and cell efficacy. Because the gene encoding MGAT3 (MOGAT3) is found only in higher mammals and humans, but not in rodents, a transgenic mouse model expressing the complete human MOGAT3 was used to characterize the effects of 6f in vivo. In the presence of a combination of diacylglycerol acyltransferases 1 and 2 (DGAT1 and DGAT2) inhibitors, an oral administration of 6f exhibited inhibition of the incorporation of deuterium-labeled glycerol into TAG in this mouse model. The availability of a potent and selective chemical tool and a humanized mouse model described in this report should facilitate further dissection of the physiological function of MGAT3 and its role in lipid homeostasis.
Collapse
Affiliation(s)
- Kim Huard
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Allyn T Londregan
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Gregory Tesz
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Kevin B Bahnck
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Thomas V Magee
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - David Hepworth
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Jana Polivkova
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Brandon A Pabst
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - James R Gosset
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Anu Nigam
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Kou Kou
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Hao Sun
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Kyuha Lee
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Michael Herr
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Markus Boehm
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Philip A Carpino
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Bryan Goodwin
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Christian Perreault
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Qifang Li
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Csilla C Jorgensen
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - George T Tkalcevic
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Timothy A Subashi
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| | - Kay Ahn
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Cambridge, Massachusetts 02139, United States.,Worldwide Medicinal Chemistry, ∥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development , Groton, Connecticut 06340, United States
| |
Collapse
|
55
|
Yang M, Nickels JT. MOGAT2: A New Therapeutic Target for Metabolic Syndrome. Diseases 2015; 3:176-192. [PMID: 28943619 PMCID: PMC5548241 DOI: 10.3390/diseases3030176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
Metabolic syndrome is an ever-increasing health problem among the world’s population. It is a group of intertwined maladies that includes obesity, hypertriglyceridemia, hypertension, nonalcoholic fatty liver disease (NAFLD), and diabetes mellitus type II (T2D). There is a direct correlation between high triacylglycerol (triglyceride; TAG) level and severity of metabolic syndrome. Thus, controlling the synthesis of TAG will have a great impact on overall systemic lipid metabolism and thus metabolic syndrome progression. The Acyl-CoA: monoacylglycerolacyltransferase (MGAT) family has three members (MGAT1, -2, and -3) that catalyze the first step in TAG production, conversion of monoacylglycerol (MAG) to diacylglycerol (DAG). TAG is then directly synthesized from DAG by a Acyl-CoA: diacylglycerolacyltransferase (DGAT). The conversion of MAG → DAG → TAG is the major pathway for the production of TAG in the small intestine, and produces TAG to a lesser extent in the liver. Transgenic and pharmacological studies in mice have demonstrated the beneficial effects of MGAT inhibition as a therapy for treating several metabolic diseases, including obesity, insulin resistance, T2D, and NAFLD. In this review, the significance of several properties of MGAT physiology, including tissue expression pattern and its relationship to overall TAG metabolism, enzymatic biochemical properties and their effects on drug discovery, and finally what is the current knowledge about MGAT small molecule inhibitors and their efficacy will be discussed. Overall, this review highlights the therapeutic potential of inhibiting MGAT for lowering TAG synthesis and whether this avenue of drug discovery warrants further clinical investigation.
Collapse
Affiliation(s)
- Muhua Yang
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ 08691, USA.
| | - Joseph T Nickels
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ 08691, USA.
| |
Collapse
|
56
|
Does Diacylglycerol Accumulation in Fatty Liver Disease Cause Hepatic Insulin Resistance? BIOMED RESEARCH INTERNATIONAL 2015; 2015:104132. [PMID: 26273583 PMCID: PMC4529893 DOI: 10.1155/2015/104132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023]
Abstract
Numerous studies conducted on obese humans and various rodent models of obesity have identified a correlation between hepatic lipid content and the development of insulin resistance in liver and other tissues. Despite a large body of the literature on this topic, the cause and effect relationship between hepatic steatosis and insulin resistance remains controversial. If, as many believe, lipid aggregation in liver drives insulin resistance and other metabolic abnormalities, there are significant unanswered questions as to which lipid mediators are causative in this cascade. Several published papers have now correlated levels of diacylglycerol (DAG), the penultimate intermediate in triglyceride synthesis, with development of insulin resistance and have postulated that this occurs via activation of protein kinase C signaling. Although many studies have confirmed this relationship, many others have reported a disconnect between DAG content and insulin resistance. It has been postulated that differences in methods for DAG measurement, DAG compartmentalization within the cell, or fatty acid composition of the DAG may explain these discrepancies. The purpose of this review is to compare and contrast some of the relevant findings in this area and to discuss a number of unanswered questions regarding the relationship between DAG and insulin resistance.
Collapse
|
57
|
Kalish BT, Fell GL, Nandivada P, Puder M. Clinically Relevant Mechanisms of Lipid Synthesis, Transport, and Storage. JPEN J Parenter Enteral Nutr 2015; 39:8S-17S. [PMID: 26187937 DOI: 10.1177/0148607115595974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022]
Abstract
Lipids not only are fundamental nutrients but also serve as basic structural components of cells and as multifunctional signaling molecules. Lipid metabolism pathways underlie basic processes in health and disease and are the targets of novel therapeutics. In this review, we explore the molecular control of lipid synthesis, trafficking, and storage, with a focus on clinically relevant pathways. To illustrate the clinical relevance of molecular lipid regulation, we highlight how these biochemical processes contribute to the pathogenesis of nonalcoholic fatty liver disease, a component of the metabolic syndrome and a paradigmatic example of lipid dysregulation.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gillian L Fell
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Prathima Nandivada
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Puder
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
58
|
JTP-103237, a monoacylglycerol acyltransferase inhibitor, prevents fatty liver and suppresses both triglyceride synthesis and de novo lipogenesis. J Pharmacol Sci 2015. [DOI: 10.1016/j.jphs.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
59
|
Fabbrini E, Magkos F. Hepatic Steatosis as a Marker of Metabolic Dysfunction. Nutrients 2015; 7:4995-5019. [PMID: 26102213 PMCID: PMC4488828 DOI: 10.3390/nu7064995] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the complex metabolic derangements associated with obesity. NAFLD is characterized by excessive deposition of fat in the liver (steatosis) and develops when hepatic fatty acid availability from plasma and de novo synthesis exceeds hepatic fatty acid disposal by oxidation and triglyceride export. Hepatic steatosis is therefore the biochemical result of an imbalance between complex pathways of lipid metabolism, and is associated with an array of adverse changes in glucose, fatty acid, and lipoprotein metabolism across all tissues of the body. Intrahepatic triglyceride (IHTG) content is therefore a very good marker (and in some cases may be the cause) of the presence and the degree of multiple-organ metabolic dysfunction. These metabolic abnormalities are likely responsible for many cardiometabolic risk factors associated with NAFLD, such as insulin resistance, type 2 diabetes mellitus, and dyslipidemia. Understanding the factors involved in the pathogenesis and pathophysiology of NAFLD will lead to a better understanding of the mechanisms responsible for the metabolic complications of obesity, and hopefully to the discovery of novel effective treatments for their reversal.
Collapse
Affiliation(s)
- Elisa Fabbrini
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Faidon Magkos
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
60
|
Steneberg P, Sykaras AG, Backlund F, Straseviciene J, Söderström I, Edlund H. Hyperinsulinemia Enhances Hepatic Expression of the Fatty Acid Transporter Cd36 and Provokes Hepatosteatosis and Hepatic Insulin Resistance. J Biol Chem 2015; 290:19034-43. [PMID: 26085100 PMCID: PMC4521028 DOI: 10.1074/jbc.m115.640292] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Hepatosteatosis is associated with the development of both hepatic insulin resistance and Type 2 diabetes. Hepatic expression of Cd36, a fatty acid transporter, is enhanced in obese and diabetic murine models and human nonalcoholic fatty liver disease, and thus it correlates with hyperinsulinemia, steatosis, and insulin resistance. Here, we have explored the effect of hyperinsulinemia on hepatic Cd36 expression, development of hepatosteatosis, insulin resistance, and dysglycemia. A 3-week sucrose-enriched diet was sufficient to provoke hyperinsulinemia, hepatosteatosis, hepatic insulin resistance, and dysglycemia in CBA/J mice. The development of hepatic steatosis and insulin resistance in CBA/J mice on a sucrose-enriched diet was paralleled by increased hepatic expression of the transcription factor Pparγ and its target gene Cd36 whereas that of genes implicated in lipogenesis, fatty acid oxidation, and VLDL secretion was unaltered. Additionally, we demonstrate that insulin, in a Pparγ-dependent manner, is sufficient to directly increase Cd36 expression in perfused livers and isolated hepatocytes. Mouse strains that display low insulin levels, i.e. C57BL6/J, and/or lack hepatic Pparγ, i.e. C3H/HeN, do not develop hepatic steatosis, insulin resistance, or dysglycemia on a sucrose-enriched diet, suggesting that elevated insulin levels, via enhanced CD36 expression, provoke fatty liver development that in turn leads to hepatic insulin resistance and dysglycemia. Thus, our data provide evidence for a direct role for hyperinsulinemia in stimulating hepatic Cd36 expression and thus the development of hepatosteatosis, hepatic insulin resistance, and dysglycemia.
Collapse
Affiliation(s)
| | | | | | | | - Ingegerd Söderström
- the Department of Public Health and Clinical Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
61
|
Yu JH, Lee YJ, Kim HJ, Choi H, Choi Y, Seok JW, Kim JW. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation. Biochem Biophys Res Commun 2015; 460:715-20. [PMID: 25838202 DOI: 10.1016/j.bbrc.2015.03.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 02/06/2023]
Abstract
Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans.
Collapse
Affiliation(s)
- Jung Hwan Yu
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Republic of Korea
| | - Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongwon-gun, Chungbuk 363-951, Republic of Korea
| | - Hyo Jung Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyeonjin Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Yoonjeong Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Republic of Korea
| | - Jo Woon Seok
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Republic of Korea
| | - Jae-woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
62
|
Deminice R, da Silva RP, Lamarre SG, Kelly KB, Jacobs RL, Brosnan ME, Brosnan JT. Betaine supplementation prevents fatty liver induced by a high-fat diet: effects on one-carbon metabolism. Amino Acids 2015; 47:839-46. [DOI: 10.1007/s00726-014-1913-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/30/2014] [Indexed: 02/07/2023]
|
63
|
Yen CLE, Nelson DW, Yen MI. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res 2014; 56:489-501. [PMID: 25231105 DOI: 10.1194/jlr.r052902] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
64
|
Soufi N, Hall AM, Chen Z, Yoshino J, Collier SL, Mathews JC, Brunt EM, Albert CJ, Graham MJ, Ford DA, Finck BN. Inhibiting monoacylglycerol acyltransferase 1 ameliorates hepatic metabolic abnormalities but not inflammation and injury in mice. J Biol Chem 2014; 289:30177-88. [PMID: 25213859 DOI: 10.1074/jbc.m114.595850] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury.
Collapse
Affiliation(s)
| | | | | | | | | | - James C Mathews
- Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Elizabeth M Brunt
- Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Carolyn J Albert
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, and
| | - Mark J Graham
- ISIS Pharmaceuticals Inc., Carlsbad, California 92008
| | - David A Ford
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, and
| | | |
Collapse
|
65
|
Hall AM, Soufi N, Chambers KT, Chen Z, Schweitzer GG, McCommis KS, Erion DM, Graham MJ, Su X, Finck BN. Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice. Diabetes 2014; 63:2284-96. [PMID: 24595352 PMCID: PMC4066334 DOI: 10.2337/db13-1502] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling.
Collapse
Affiliation(s)
- Angela M Hall
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Nisreen Soufi
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Kari T Chambers
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Zhouji Chen
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - George G Schweitzer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Kyle S McCommis
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Derek M Erion
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA
| | | | - Xiong Su
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MODepartment of Biochemistry and Molecular Biology, Medical College of Soochow University, Suzhou, China
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
66
|
Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, Wu C, Muzny DM, Li Y, Zhang W, Stanton JA, Brauning R, Barris WC, Hourlier T, Aken BL, Searle SMJ, Adelson DL, Bian C, Cam GR, Chen Y, Cheng S, DeSilva U, Dixen K, Dong Y, Fan G, Franklin IR, Fu S, Guan R, Highland MA, Holder ME, Huang G, Ingham AB, Jhangiani SN, Kalra D, Kovar CL, Lee SL, Liu W, Liu X, Lu C, Lv T, Mathew T, McWilliam S, Menzies M, Pan S, Robelin D, Servin B, Townley D, Wang W, Wei B, White SN, Yang X, Ye C, Yue Y, Zeng P, Zhou Q, Hansen JB, Kristensen K, Gibbs RA, Flicek P, Warkup CC, Jones HE, Oddy VH, Nicholas FW, McEwan JC, Kijas J, Wang J, Worley KC, Archibald AL, Cockett N, Xu X, Wang W, Dalrymple BP. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014; 344:1168-1173. [PMID: 24904168 DOI: 10.1126/science.1252806] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia.,College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Xie
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Richard Talbot
- Ediburgh Genomics, University of Edinburgh, Easter Bush, Midlothian EH 25 9RG, UK
| | - Jillian F Maddox
- Department of Veterinary Science, University of Melbourne, Victoria 3010, Australia
| | - Thomas Faraut
- INRA, Laboratoire de Génétique Cellulaire, UMR 444, Castanet-Tolosan F-31326, France
| | - Chunhua Wu
- Utah State University, Logan, UT 84322-1435-1435, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Wenguang Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Inner Mongolia Agricultural University, Hohhot 010018, China.,Institute of ATCG, Nei Mongol Bio-Information, Hohhot, China
| | - Jo-Ann Stanton
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Wesley C Barris
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Thibaut Hourlier
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Bronwen L Aken
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Stephen M J Searle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David L Adelson
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Chao Bian
- BGI-Shenzhen, Shenzhen 518083, China
| | - Graham R Cam
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Udaya DeSilva
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Karen Dixen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Yang Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | - Ian R Franklin
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Shaoyin Fu
- Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rui Guan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Margaret A Highland
- USDA-ARS Animal Disease Research Unit, Pullman, WA 99164 USA.,Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164 USA
| | - Michael E Holder
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Aaron B Ingham
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Tian Lv
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean McWilliam
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Moira Menzies
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | | | - David Robelin
- INRA, Laboratoire de Génétique Cellulaire, UMR 444, Castanet-Tolosan F-31326, France
| | - Bertrand Servin
- INRA, Laboratoire de Génétique Cellulaire, UMR 444, Castanet-Tolosan F-31326, France
| | - David Townley
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | | | - Bin Wei
- BGI-Shenzhen, Shenzhen 518083, China.,Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Stephen N White
- USDA-ARS Animal Disease Research Unit, Pullman, WA 99164 USA.,Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164 USA
| | | | - Chen Ye
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Lanzhou,730050,China
| | - Peng Zeng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Karsten Kristensen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | | | - Huw E Jones
- Biosciences KTN, The Roslin Institute, Easter Bush, Midlothian, EH25 9RG, UK
| | - V Hutton Oddy
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Frank W Nicholas
- Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia
| | - John C McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - James Kijas
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.,Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Macau University of Science and Technology, Macau 999078, China
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan L Archibald
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH 25 9RG, UK
| | | | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Brian P Dalrymple
- CSIRO Animal Food and Health Sciences, St Lucia, QLD 4067, Australia
| |
Collapse
|
67
|
Nelson DW, Gao Y, Yen MI, Yen CLE. Intestine-specific deletion of acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 protects mice from diet-induced obesity and glucose intolerance. J Biol Chem 2014; 289:17338-49. [PMID: 24784138 DOI: 10.1074/jbc.m114.555961] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The absorption of dietary fat involves the re-esterification of digested triacylglycerol in the enterocytes, a process catalyzed by acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2. Mice without a functional gene encoding MGAT2 (Mogat2(-/-)) are protected from diet-induced obesity. Surprisingly, these mice absorb normal amounts of dietary fat but increase their energy expenditure. MGAT2 is expressed in tissues besides intestine, including adipose tissue in both mice and humans. To test the hypothesis that intestinal MGAT2 regulates systemic energy balance, we generated and characterized mice deficient in MGAT2 specifically in the small intestine (Mogat2(IKO)). We found that, like Mogat2(-/-) mice, Mogat2(IKO) mice also showed a delay in fat absorption, a decrease in food intake, and a propensity to use fatty acids as fuel when first exposed to a high fat diet. Mogat2(IKO) mice increased energy expenditure although to a lesser degree than Mogat2(-/-) mice and were protected against diet-induced weight gain and associated comorbidities, including hepatic steatosis, hypercholesterolemia, and glucose intolerance. These findings illustrate that intestinal lipid metabolism plays a crucial role in the regulation of systemic energy balance and may be a feasible intervention target. In addition, they suggest that MGAT activity in extraintestinal tissues may also modulate energy metabolism.
Collapse
Affiliation(s)
- David W Nelson
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Yu Gao
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Mei-I Yen
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Chi-Liang Eric Yen
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
68
|
Targeting Hepatic Glycerolipid Synthesis and Turnover to Treat Fatty Liver Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/498369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of metabolic abnormalities ranging from simple hepatic steatosis (accumulation of neutral lipid) to development of steatotic lesions, steatohepatitis, and cirrhosis. NAFLD is extremely prevalent in obese individuals and with the epidemic of obesity; nonalcoholic steatohepatitis (NASH) has become the most common cause of liver disease in the developed world. NASH is rapidly emerging as a prominent cause of liver failure and transplantation. Moreover, hepatic steatosis is tightly linked to risk of developing insulin resistance, diabetes, and cardiovascular disease. Abnormalities in hepatic lipid metabolism are part and parcel of the development of NAFLD and human genetic studies and work conducted in experimentally tractable systems have identified a number of enzymes involved in fat synthesis and degradation that are linked to NAFLD susceptibility as well as progression to NASH. The goal of this review is to summarize the current state of our knowledge on these pathways and focus on how they contribute to etiology of NAFLD and related metabolic diseases.
Collapse
|
69
|
Huang H, McIntosh AL, Martin GG, Landrock KK, Landrock D, Gupta S, Atshaves BP, Kier AB, Schroeder F. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant. FEBS J 2014; 281:2266-83. [PMID: 24628888 DOI: 10.1111/febs.12780] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands.
Collapse
Affiliation(s)
- Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hepatic Monoacylglycerol O-acyltransferase 1 as a Promising Therapeutic Target for Steatosis, Obesity, and Type 2 Diabetes. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e154. [PMID: 24643205 PMCID: PMC4027984 DOI: 10.1038/mtna.2014.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/01/2014] [Indexed: 12/11/2022]
Abstract
Over the past decade, considerable advances have been made in the discovery of gene targets in metabolic diseases. However, in vivo studies based on molecular biological technologies such as the generation of knockout mice and the construction of short hairpin RNA vectors require considerable effort and time, which is a major limitation for in vivo functional analysis. Here, we introduce a liver-specific nonviral small interfering RNA (siRNA) delivery system into rapid and efficient characterization of hepatic gene targets in metabolic disease mice. The comparative transcriptome analysis in liver between KKAy diabetic and normal control mice demonstrated that the expression of monoacylglycerol O-acyltransferase 1 (Mogat1), an enzyme involved in triglyceride synthesis and storage, was highly elevated during the disease progression. The upregulation of Mogat1 expression in liver was also found in other genetic (db/db) and diet-induced obese mice. The silencing of hepatic Mogat1 via a liver-specific siRNA delivery system resulted in a dramatic improvement in blood glucose levels and hepatic steatosis as well as overweight with no apparent overall toxicities, indicating that hepatic Mogat1 is a promising therapeutic target for metabolic diseases. The integrated approach with transcriptomics and nonviral siRNA delivery system provides a blueprint for rapid drug discovery and development.
Collapse
|
71
|
Tarantino G, Finelli C. Beyond Nutrition Is There Any Role for Physical Activity in Nonalcoholic Fatty Liver Disease Therapy? NUTRITION IN THE PREVENTION AND TREATMENT OF ABDOMINAL OBESITY 2014:79-87. [DOI: 10.1016/b978-0-12-407869-7.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
72
|
Abstract
The liver plays a unique, central role in regulating lipid metabolism. In addition to influencing hepatic function and disease, changes in specific pathways of fatty acid (FA) metabolism have wide-ranging effects on the metabolism of other nutrients, extra-hepatic physiology, and the development of metabolic diseases. The high prevalence of nonalcoholic fatty liver disease (NAFLD) has led to increased efforts to characterize the underlying biology of hepatic energy metabolism and FA trafficking that leads to disease development. Recent advances have uncovered novel roles of metabolic pathways and specific enzymes in generating lipids important for cellular processes such as signal transduction and transcriptional activation. These studies have also advanced our understanding of key branch points involving FA partitioning between metabolic pathways and have identified new roles for lipid droplets in these events. This review covers recent advances in our understanding of FA trafficking and its regulation. An emphasis will be placed on branch points in these pathways and how alterations in FA trafficking contribute to NAFLD and related comorbidities.
Collapse
|
73
|
Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA, Roddy T, Castro-Perez J, Cohen JC, Hobbs HH. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest 2013; 122:4130-44. [PMID: 23023705 DOI: 10.1172/jci65179] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
A genetic variant in PNPLA3 (PNPLA3(I148M)), a triacylglycerol (TAG) hydrolase, is a major risk factor for nonalcoholic fatty liver disease (NAFLD); however, the mechanism underlying this association is not known. To develop an animal model of PNPLA3-induced fatty liver disease, we generated transgenic mice that overexpress similar amounts of wild-type PNPLA3 (PNPLA3(WT)) or mutant PNPLA3 (PNPLA3(I148M)) either in liver or adipose tissue. Overexpression of the transgenes in adipose tissue did not affect liver fat content. Expression of PNPLA3(I148M), but not PNPLA3(WT), in liver recapitulated the fatty liver phenotype as well as other metabolic features associated with this allele in humans. Metabolic studies provided evidence for 3 distinct alterations in hepatic TAG metabolism in PNPLA3(I148M) transgenic mice: increased formation of fatty acids and TAG, impaired hydrolysis of TAG, and relative depletion of TAG long-chain polyunsaturated fatty acids. These findings suggest that PNPLA3 plays a role in remodeling TAG in lipid droplets, as they accumulate in response to food intake, and that the increase in hepatic TAG levels associated with the I148M substitution results from multiple changes in hepatic TAG metabolism. The development of an animal model that recapitulates the metabolic phenotype of the allele in humans provides a new platform in which to elucidate the role of PNLPA3(I148M) in NAFLD.
Collapse
Affiliation(s)
- John Zhong Li
- Department of Molecular Genetics, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Hardwick JP, Eckman K, Lee YK, Abdelmegeed MA, Esterle A, Chilian WM, Chiang JY, Song BJ. Eicosanoids in metabolic syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:157-266. [PMID: 23433458 DOI: 10.1016/b978-0-12-404717-4.00005-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism. The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS.
Collapse
Affiliation(s)
- James P Hardwick
- Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Cui R, Sheng H, Rui XF, Cheng XY, Sheng CJ, Wang JY, Qu S. Low bone mineral density in chinese adults with nonalcoholic Fatty liver disease. Int J Endocrinol 2013; 2013:396545. [PMID: 23983685 PMCID: PMC3747470 DOI: 10.1155/2013/396545] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
Aim. To investigate bone metabolic characteristics in Chinese adults with nonalcoholic fatty liver disease (NAFLD). Methods. A total of 224 patients (99 males and 125 postmenopausal females) were recruited and divided into 4 groups: males without NAFLD, males with NAFLD, females without NAFLD, and females with NAFLD. Bone mineral density (BMD) was evaluated according to body mass index (BMI), waist circumference (WC), and serum biomarkers. β cell function was evaluated by HOMA2%B, HOMA2%S, and HOMA2IR. Results. Males in the NAFLD group had lower BMD of the right hip and the femoral neck (0.852 ± 0.117 versus 0.930 ± 0.123, P = 0.002; 0.736 ± 0.119 versus 0.812 ± 0.132, P = 0.004), and females had lower BMD of the right hip (0.725 ± 0.141 versus 0.805 ± 0.145, P = 0.002) even after adjusted for weight, BMI, waist, HDL, and ALT. There was no significant difference in bone metabolic markers between patients with and without NAFLD. NAFLD was an important factor that affected the bone; moreover, the effect attenuated when HOMA2IR entered into the model (R (2) = 0.160, β = -0.172, and P = 0.008). Conclusions. NAFLD exerts a detrimental effect on BMD in both males and females. Insulin resistance may play an important role in this pathophysiological process.
Collapse
Affiliation(s)
- Ran Cui
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Hui Sheng
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- *Hui Sheng: and
| | - Xue-Fei Rui
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Xiao-Yun Cheng
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Chun-Jun Sheng
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Ji-Ying Wang
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Shen Qu
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- *Shen Qu:
| |
Collapse
|
76
|
Schmidt S, Willers J, Stahl F, Mutz KO, Scheper T, Hahn A, Schuchardt JP. Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation. Lipids Health Dis 2012; 11:172. [PMID: 23241455 PMCID: PMC3543286 DOI: 10.1186/1476-511x-11-172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Background Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results Several transcription factors (peroxisome proliferator-activated receptor α (PPARα), retinoid X receptor (RXR) α, RXRγ, hepatic nuclear factor (HNF) 6, and HNF1ß) as well as other genes related to triacylglycerol (TG) synthesis or high-density lipoprotein (HDL-C) and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT) 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor) were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration ClinicalTrials.gov (ID: NCT01089231)
Collapse
Affiliation(s)
- Simone Schmidt
- Institute of Food Science and Human Nutrition, Faculty of Natural Sciences at the Leibniz University of Hannover, Am Kleinen Felde 30, Hannover, 30167, Germany
| | | | | | | | | | | | | |
Collapse
|