51
|
He M, Burghardt TP, Vockley J. A novel approach to the characterization of substrate specificity in short/branched chain Acyl-CoA dehydrogenase. J Biol Chem 2003; 278:37974-86. [PMID: 12855692 DOI: 10.1074/jbc.m306882200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat and human short/branched chain acyl-CoA dehydrogenases exhibit key differences in substrate specificity despite an overall amino acid identity of 85% between them. Rat short/branched chain acyl-CoA dehydrogenases (SBCAD) are more active toward substrates with longer carbon side chains than human SBCAD, whereas the human enzyme utilizes substrates with longer primary carbon chains. The mechanism underlying this difference in substrate specificity was investigated with a novel surface plasmon resonance assay combined with absorbance and circular dichroism spectroscopy, and kinetics analysis of wild type SBCADs and mutants with altered amino acid residues in the substrate binding pocket. Results show that a relatively few amino acid residues are critical for determining the difference in substrate specificity seen between the human and rat enzymes and that alteration of these residues influences different portions of the enzyme mechanism. Molecular modeling of the SBCAD structure suggests that position 104 at the bottom of the substrate binding pocket is important in determining the length of the primary carbon chain that can be accommodated. Conformational changes caused by alteration of residues at positions 105 and 177 directly affect the rate of electron transfer in the dehydrogenation reactions, and are likely transmitted from the bottom of the substrate binding pocket to beta-sheet 3. Differences between the rat and human enzyme at positions 383, 222, and 220 alter substrate specificity without affecting substrate binding. Modeling predicts that these residues combine to determine the distance between the flavin ring of FAD and the catalytic base, without changing the opening of the substrate binding pocket.
Collapse
Affiliation(s)
- Miao He
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
52
|
Abstract
The advent of expanded newborn screening has resulted in huge advances in the ability to detect presymptomatic infants with a large number of inborn errors of metabolism. Widespread implementation of this type of screening will ultimately lead to reduced mortality and morbidity from these diseases and also will increase our knowledge of the frequency and phenotypic variability for each of them.
Collapse
Affiliation(s)
- Marsha K Fearing
- Children's Hospital Boston, Harvard Medical School Genetics Training Program, Boston, MA, USA
| | | |
Collapse
|
53
|
Matern D, He M, Berry SA, Rinaldo P, Whitley CB, Madsen PP, van Calcar SC, Lussky RC, Andresen BS, Wolff JA, Vockley J. Prospective diagnosis of 2-methylbutyryl-CoA dehydrogenase deficiency in the Hmong population by newborn screening using tandem mass spectrometry. Pediatrics 2003; 112:74-8. [PMID: 12837870 DOI: 10.1542/peds.112.1.74] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE 2-methylbutyryl-CoA dehydrogenase deficiency, also known as short/branched-chain acyl-CoA dehydrogenase (SBCAD) deficiency, is a recently described autosomal recessive disorder of L-isoleucine metabolism. Only 4 affected individuals in 2 families have been described. One patient developed athetoid cerebral palsy, and another had severe motor developmental delay with muscle atrophy. A sibling of the first patient is asymptomatic after prenatal diagnosis and early treatment. Family investigations in the second family revealed that the patient's mother was also affected but asymptomatic. METHODS We report 8 additional patients identified by prospective newborn screening using tandem mass spectrometry. RESULTS Molecular genetic analysis performed for 3 of these patients revealed that all are homozygous for an 1165A>G mutation that causes skipping of exon 10 of the SBCAD gene. Although there was no obvious consanguinity, all patients belong to the Hmong, an ancient ethnic group that originated in China and constitutes only 0.8% and 0.6% of the Minnesota and Wisconsin population, respectively. Dietary treatment was initiated in the neonatal period. Except for 1 patient who developed mild muscle hypotonia, all patients remain asymptomatic at ages ranging from 3 to 14 months of age. CONCLUSIONS These cases suggest that SBCAD deficiency is another inborn error of metabolism detectable by newborn screening using tandem mass spectrometry. The continued efficacy of long-term dietary therapy instituted presymptomatically remains to be established.
Collapse
Affiliation(s)
- Dietrich Matern
- Department of Laboratory Medicine & Pathology, Mayo Clinic & Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Ofman R, Ruiter JPN, Feenstra M, Duran M, Poll-The BT, Zschocke J, Ensenauer R, Lehnert W, Sass JO, Sperl W, Wanders RJA. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet 2003; 72:1300-7. [PMID: 12696021 PMCID: PMC1180283 DOI: 10.1086/375116] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 02/24/2003] [Indexed: 01/12/2023] Open
Abstract
2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency is a novel inborn error of isoleucine degradation. In this article, we report the elucidation of the molecular basis of MHBD deficiency. To this end, we purified the enzyme from bovine liver. MALDI-TOF mass spectrometry analysis revealed that the purified protein was identical to bovine 3-hydroxyacyl-CoA dehydrogenase type II. The human homolog of this bovine enzyme is a short-chain 3-hydroxyacyl-CoA dehydrogenase, also known as the "endoplasmic reticulum-associated amyloid-beta binding protein" (ERAB). This led to the identification of the X-chromosomal gene involved, which previously had been denoted "HADH2." Sequence analysis of the HADH2 gene from patients with MHBD deficiency revealed the presence of two missense mutations (R130C and L122V). Heterologous expression of the mutant cDNAs in Escherichia coli showed that both mutations almost completely abolish enzyme activity. This confirms that MHBD deficiency is caused by mutations in the HADH2 gene.
Collapse
Affiliation(s)
- Rob Ofman
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Jos P. N. Ruiter
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Marike Feenstra
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Marinus Duran
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Bwee Tien Poll-The
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Johannes Zschocke
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Regina Ensenauer
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Willy Lehnert
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Jörn Oliver Sass
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Wolfgang Sperl
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| | - Ronald J. A. Wanders
- Departments of Clinical Chemistry, Neurology, and Pediatrics, Academic Medical Center, Emma Children’s Hospital, University of Amsterdam, Amsterdam; Institute of Human Genetics, Heidelberg; Metabolic Unit, University Children’s Hospital, and Stoffwechsellabor, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany; and Children’s Hospital LKA Salzburg, Salzburg
| |
Collapse
|
55
|
Jones PM, Bennett MJ. The changing face of newborn screening: diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clin Chim Acta 2002; 324:121-8. [PMID: 12204433 DOI: 10.1016/s0009-8981(02)00238-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Patricia M Jones
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Medical Center, 1935 Motor Street, Dallas, TX 75235, USA.
| | | |
Collapse
|
56
|
Nguyen TV, Andresen BS, Corydon TJ, Ghisla S, Abd-El Razik N, Mohsen AWA, Cederbaum SD, Roe DS, Roe CR, Lench NJ, Vockley J. Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans. Mol Genet Metab 2002; 77:68-79. [PMID: 12359132 DOI: 10.1016/s1096-7192(02)00152-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The acyl-CoA dehydrogenases (ACDs) are a family of related enzymes that catalyze the alpha,beta-dehydrogenation of acyl-CoA esters. Two homologues active in branched chain amino acid metabolism have previously been identified. We have used expression in Escherichia coli to produce a previously uncharacterized ACD-like sequence (ACAD8) and define its substrate specificity. Purified recombinant enzyme had a k(cat)/K(m) of 0.8, 0.23, and 0.04 (microM(-1)s(-1)) with isobutyryl-CoA, (S) 2-methylbutyryl-CoA, and n-propionyl-CoA, respectively, as substrates. Thus, this enzyme is an isobutyryl-CoA dehydrogenase. A single patient has previously been described whose fibroblasts exhibit a specific deficit in the oxidation of valine. Amplified ACAD8 cDNA made from patient fibroblast mRNA was homozygous for a single nucleotide change (905G>A) in the ACAD8 coding region compared to the sequence from control cells. This encodes an Arg302Gln substitution in the full-length protein (position 280 in the mature protein), a position predicted by molecular modeling to be important in subunit interactions. The mutant enzyme was stable but inactive when expressed in E. coli. It was also stable and appropriately targeted to mitochondria, but inactive when expressed in mammalian cells. These data confirm further the presence of a separated ACD in humans specific to valine catabolism (isobutyryl-CoA dehydrogenase, IBDH), along with the first enzymatic and molecular confirmation of a deficiency of this enzyme in a patient.
Collapse
Affiliation(s)
- Tien V Nguyen
- Department of Medical Genetics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Roe CR, Sweetman L, Roe DS, David F, Brunengraber H. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 2002; 110:259-69. [PMID: 12122118 PMCID: PMC151060 DOI: 10.1172/jci15311] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current dietary treatment of long-chain fatty acid oxidation defects (high carbohydrate with medium-even-chain triglycerides and reduced amounts of long-chain fats) fails, in many cases, to prevent cardiomyopathy, rhabdomyolysis, and muscle weakness. We hypothesized that the apparent defect in energy production results from a depletion of the catalytic intermediates of the citric acid cycle via leakage through cell membranes (cataplerosis). We further hypothesized that replacing dietary medium-even-chain fatty acids (precursors of acetyl-CoA) by medium-odd-chain fatty acids (precursors of acetyl-CoA and anaplerotic propionyl-CoA) would restore energy production and improve cardiac and skeletal muscle function. We fed subjects with long-chain defects a controlled diet in which the fat component was switched from medium-even-chain triglycerides to triheptanoin. In three patients with very-long-chain acyl-CoA dehydrogenase deficiency, this treatment led rapidly to clinical improvement that included the permanent disappearance of chronic cardiomyopathy, rhabdomyolysis, and muscle weakness (for more than 2 years in one child), and of rhabdomyolysis and weakness in the others. There was no evidence of propionyl overload in these patients. The treatment has been well tolerated for up to 26 months and opens new avenues for the management of patients with mitochondrial fat oxidation disorders.
Collapse
Affiliation(s)
- Charles R Roe
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, Texas 75226, USA.
| | | | | | | | | |
Collapse
|
58
|
Ensenauer R, Niederhoff H, Ruiter JPN, Wanders RJA, Schwab KO, Brandis M, Lehnert W. Clinical variability in 3-hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency. Ann Neurol 2002; 51:656-9. [PMID: 12112118 DOI: 10.1002/ana.10169] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the identification of two new 7-year-old patients with 3-hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency, a recently described inborn error of isoleucine metabolism. The defect is localized one step above 3-ketothiolase, resulting in a urinary metabolite pattern similar to that seen for deficiency of the latter. One patient has progressive neurodegenerative symptoms, whereas the clinical phenotype of the other patient is characterized by psychomotor retardation without loss of developmental milestones. A short-term biochemical response to an isoleucine-restricted diet was observed in both children.
Collapse
Affiliation(s)
- Regina Ensenauer
- Metabolic Unit, University Children's Hospital, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
59
|
Gibson KM, Schor DSM, Gupta M, Guerand WS, Senephansiri H, Burlingame TG, Bartels H, Hogema BM, Bottiglieri T, Froestl W, Snead OC, Grompe M, Jakobs C. Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase. J Neurochem 2002; 81:71-9. [PMID: 12067239 DOI: 10.1046/j.1471-4159.2002.00784.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metabolite profiling in succinate semialdehyde dehydrogenase (SSADH; Aldh5a1-/-) deficient mice previously revealed elevated gamma-hydroxybutyrate (GHB) and total GABA in urine and total brain and liver extracts. In this study, we extend our metabolic characterization of these mutant mice by documenting elevated GHB and total GABA in homogenates of mutant kidney, pancreas and heart. We quantified beta-alanine (a GABA homolog and putative neurotransmitter) to address its potential role in pathophysiology. We found normal levels of beta-alanine in urine and total homogenates of mutant brain, heart and pancreas, but elevated concentrations in mutant kidney and liver extracts. Amino acid analysis in mutant total brain homogenates revealed no abnormalities except for significantly decreased glutamine, which was normal in mutant liver and kidney extracts. Regional amino acid analysis (frontal cortex, parietal cortex, hippocampus and cerebellum) in mutant mice confirmed glutamine results. Glutamine synthetase protein and mRNA levels in homogenates of mutant mouse brain were normal. We profiled organic acid patterns in mutant brain homogenates to assess brain oxidative metabolism and found normal concentrations of Kreb's cycle intermediates but increased 4,5-dihydroxyhexanoic acid (a postulated derivative of succinic semialdehyde) levels. We conclude that SSADH-deficient mice represent a valid metabolic model of human SSADH deficiency, manifesting focal neurometabolic abnormalities which could provide key insights into pathophysiologic mechanisms.
Collapse
Affiliation(s)
- K M Gibson
- Department of Molecular and Medical Genetics and Pediatrics, Oregon Health & Science University, Portland 97201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, Strauss AW, Comeau AM, Eaton RB, Grady GF. Tandem Mass Spectrometric Analysis for Amino, Organic, and Fatty Acid Disorders in Newborn Dried Blood Spots. Clin Chem 2001. [DOI: 10.1093/clinchem/47.11.1945] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Background: Tandem mass spectrometry (MS/MS) is rapidly being adopted by newborn screening programs to screen dried blood spots for >20 markers of disease in a single assay. Limited information is available for setting the marker cutoffs and for the resulting positive predictive values.
Methods: We screened >160 000 newborns by MS/MS. The markers were extracted from blood spots into a methanol solution with deuterium-labeled internal standards and then were derivatized before analysis by MS/MS. Multiple reaction monitoring of each sample for the markers of interest was accomplished in ∼1.9 min. Cutoffs for each marker were set at 6–13 SD above the population mean.
Results: We identified 22 babies with amino acid disorders (7 phenylketonuria, 11 hyperphenylalaninemia, 1 maple syrup urine disease, 1 hypermethioninemia, 1 arginosuccinate lyase deficiency, and 1 argininemia) and 20 infants with fatty and organic acid disorders (10 medium-chain acyl-CoA dehydrogenase deficiencies, 5 presumptive short-chain acyl-CoA dehydrogenase deficiencies, 2 propionic acidemias, 1 carnitine palmitoyltransferase II deficiency, 1 methylcrotonyl-CoA carboxylase deficiency, and 1 presumptive very-long chain acyl-CoA dehydrogenase deficiency). Approximately 0.3% of all newborns screened were flagged for either amino acid or acylcarnitine markers; approximately one-half of all the flagged infants were from the 5% of newborns who required neonatal intensive care or had birth weights <1500 g.
Conclusions: In screening for 23 metabolic disorders by MS/MS, an mean positive predictive value of 8% can be achieved when using cutoffs for individual markers determined empirically on newborns.
Collapse
Affiliation(s)
- Thomas H Zytkovicz
- New England Newborn Screening Program, University of Massachusetts Medical School, Jamaica Plain, 305 South St., Jamaica Plain, MA 02130
| | - Eileen F Fitzgerald
- New England Newborn Screening Program, University of Massachusetts Medical School, Jamaica Plain, 305 South St., Jamaica Plain, MA 02130
| | | | - Cecilia A Larson
- New England Newborn Screening Program, University of Massachusetts Medical School, Jamaica Plain, 305 South St., Jamaica Plain, MA 02130
| | - Vivian E Shih
- Amino Acid Laboratory, Massachusetts General Hospital, Boston, MA 02129
| | - Donna M Johnson
- New England Newborn Screening Program, University of Massachusetts Medical School, Jamaica Plain, 305 South St., Jamaica Plain, MA 02130
| | - Arnold W Strauss
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Anne Marie Comeau
- New England Newborn Screening Program, University of Massachusetts Medical School, Jamaica Plain, 305 South St., Jamaica Plain, MA 02130
| | - Roger B Eaton
- New England Newborn Screening Program, University of Massachusetts Medical School, Jamaica Plain, 305 South St., Jamaica Plain, MA 02130
| | - George F Grady
- New England Newborn Screening Program, University of Massachusetts Medical School, Jamaica Plain, 305 South St., Jamaica Plain, MA 02130
| |
Collapse
|
62
|
Willard JM, Reinard T, Mohsen A, Vockley J. Cloning of genomic and cDNA for mouse isovaleryl-CoA dehydrogenase (IVD) and evolutionary comparison to other known IVDs. Gene 2001; 270:253-7. [PMID: 11404023 DOI: 10.1016/s0378-1119(01)00466-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Isovaleryl-CoA dehydrogenase (IVD) is an intramitochondrial homotetrameric flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA in the leucine catabolism pathway. Deficiency of IVD in humans causes isovaleric acidemia, which shows tremendous clinical variability for reasons that are unknown. To help better understand this disorder, we have cloned and sequenced the mouse IVD genomic and cDNAs. The mouse IVD gene spans approximately 17 kb and contains 12 coding exons organized identically to the human gene. It maps to mouse chromosome 2 in the area of band 2E4-E5, corresponding to the syntenic region of human chromosome 15. Mouse IVD predicted amino acid sequences are 95.8 and 89.6% identical to that of the rat and human sequences, respectively, with conservation of key functional residues. We have now identified IVD sequences from seven species. Comparison of these sequences shows that the rat and mouse proteins are the most closely related, both of which, in turn, share highest homology to human. All of the mammalian enzymes appear to be more closely related than any of the IVDs on other branches of the phylogram, while the fly and worm IVDs are the most divergent. The invertebrate IVDs are more closely related to the mammalian enzymes than to those from two plant species.
Collapse
Affiliation(s)
- J M Willard
- Department of Medical Genetics, Mayo Clinic and Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
63
|
Yang BZ, Mallory JM, Roe DS, Brivet M, Strobel GD, Jones KM, Ding JH, Roe CR. Carnitine/acylcarnitine translocase deficiency (neonatal phenotype): successful prenatal and postmortem diagnosis associated with a novel mutation in a single family. Mol Genet Metab 2001; 73:64-70. [PMID: 11350184 DOI: 10.1006/mgme.2001.3162] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neonatal phenotype of carnitine-acylcarnitine translocase (CACT) deficiency is one of the most severe and usually lethal mitochondrial fat oxidation disorders characterized by hypoketotic hypoglycemia, hyperammonemia, cardiac abnormalities, and early death. In this study, the proband was the daughter of consanguineous Hispanic parents. At 36 h of life, she had bradycardia and died at 4 days of age without a specific diagnosis. In a subsequent pregnancy, prenatal counseling and amniocentesis were provided. Incubation of the amniocytes from this pregnancy and fibroblasts (from the dead proband) with [16-(2)H(3)]palmitic acid and analysis by tandem mass spectrometry revealed an increasedconcentration of [16-(2)H(3)]palmitoylcarnitine, suggesting the diagnoses of either CACT or carnitine palmitoyltransferase II (CPT-II) deficiency. CACT enzyme activity was absent in both cell lines. Molecular investigation of cDNA from the dead proband and her affected sibling revealed aberrant CACT cDNA species, including exon 3 skipping, both exon 3 and 4 skipping, and a 13-bp insertion at cDNA position 388. Investigation of these cell lines for mutations affecting CACT RNA processing by analysis of CACT gene sequences, including intron and exon boundaries, revealed a single nucleotide G deletion at the donor site in intron 3 which resulted in exon skipping and a 13-bp insertion. The proband and her affected sibling were homozygous for this deletion.
Collapse
Affiliation(s)
- B Z Yang
- Kimberly H. Courtwright and Joseph W. Summers Institute of Metabolic Disease, Baylor University Medical Center, 3812 Elm Street, Dallas, TX 7522, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Roe CR, Roe DS. Detection of gene defects in branched-chain amino acid metabolism by tandem mass spectrometry of carnitine esters produced by cultured fibroblasts. Methods Enzymol 2001; 324:424-31. [PMID: 10989450 DOI: 10.1016/s0076-6879(00)24251-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- C R Roe
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, Texas 75226, USA
| | | |
Collapse
|
65
|
Zschocke J, Ruiter JP, Brand J, Lindner M, Hoffmann GF, Wanders RJ, Mayatepek E. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res 2000; 48:852-5. [PMID: 11102558 DOI: 10.1203/00006450-200012000-00025] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a novel inborn error of metabolism identified in a child with an unusual neurodegenerative disease. The male patient was born at term and recovered well from a postnatal episode of metabolic decompensation and lactic acidosis. Psychomotor development in the first year of life was only moderately delayed. After 14 mo of age, there was progressive loss of mental and motor skills; at 2 years of age, he was severely retarded with marked restlessness, choreoathetoid movements, absence of directed hand movements, marked hypotonia and little reaction to external stimuli. Notable laboratory findings included marked elevations of urinary 2-methyl-3-hydroxybutyrate and tiglylglycine without elevation of 2-methylacetoacetate, mild elevations of lactate in CSF and blood, and a slightly abnormal acylcarnitine profile. These abnormalities became more apparent after isoleucine challenge. Enzyme studies showed absent activity of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) in the mitochondrial oxidation of 2-methyl branched-chain fatty acids and isoleucine. Under dietary isoleucine restriction, neurologic symptoms stabilized over the next 7 months.
Collapse
Affiliation(s)
- J Zschocke
- Division of Metabolic and Endocrine Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
66
|
Andresen BS, Christensen E, Corydon TJ, Bross P, Pilgaard B, Wanders RJ, Ruiter JP, Simonsen H, Winter V, Knudsen I, Schroeder LD, Gregersen N, Skovby F. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism. Am J Hum Genet 2000; 67:1095-103. [PMID: 11013134 PMCID: PMC1288551 DOI: 10.1086/303105] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2000] [Accepted: 09/06/2000] [Indexed: 11/03/2022] Open
Abstract
Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. We investigated a patient with isolated 2-methylbutyrylglycinuria, suggestive of a defect in isoleucine catabolism. Enzyme assay of the patient's fibroblasts, using 2-methylbutyryl-CoA as substrate, confirmed the defect. Sequence analysis of candidate ACADs revealed heterozygosity for the common short-chain ACAD A625 variant allele and no mutations in ACAD-8 but a 100-bp deletion in short/branched-chain ACAD (SBCAD) cDNA from the patient. Our identification of the SBCAD gene structure (11 exons; >20 kb) enabled analysis of genomic DNA. This showed that the deletion was caused by skipping of exon 10, because of homozygosity for a 1228G-->A mutation in the patient. This mutation was not present in 118 control chromosomes. In vitro transcription/translation experiments and overexpression in COS cells confirmed the disease-causing nature of the mutant SBCAD protein and showed that ACAD-8 is an isobutyryl-CoA dehydrogenase and that both wild-type proteins are imported into mitochondria and form tetramers. In conclusion, we report the first mutation in the SBCAD gene, show that it results in an isolated defect in isoleucine catabolism, and indicate that ACAD-8 is a mitochondrial enzyme that functions in valine catabolism.
Collapse
Affiliation(s)
- B S Andresen
- Research Unit for Molecular Medicine, Aarhus University Hospital, and Faculty of Health Science, Skejby Sygehus, DK 8200 Arhus N, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|