51
|
Impact of levosimendan on brain injury patterns in a lamb model of infant cardiopulmonary bypass. Pediatr Res 2014; 76:64-71. [PMID: 24713816 DOI: 10.1038/pr.2014.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/10/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND The effects of levosimendan (Levo) on injury patterns in the immature brain following cardiopulmonary bypass (CPB) are unknown. METHODS Eighteen 3- to 4-wk-old anesthetized lambs, instrumented with vascular catheters and aortic and right carotid artery flow probes, were allocated to non-CPB, CPB, or CPB+Levo groups (each n = 6). After 120 min CPB with 90 min aortic cross-clamp, CPB animals received dopamine, and CPB+Levo animals both dopamine and Levo, for 4 h. All lambs then underwent brain magnetic resonance imaging, followed by postmortem brain perfusion fixation for immunohistochemical studies. RESULTS In CPB lambs, aortic (P < 0.05) and carotid artery (P < 0.01) blood flows fell by 29 and 30%, respectively, between 2 and 4 h after cross-clamp removal but were unchanged in the CPB+Levo group. No brain injury was detectable with magnetic resonance imaging in either CPB or CPB+Levo lambs. However, on immunohistochemical analysis, white matter astrocyte density of both groups was higher than in non-CPB lambs (P < 0.05), while white matter microglial density was higher (P < 0.05), but markers of cortical oxidative stress were less prevalent in CPB+Levo than CPB lambs. CONCLUSION While Levo prevented early postoperative falls in cardiac output and carotid artery blood flow in a lamb model of infant CPB, this was associated with heterogeneous neuroglial activation and manifestation of markers of oxidative stress.
Collapse
|
52
|
Lear CA, Davidson JO, Booth LC, Wassink G, Galinsky R, Drury PP, Fraser M, Bennet L, Gunn AJ. Biphasic changes in fetal heart rate variability in preterm fetal sheep developing hypotension after acute on chronic lipopolysaccharide exposure. Am J Physiol Regul Integr Comp Physiol 2014; 307:R387-95. [PMID: 24944248 DOI: 10.1152/ajpregu.00110.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perinatal exposure to infection is highly associated with adverse outcomes. Experimentally, acute, severe exposure to gram-negative bacterial lipopolysaccharide (LPS) is associated with increased fetal heart rate variability (FHRV). It is unknown whether FHRV is affected by subclinical infection with or without acute exacerbations. We therefore tested the hypothesis that FHRV would be associated with hypotension after acute on chronic exposure to LPS. Chronically instrumented fetal sheep at 0.7 gestation were exposed to a continuous low-dose LPS infusion (n = 12, 100 ng/kg over 24 h, followed by 250 ng·kg(-1)·24 h(-1) for a further 96 h) or the same volume of saline (n = 10). Boluses of either 1 μg LPS or saline were given at 48, 72, and 96 h. Low-dose infusion was not associated with hemodynamic or FHRV changes. The first LPS bolus was associated with tachycardia and suppression of nuchal electromyographic activity in all fetuses. Seven of twelve fetuses developed hypotension (a fall in mean arterial blood pressure ≥5 mmHg). FHRV was transiently increased only at the onset of hypotension, in association with increased cytokine induction and electroencephalogram suppression. FHRV then fell before the nadir of hypotension, with transient suppression of short-term FHRV. After the second LPS bolus, the hypotension group showed a biphasic pattern of a transient increase in FHRV followed by more prolonged suppression. These findings suggest that infection-related hypotension in the preterm fetus mediates the transient increase in FHRV and that repeated exposure to LPS leads to progressive loss of FHRV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mhoyra Fraser
- Department of Physiology, and The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
53
|
Elitt CM, Rosenberg PA. The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience 2014; 276:216-38. [PMID: 24838063 DOI: 10.1016/j.neuroscience.2014.04.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
Abstract
White matter injury in the premature infant leads to motor and more commonly behavioral and cognitive problems that are a tremendous burden to society. While there has been much progress in understanding unique vulnerabilities of developing oligodendrocytes over the past 30years, there remain no proven therapies for the premature infant beyond supportive care. The lack of translational progress may be partially explained by the challenge of developing relevant animal models when the etiology remains unclear, as is the case in this disorder. There has been an emphasis on hypoxia-ischemia and infection/inflammation as upstream etiologies, but less consideration of other contributory factors. This review highlights the evolution of white matter pathology in the premature infant, discusses the prevailing proposed etiologies, critically analyzes a sampling of common animal models and provides detailed support for our hypothesis that nutritional and hormonal deprivation may be additional factors playing critical and overlooked roles in white matter pathology in the premature infant.
Collapse
Affiliation(s)
- C M Elitt
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - P A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
54
|
Microglia toxicity in preterm brain injury. Reprod Toxicol 2014; 48:106-12. [PMID: 24768662 PMCID: PMC4155935 DOI: 10.1016/j.reprotox.2014.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
Microglia responses in the preterm human brain in association with injury. Microglia responses in animal models of preterm brain injury. Mechanisms of microglia toxicity from in vitro primary microglia cell culture experiments.
Microglia are the resident phagocytic cells of the central nervous system. During brain development they are also imperative for apoptosis of excessive neurons, synaptic pruning, phagocytosis of debris and maintaining brain homeostasis. Brain damage results in a fast and dynamic microglia reaction, which can influence the extent and distribution of subsequent neuronal dysfunction. As a consequence, microglia responses can promote tissue protection and repair following brain injury, or become detrimental for the tissue integrity and functionality. In this review, we will describe microglia responses in the human developing brain in association with injury, with particular focus on the preterm infant. We also explore microglia responses and mechanisms of microglia toxicity in animal models of preterm white matter injury and in vitro primary microglia cell culture experiments.
Collapse
|
55
|
Back SA. Cerebral white and gray matter injury in newborns: new insights into pathophysiology and management. Clin Perinatol 2014; 41:1-24. [PMID: 24524444 PMCID: PMC3947650 DOI: 10.1016/j.clp.2013.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Increasing numbers of preterm neonates survive with motor and cognitive disabilities related to less destructive forms of cerebral injury that still result in reduced cerebral growth. White matter injury results in myelination disturbances related to aberrant responses to death of pre-myelinating oligodendrocytes (preOLs). PreOLs are rapidly regenerated but fail to mature to myelinating cells. Although immature projection neurons are more resistant to hypoxia-ischemia than preOLs, they display widespread disturbances in dendritic arbor maturation, which provides an explanation for impaired cerebral growth. Thus, large numbers of cells fail to fully mature during a critical window in development of neural circuitry. These recently recognized forms of cerebral gray and white matter dysmaturation suggest new therapeutic directions centered on reversal of the processes that promote dysmaturation.
Collapse
Affiliation(s)
- Stephen A. Back
- Professor of Pediatrics and Neurology Oregon Health & Science University Clyde and Elda Munson Professor of Pediatric Research Director, Neuroscience Section, Pape' Family Pediatric Research Institute
| |
Collapse
|
56
|
Wolfs TGAM, Kramer BW, Thuijls G, Kemp MW, Saito M, Willems MGM, Senthamarai-Kannan P, Newnham JP, Jobe AH, Kallapur SG. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation. Am J Physiol Gastrointest Liver Physiol 2014; 306:G382-93. [PMID: 24458021 PMCID: PMC3949018 DOI: 10.1152/ajpgi.00260.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intra-amniotic exposure to proinflammatory agonists causes chorioamnionitis and fetal gut inflammation. Fetal gut inflammation is associated with mucosal injury and impaired gut development. We tested whether this detrimental inflammatory response of the fetal gut results from a direct local (gut derived) or an indirect inflammatory response mediated by the chorioamnion/skin or lung, since these organs are also in direct contact with the amniotic fluid. The gastrointestinal tract was isolated from the respiratory tract and the amnion/skin epithelia by fetal surgery in time-mated ewes. Lipopolysaccharide (LPS) or saline (controls) was selectively infused in the gastrointestinal tract, trachea, or amniotic compartment at 2 or 6 days before preterm delivery at 124 days gestation (term 150 days). Gastrointestinal and intratracheal LPS exposure caused distinct inflammatory responses in the fetal gut. Inflammatory responses could be distinguished by the influx of leukocytes (MPO(+), CD3(+), and FoxP3(+) cells), tumor necrosis factor-α, and interferon-γ expression and differential upregulation of mRNA levels for Toll-like receptor 1, 2, 4, and 6. Fetal gut inflammation after direct intestinal LPS exposure resulted in severe loss of the tight junctional protein zonula occludens protein 1 (ZO-1) and increased mitosis of intestinal epithelial cells. Inflammation of the fetal gut after selective LPS instillation in the lungs caused only mild disruption of ZO-1, loss in epithelial cell integrity, and impaired epithelial differentiation. LPS exposure of the amnion/skin epithelia did not result in gut inflammation or morphological, structural, and functional changes. Our results indicate that the detrimental consequences of chorioamnionitis on fetal gut development are the combined result of local gut and lung-mediated inflammatory responses.
Collapse
Affiliation(s)
- Tim G. A. M. Wolfs
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio; ,2Department of Pediatrics, Maastricht University Medical Center, School of Oncology and Developmental Biology, Maastricht, the Netherlands; and
| | - Boris W. Kramer
- 2Department of Pediatrics, Maastricht University Medical Center, School of Oncology and Developmental Biology, Maastricht, the Netherlands; and
| | - Geertje Thuijls
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio;
| | - Matthew W. Kemp
- 3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Masatoshi Saito
- 3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Monique G. M. Willems
- 2Department of Pediatrics, Maastricht University Medical Center, School of Oncology and Developmental Biology, Maastricht, the Netherlands; and
| | - Paranthaman Senthamarai-Kannan
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio;
| | - John P. Newnham
- 3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan H. Jobe
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio; ,3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Suhas G. Kallapur
- 1Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, Ohio; ,3School of Women's and Infants Health, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
57
|
Robinson AJ. Inferior vermian hypoplasia--preconception, misconception. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 43:123-136. [PMID: 24497418 DOI: 10.1002/uog.13296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Ashley J Robinson
- Department of Radiology, Children's Hospital of British Columbia, 4480 Oak Street, Vancouver, V6H 3V4, Canada.
| |
Collapse
|
58
|
Pedroni SM, Gonzalez JM, Wade J, Jansen MA, Serio A, Marshall I, Lennen RJ, Girardi G. Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:107-15. [DOI: 10.1016/j.bbadis.2013.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 11/26/2022]
|
59
|
Weaver-Mikaere L, Gunn AJ, Bennet L, Mitchell MD, Fraser M. Inhibition of matrix metalloproteinases-2/-9 transiently reduces pre-oligodendrocyte loss during lipopolysaccharide- but not tumour necrosis factor-alpha-induced inflammation in fetal ovine glial culture. Dev Neurosci 2013; 35:461-73. [PMID: 24193164 DOI: 10.1159/000354862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
To determine whether increased matrix metalloproteinase (MMP) proteolytic activity plays a pathological role in infection/inflammation-induced preterm brain injury, primary cultures of preterm (day 90 of gestation; term 145 days) fetal ovine mixed glia were exposed to 24-96 h of lipopolysaccharide (LPS, 1 μg/ml) or tumour necrosis factor-α (TNF-α, 100 ng/ml). MMP-2 mRNA levels were significantly increased after TNF-α (96 h) and LPS exposure (48 and 96 h), and MMP-9 mRNA levels were significantly increased at 48 and 96 h after TNF-α. On zymography, the active form of secreted MMP-2 was significantly increased 24 h after LPS, but not TNF-α. Both active and latent forms of MMP-9 gelatinolytic activity were significantly increased by TNF-α (96 h) and LPS (72 and 96 h). On reverse zymography, inhibitory activity of TIMP-1 but not TIMP-2 was significantly increased by TNF-α and LPS. SB-3CT-mediated MMP-2 and MMP-9 inhibition transiently reduced LPS-induced oligodendrocyte cell death but had no effect during TNF-α exposure. Collectively, these observations suggest a limited, transient effect of MMPs on immature white matter damage associated with infection but not TNF-α-mediated inflammation.
Collapse
|
60
|
Mitha A, Foix-L'Hélias L, Arnaud C, Marret S, Vieux R, Aujard Y, Thiriez G, Larroque B, Cambonie G, Burguet A, Boileau P, Rozé JC, Kaminski M, Truffert P, Ancel PY. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatrics 2013; 132:e372-80. [PMID: 23878051 DOI: 10.1542/peds.2012-3979] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine whether neonatal infections are associated with a higher risk of adverse neurodevelopment at 5 years of age in a population-based cohort of very preterm children. METHODS We included all live births between 22 and 32 weeks of gestation, from 9 regions in France, in 1997 (EPIPAGE study). Of the 2665 live births, 2277 were eligible for a follow-up evaluation at 5 years of age: 1769 had a medical examination and 1495 underwent cognitive assessment. Cerebral palsy and cognitive impairment were studied as a function of early-onset sepsis (EOS) and late-onset sepsis (LOS), after adjustment for potential confounding factors, in multivariate logistic regression models. RESULTS A total of 139 (5%) of the 2665 live births included in the study presented with EOS alone (without associated LOS), 752 (28%) had LOS alone (without associated EOS), and 64 (2%) displayed both EOS and LOS. At 5 years of age, the frequency of cerebral palsy was 9% (157 of 1769) and that of cognitive impairment was 12% (177 of 1495). The frequency of cerebral palsy was higher in infants with isolated EOS (odds ratio [OR]: 1.70 [95% confidence interval (CI): 0.84-3.45]) or isolated LOS (OR: 1.71 [95% CI: 1.14-2.56]) than in uninfected infants, and this risk was even higher in cases of combined EOS and LOS (OR: 2.33 [95% CI: 1.02-5.33]). There was no association between neonatal infection and cognitive impairment. CONCLUSIONS Neonatal infections in these very preterm infants were associated with a higher risk of cerebral palsy at the age of 5 years, particularly in infants presenting with both EOS and LOS.
Collapse
Affiliation(s)
- Ayoub Mitha
- Neonatal Unit Hôpital Jeanne de Flandre, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Dilek M, Kumral A, Okyay E, Ozbal S, Tugyan K, Tuzun F, Sever AH, Yilmaz O, Duman N, Ozkan H. Protective effects of pentoxifylline on lipopolysaccharide-induced white matter injury in a rat model of periventricular leukomalasia. J Matern Fetal Neonatal Med 2013; 26:1865-71. [PMID: 23614640 DOI: 10.3109/14767058.2013.798290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the potential neuroprotective effect of maternal pentoxifylline (PNTX) treatment in endotoxin-induced periventricular leukomalasia (PVL) in the developing rat brain. METHOD Intraperitoneal injection of lipopolysaccharide was administered on two of three Wistar pregnant rats to establish PVL. To obtain PNTX-treated group, one of the two dams were injected with PNTX. The control group was treated with saline. Rat pups were grouped as control, maternal LPS-treated group and PNTX + LPS-treated group. At 7th postnatal days, apoptosis and hypomyelination were evaluated. Apoptosis was evaluated by caspase-3 and terminal deoxynucleotidyl transferase [TdT] dUTP nick endlabelling reaction (TUNEL) immunostaining. To assess hypomyelination, myelin basic protein (MBP) staining, as a marker of myelination, was evaluated. RESULTS MBP staining was significantly less and weaker in the brains of the LPS-treated group as compared with the PNTX-treated group. PNTX treatment significantly reduced the number of apoptotic cells in the periventricular WM shown on Tunel and caspase-3. CONCLUSIONS Presented study is first indicated that PNTX may provide protection against an LPS-induced inflammatory response and WMI in the developing rat brain. Our results also suggest that PNTX treatment in pregnant women with maternal or placental infection may minimize the risk of PVL and cerebral palsy.
Collapse
|
62
|
Gisslen T, Hillman NH, Musk GC, Kemp MW, Kramer BW, Senthamaraikannan P, Newnham JP, Jobe AH, Kallapur SG. Repeated exposure to intra-amniotic LPS partially protects against adverse effects of intravenous LPS in preterm lambs. Innate Immun 2013; 20:214-24. [PMID: 23751819 DOI: 10.1177/1753425913488430] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histologic chorioamnionitis, frequently associated with preterm births and adverse outcomes, results in prolonged exposure of preterm fetuses to infectious agents and pro-inflammatory mediators, such as LPS. Endotoxin tolerance-type effects were demonstrated in fetal sheep following repetitive systemic or intra-amniotic (i.a.) exposures to LPS, suggesting that i.a. LPS exposure would cause endotoxin tolerance to a postnatal systemic dose of LPS in preterm sheep. In this study, randomized pregnant ewes received either two i.a. injections of LPS or saline prior to preterm delivery. Following operative delivery, the lambs were treated with surfactant, ventilated, and randomized to receive either i.v. LPS or saline at 30 min of age. Physiologic variables and indicators of systemic and lung inflammation were measured. Intravenous LPS decreased blood neutrophils and platelets values following i.a. saline compared to that after i.a. LPS. Intra-amniotic LPS prevented blood pressure from decreasing following the i.v. LPS, but also caused an increased oxygen index. Intra-amniotic LPS did not cause endotoxin tolerance as assessed by cytokine expression in the liver, lung or plasma, but increased myeloperoxidase-positive cells in the lung. The different compartments of exposure to LPS (i.a. vs i.v.) are unique to the fetal to newborn transition. Intra-amniotic LPS incompletely tolerized fetal lambs to postnatal i.v. LPS.
Collapse
Affiliation(s)
- Tate Gisslen
- 1Division of Neonatology/Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Booth LC, Drury PP, Muir C, Jensen EC, Gunn AJ, Bennet L. Acute on chronic exposure to endotoxin is associated with enhanced chemoreflex responses in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2013; 304:R799-803. [DOI: 10.1152/ajpregu.00005.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is increasing evidence that exposure to infection can sensitize the fetus to subsequent hypoxic injury. However, it is unclear whether this involves compromise of the fetal cardiovascular adaptation to acute asphyxia. Chronically instrumented 103-day-old (0.7 gestational age, term is 147 days) fetal sheep in utero were randomized to receive either gram-negative lipopolysaccharide (LPS) as a continuous low-dose infusion for 120 h plus boluses of 1 μg LPS at 48, 72, and 96 h with asphyxia at 102 h (i.e., 6 h after the final LPS bolus) induced by umbilical cord occlusion for 15 min (LPS treated, n = 8), or the same volume of saline plus occlusion (saline treated, n = 7). Fetuses were killed 5 days after occlusion. LPS was associated with a more rapid fall in fetal heart rate at the onset of occlusion ( P < 0.05) and with minimally lower values during occlusion ( P < 0.05). The LPS-treated fetuses had lower fetal mean arterial blood pressure (BP) and greater carotid artery blood flow (CaBF) before occlusion ( P < 0.05) but showed an increase in BP and fall in CaBF to similar values as saline controls during occlusion. There were no differences between the groups in femoral blood flow before or during occlusion. Contrary to our initial hypothesis, acute on chronic exposure to LPS was associated with more rapid cardiovascular adaptation to umbilical cord occlusion.
Collapse
Affiliation(s)
- Lindsea C. Booth
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Paul P. Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Cameron Muir
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Ellen C. Jensen
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
64
|
Monocyte function in the fetus and the preterm neonate: immaturity combined with functional impairment. Mediators Inflamm 2013; 2013:753752. [PMID: 23690669 PMCID: PMC3649711 DOI: 10.1155/2013/753752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/03/2013] [Accepted: 03/21/2013] [Indexed: 12/24/2022] Open
Abstract
It is well known that the innate immunity system, involving the contribution of monocytes and macrophages, may dysfunction in fetuses and preterm neonates. Monocytes are capable of differentiating into dendritic cells (DCs) or into mucosal macrophages during certain infections and of producing inflammatory mediators such as TNF-α (tumor necrosis factor-alpha), nitric oxide, and reactive oxygen species. Fetuses as well as neonates are prone to infections as a result of a defective mechanism within the above mononuclear system. Monocyte function in fetuses and preterm neonates depends on the phagocytic and oxidative capacity of macrophages and their antigen-adhesion ability. Functional rather than anatomical impairment is probably the underlying cause, while a defective production of cytokines, such as TNF-α, IL-6 (Interleukin 6), IL-1β (Interleukin 1 beta), and G-CSF (Granulocyte Colony-Stimulating Factor), has also been involved. The insufficient production of the above inflammatory mediators and the phenomenon of endotoxin intolerance, which latter occurs during entry of any antigen into the premature neonate, place preterm neonates at higher risk for infections. Existing research data are herein presented which, however, are deficient and fragmental, this accounting for the fact that the precise pathophysiology of these disturbances is not yet fully clarified.
Collapse
|
65
|
Yawno T, Schuilwerve J, Moss TJM, Vosdoganes P, Westover AJ, Afandi E, Jenkin G, Wallace EM, Miller SL. Human amnion epithelial cells reduce fetal brain injury in response to intrauterine inflammation. Dev Neurosci 2013; 35:272-82. [PMID: 23571644 DOI: 10.1159/000346683] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Intrauterine infection, such as occurs in chorioamnionitis, is a principal cause of preterm birth and is a strong risk factor for neurological morbidity and cerebral palsy. This study aims to examine whether human amnion epithelial cells (hAECs) can be used as a potential therapeutic agent to reduce brain injury induced by intra-amniotic administration of lipopolysaccharide (LPS) in preterm fetal sheep. Pregnant ewes underwent surgery at approximately 110 days of gestation (term is approx. 147 days) for implantation of catheters into the amniotic cavity, fetal trachea, carotid artery and jugular vein. LPS was administered at 117 days; hAECs were labeled with carboxyfluorescein succinimidyl ester and administered at 0, 6 and 12 h, relative to LPS administration, into the fetal jugular vein, trachea or both. Control fetuses received an equivalent volume of saline. Brains were collected 7 days later for histological assessment of brain injury. Microglia (Iba-1-positive cells) were present in the brain of all fetuses and were significantly increased in the cortex, subcortical and periventricular white matter in fetuses that received LPS, indicative of inflammation. Inflammation was reduced in fetuses that received hAECs. In LPS fetuses, the number of TUNEL-positive cells was significantly elevated in the cortex, periventricular white matter, subcortical white matter and hippocampus compared with controls, and reduced in fetuses that received hAECs in the cortex and periventricular white matter. Within the fetal brains studied there was a significant positive correlation between the number of Iba-1-immunoreactive cells and the number of TUNEL-positive cells (R(2) = 0.19, p < 0.001). The administration of hAECs protects the developing brain when administered concurrently with the initiation of intrauterine inflammation.
Collapse
Affiliation(s)
- Tamara Yawno
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Vic., Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Modèles animaux de la prématurité : mesures comportementales des effets des lésions cérébrales. ENFANCE 2013. [DOI: 10.4074/s0013754513001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Marret S, Vanhulle C, Laquerriere A. Pathophysiology of cerebral palsy. HANDBOOK OF CLINICAL NEUROLOGY 2013; 111:169-76. [PMID: 23622161 DOI: 10.1016/b978-0-444-52891-9.00016-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cerebral palsy (CP), defined as a group of nonprogressive disorders of movement and posture, is the most common cause of severe neurodisability in children. Understanding its physiopathology is crucial to developing some protective strategies. Interruption of oxygen supply to the fetus or brain asphyxia was classically considered to be the main causal factor explaining later CP. However several ante-, peri-, and postnatal factors could be involved in the origins of CP syndromes. Congenital malformations are rarely identified. CP is most often the result of environmental factors, which might interact with genetic vulnerabilities, and could be severe enough to cause the destructive injuries visible with standard imaging (i.e., ultrasonographic study or MRI), predominantly in the white matter in preterm infants and in the gray matter and the brainstem nuclei in full-term newborns. Moreover they act on an immature brain and could alter the remarkable series of developmental events. Biochemical key factors originating in cell death or cell process loss, observed in hypoxic-ischemic as well as inflammatory conditions, are excessive production of proinflammatory cytokines, oxidative stress, maternal growth factor deprivation, extracellular matrix modifications, and excessive release of glutamate, triggering the excitotoxic cascade. Only two strategies have succeeded in decreasing CP in 2-year-old children: hypothermia in full-term newborns with moderate neonatal encephalopathy and administration of magnesium sulfate to mothers in preterm labor.
Collapse
Affiliation(s)
- Stéphane Marret
- Department of Neonatal Medicine and Centre of Child Functional Education, Rouen University Hospital, Rouen, France; INSERM Region Team ERI 28, Rouen Institute for Medical Research and Innovation, School of Medicine, Rouen University, Rouen, France.
| | | | | |
Collapse
|
68
|
Mathai S, Booth LC, Davidson JO, Drury PP, Fraser M, Jensen EC, George S, Naylor A, Gunn AJ, Bennet L. Acute on chronic exposure to endotoxin in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2012; 304:R189-97. [PMID: 23235324 DOI: 10.1152/ajpregu.00388.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute, high-dose exposure to endotoxin lipopolysaccharide (LPS) in preterm fetal sheep can trigger periventricular white matter lesions (PVL), in association with severe hypotension/hypoxemia and significant mortality. Intriguingly, however, chronic or repeated exposure to LPS can induce tachyphylaxis. We therefore tested the hypothesis that progressive, acute on chronic fetal infection would be associated with white matter injury with little fetal mortality. Chronically instrumented preterm (0.7 gestational age) fetal sheep were exposed to a continuous low-dose LPS infusion (100 ng over 24 h, followed by 250 ng/24 h for 96 h) or saline. Boluses of 1 μg LPS or saline were given at 48, 72, and 96 h; sheep were killed at day 10. Six of 11 fetal sheep exposed to saline infusion + LPS boluses died 4-7 h after the first bolus. In contrast, there was no fetal mortality after saline infusions alone (n = 9), low-dose LPS infusion + saline boluses (n = 5), or low-dose LPS + LPS boluses (n = 9). Low-dose LPS infusion + LPS boluses was associated with greater microglial induction than low-dose LPS + saline boluses but a similar area of periventricular white matter inflammation. One fetus developed severe focal white matter necrosis after LPS infusion + boluses. The acute cardiovascular compromise associated with high-dose, acute exposure to LPS is markedly attenuated by previous low-dose infusions, with limited apparent exacerbation of periventricular white matter injury compared with low-dose infusion alone.
Collapse
Affiliation(s)
- Sam Mathai
- Department of Physiology, the University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Strackx E, Gantert M, Moers V, van Kooten IAJ, Rieke R, Hürter H, Lemmens MAM, Steinbusch HWM, Zimmermann LJI, Vles JSH, Garnier Y, Gavilanes AWD, Kramer BW. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide. THE CEREBELLUM 2012; 11:132-44. [PMID: 21773814 PMCID: PMC3311858 DOI: 10.1007/s12311-011-0297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chorioamnionitis is an important problem in perinatology today, leading to brain injury and neurological handicaps. However, there are almost no data available regarding chorioamnionitis and a specific damage of the cerebellum. Therefore, this study aimed at determining if chorioamnionitis causes cerebellar morphological alterations. Chorioamnionitis was induced in sheep by the intra-amniotic injection of lipopolysaccharide (LPS) at a gestational age (GA) of 110 days. At a GA of 140 days, we assessed the mean total and layer-specific volume and the mean total granule cell (GCs) and Purkinje cell (PC) number in the cerebelli of LPS-exposed and control animals using high-precision design-based stereology. Astrogliosis was assessed in the gray and white matter (WM) using a glial fibrillary acidic protein staining combined with gray value image analysis. The present study showed an unchanged volume of the total cerebellum as well as the molecular layer, outer and inner granular cell layers (OGL and IGL, respectively), and WM. Interestingly, compared with controls, the LPS-exposed brains showed a statistically significant increase (+20.4%) in the mean total number of GCs, whereas the number of PCs did not show any difference between the two groups. In addition, LPS-exposed animals showed signs of astrogliosis specifically affecting the IGL. Intra-amniotic injection of LPS causes morphological changes in the cerebellum of fetal sheep still detectable at full-term birth. In this study, changes were restricted to the inner granule layer. These cerebellar changes might correspond to some of the motor or non-motor deficits seen in neonates from compromised pregnancies.
Collapse
Affiliation(s)
- Eveline Strackx
- Department of Neuroscience and European Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kuypers E, Ophelders D, Jellema RK, Kunzmann S, Gavilanes AW, Kramer BW. White matter injury following fetal inflammatory response syndrome induced by chorioamnionitis and fetal sepsis: lessons from experimental ovine models. Early Hum Dev 2012; 88:931-6. [PMID: 23078831 DOI: 10.1016/j.earlhumdev.2012.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chorioamnionitis and fetal sepsis can induce a fetal inflammatory response syndrome (FIRS) which is closely related to the development of white matter injury in the fetal brain. Large epidemiological studies support the link between FIRS and fetal brain injury with a clear association between the presence of in utero inflammation and neurodevelopmental complications such as cerebral palsy, autism and cognitive impairments later in life. Translational animal models of chorioamnionitis and fetal sepsis are essential in understanding the underlying pathophysiological mechanisms of fetal brain injury after exposure to intra-uterine inflammation. Concerning this aspect, ovine models have high translational value since neurodevelopment in sheep closely resembles the human situation. In this article, we will review clinical and experimental evidence for the link between FIRS and white matter injury in the fetal brain. With respect to experimental findings, we will particularly focus on the lessons learned from ovine models of chorioamnionitis and fetal sepsis. We also highlight two key players implied in the pathophysiology of white matter injury after in utero exposure to inflammation.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
71
|
Bennet L, Booth LC, Drury PP, Quaedackers JSL, Gunn AJ. Preterm neonatal cardiovascular instability: Does understanding the fetus help evaluate the newborn? Clin Exp Pharmacol Physiol 2012; 39:965-72. [DOI: 10.1111/j.1440-1681.2012.05744.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Lindsea C Booth
- Neurobiology Division; Florey Neuroscience Institutes; University of Melbourne; Melbourne; Victoria; Australia
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Josine SL Quaedackers
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group; Department of Physiology; Faculty of Medical and Health; The University of Auckland; Auckland; New Zealand
| |
Collapse
|
72
|
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN NEUROLOGY 2012; 2012:701950. [PMID: 23097717 PMCID: PMC3477747 DOI: 10.5402/2012/701950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023]
Abstract
The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.
Collapse
Affiliation(s)
- Carina Mallard
- Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530 Gothenburg, Sweden
| |
Collapse
|
73
|
Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Dev Neurobiol 2012; 72:1335-48. [DOI: 10.1002/dneu.22043] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/11/2022]
|
74
|
Keogh MJ, Bennet L, Drury PP, Booth LC, Mathai S, Naylor AS, Fraser M, Gunn AJ. Subclinical exposure to low-dose endotoxin impairs EEG maturation in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2012; 303:R270-8. [PMID: 22696578 DOI: 10.1152/ajpregu.00216.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chorioamnionitis is strongly associated with neurodevelopmental disability after premature birth; however, it remains unclear whether subclinical infection affects functional EEG maturation. Chronically instrumented 103-104-day-old (0.7 gestational age: term 147 days) fetal sheep in utero were randomized to receive either gram-negative LPS by continuous low-dose infusion (100 ng iv over 24 h, followed by 250 ng/24 h for 4 days; n = 6) or the same volume of normal saline (n = 9). Arterial plasma cortisol, ACTH, and IL-6 were measured. The delta (0-3.9 Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken after 10 days for histopathology. There were no changes in blood gases, cardiovascular variables, or EEG power during LPS infusion, but a transient rise in plasma cortisol and IL-6 (P < 0.05). LPS infusion was associated with loss of the maturational increase to higher frequency activity, with reduced alpha and beta power, and greater delta power than saline controls from 6 to 10 days (P < 0.05). Histologically, LPS was associated with increased numbers of microglia and TNF-α-positive cells in the periventricular white matter and frontoparietal cortex, increased caspase-3-positive cells in white matter, but no loss of CNPase-positive oligodendrocytes, Nurr-1 subplate cells, or gyral complexity. These data suggest that low-dose endotoxin exposure can impair EEG maturation in preterm fetal sheep in association with neural inflammation but without hemodynamic disturbances or cortical injury.
Collapse
Affiliation(s)
- Michael J Keogh
- Department of Physiology, University of Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Weaver-Mikaere L, Gibbons HM, De Silva D, Fraser M. Primary mixed glial cultures from fetal ovine forebrain are a valid model of inflammation-mediated white matter injury. Dev Neurosci 2012; 34:30-42. [PMID: 22627272 DOI: 10.1159/000338039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Astrocytes, microglial cells and oligodendrocytes (OLs) have been employed separately in vitro to assess cellular pathways following a variety of stimuli. Mixed glial cell cultures, however, have not been utilized to the same extent, despite the observed discrepancy in outcomes resulting from cell-to-cell contact of different glia in culture. Our objective was to standardize and morphologically characterize a primary culture of preterm ovine glial cells in order to attain a relevant in vitro model to assess the intracellular effects of infection and inflammation. This would provide a high-throughput model necessary for in-depth studies on the various pathophysiological mechanisms of white matter injury (WMI), which may occur in the preterm infant as a consequence of maternal infection or the fetal inflammatory response. Glial cells from the forebrains of 0.65-gestation ovine fetuses (comparable to 24- to 26-week human fetal brain development) were mechanically and enzymatically isolated and plated at a final density of 250,000 cells per well. When reaching confluence at 5 days after plating, the cultures contained astrocytes, microglial cells, as well as progenitor, precursor and immature OLs. Glial cell morphology and phenotypic immunoreactivity were characteristic of and consistent with previous observations of separately cultured cell types. To determine the effects of infection or inflammation in our in vitro model, we then treated mixed glial cultures with tumour necrosis factor-α (TNF-α; 50 or 100 ng/ml) or lipopolysaccharide (LPS; 1 µg/ml) for a period of 48 h. Cytokine levels were measured by ELISA and cell numbers for specific glial cell types were determined along with OL proliferation and apoptosis by Ki67 and caspase-3 immunocytochemistry, respectively. Our results showed that exposure to TNF-α or LPS resulted in a characteristic inflammatory response entailed by up-regulation of pro-inflammatory cytokines, a lack of astrogliosis and a marked reduction in OLs attributable to increased apoptosis. In LPS-treated cultures, there was a marked increase in the pro-inflammatory cytokine TNF-α at both 24 and 48 h. In conclusion, this is the first report of the immunocytochemical description and characterization of fetal ovine-derived mixed glial cell primary cultures. This in vitro model provides a novel and efficient system to explore the mechanisms of infection/inflammation-mediated WMI at the cellular level and for screening candidate therapeutic strategies.
Collapse
Affiliation(s)
- Luke Weaver-Mikaere
- The Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
76
|
Modeling the encephalopathy of prematurity in animals: the important role of translational research. Neurol Res Int 2012; 2012:295389. [PMID: 22685653 PMCID: PMC3366246 DOI: 10.1155/2012/295389] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/18/2012] [Indexed: 12/23/2022] Open
Abstract
Translational research in preterm brain injury depends upon the delineation of the human neuropathology in order that animal models faithfully reiterate it, thereby ensuring direct relevance to the human condition. The major substrate of human preterm brain injury is the encephalopathy of prematurity that is characterized by gray and white matter lesions reflecting combined acquired insults, altered developmental trajectories, and reparative phenomena. Here we highlight the key features of human preterm brain development and the encephalopathy of prematurity that are critical for modeling in animals. The complete mimicry of the complex human neuropathology is difficult in animal models. Many models focus upon mechanisms related to a specific feature, for example, loss of premyelinating oligodendrocytes in the cerebral white matter. Nevertheless, animal models that simultaneously address oligodendrocyte, neuronal, and axonal injury carry the potential to decipher shared mechanisms and synergistic treatments to ameliorate the global consequences of the encephalopathy of prematurity.
Collapse
|
77
|
Jonakait GM, Pratt L, Acevedo G, Ni L. Microglial regulation of cholinergic differentiation in the basal forebrain. Dev Neurobiol 2012; 72:857-64. [DOI: 10.1002/dneu.20969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
78
|
Back SA, Riddle A, Dean J, Hohimer AR. The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant. Neurotherapeutics 2012; 9:359-70. [PMID: 22399133 PMCID: PMC3337024 DOI: 10.1007/s13311-012-0108-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Despite advances in neonatal intensive care, survivors of premature birth remain highly susceptible to unique patterns of developmental brain injury that manifest as cerebral palsy and cognitive-learning disabilities. The developing brain is particularly susceptible to cerebral white matter injury related to hypoxia-ischemia. Cerebral white matter development in fetal sheep shares many anatomical and physiological similarities with humans. Thus, the fetal sheep has provided unique experimental access to the complex pathophysiological processes that contribute to injury to the human brain during successive periods in development. Recent refinements have resulted in models that replicate major features of acute and chronic human cerebral injury and have provided access to complex clinically relevant studies of cerebral blood flow and neuroimaging that are not feasible in smaller laboratory animals. Here, we focus on emerging insights and methodologies from studies in fetal sheep that have begun to define cellular and vascular factors that contribute to white matter injury. Recent advances include spatially defined measurements of cerebral blood flow in utero, the definition of cellular maturational factors that define the topography of injury and the application of high-field magnetic resonance imaging to define novel neuroimaging signatures for specific types of chronic white matter injury. Despite the higher costs and technical challenges of instrumented preterm fetal sheep models, they provide powerful access to clinically relevant studies that provide a more integrated analysis of the spectrum of insults that appear to contribute to cerebral injury in human preterm infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
79
|
Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2012; 71:444-57. [PMID: 22334391 DOI: 10.1002/ana.22620] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/05/2011] [Accepted: 07/15/2011] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being of both physiological and pathological importance in the immature brain. The rationale of this review is to present an update on this topic with focus on long-term consequences of inflammation during childhood and in adults. The immature brain can be exposed to inflammation in connection with viral or bacterial infection during pregnancy or as a result of sterile central nervous system (CNS) insults. Through efficient anti-inflammatory and reparative processes, inflammation may resolve without any harmful effects on the brain. Alternatively, inflammation contributes to injury or enhances CNS vulnerability. Acute inflammation can also be shifted to a chronic inflammatory state and/or adversely affect brain development. Hypothetically, microglia are the main immunocompetent cells in the immature CNS, and depending on the stimulus, molecular context, and timing, these cells will acquire various phenotypes, which will be critical regarding the CNS consequences of inflammation. Inflammation has long-term consequences and could speculatively modify the risk of a variety of neurological disorders, including cerebral palsy, autism spectrum disorders, schizophrenia, multiple sclerosis, cognitive impairment, and Parkinson disease. So far, the picture is incomplete, and data mostly experimental. Further studies are required to strengthen the associations in humans and to determine whether novel therapeutic interventions during the perinatal period can influence the occurrence of neurological disease later in life.
Collapse
Affiliation(s)
- Henrik Hagberg
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sweden.
| | | | | |
Collapse
|
80
|
Inflammatory-induced hibernation in the fetus: priming of fetal sheep metabolism correlates with developmental brain injury. PLoS One 2011; 6:e29503. [PMID: 22242129 PMCID: PMC3248450 DOI: 10.1371/journal.pone.0029503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/29/2011] [Indexed: 02/02/2023] Open
Abstract
Prenatal inflammation is considered an important factor contributing to preterm birth and neonatal mortality and morbidity. The impact of prenatal inflammation on fetal bioenergetic status and the correlation of specific metabolites to inflammatory-induced developmental brain injury are unknown. We used a global metabolomics approach to examine plasma metabolites differentially regulated by intrauterine inflammation. Preterm-equivalent sheep fetuses were randomized to i.v. bolus infusion of either saline-vehicle or LPS. Blood samples were collected at baseline 2 h, 6 h and daily up to 10 days for metabolite quantification. Animals were killed at 10 days after LPS injection, and brain injury was assessed by histopathology. We detected both acute and delayed effects of LPS on fetal metabolism, with a long-term down-regulation of fetal energy metabolism. Within the first 3 days after LPS, 121 metabolites were up-regulated or down-regulated. A transient phase (4–6 days), in which metabolite levels recovered to baseline, was followed by a second phase marked by an opposing down-regulation of energy metabolites, increased pO2 and increased markers of inflammation and ADMA. The characteristics of the metabolite response to LPS in these two phases, defined as 2 h to 2 days and at 6–9 days, respectively, were strongly correlated with white and grey matter volumes at 10 days recovery. Based on these results we propose a novel concept of inflammatory-induced hibernation of the fetus. Inflammatory priming of fetal metabolism correlated with measures of brain injury, suggesting potential for future biomarker research and the identification of therapeutic targets.
Collapse
|
81
|
Polglase GR, Nitsos I, Baburamani AA, Crossley KJ, Slater MK, Gill AW, Allison BJ, Moss TJM, Pillow JJ, Hooper SB, Kluckow M. Inflammation in utero exacerbates ventilation-induced brain injury in preterm lambs. J Appl Physiol (1985) 2011; 112:481-9. [PMID: 22052871 DOI: 10.1152/japplphysiol.00995.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral blood flow disturbance is a major contributor to brain injury in the preterm infant. The initiation of ventilation may be a critical time for cerebral hemodynamic disturbance leading to brain injury in preterm infants, particularly if they are exposed to inflammation in utero. We aimed to determine whether exposure to inflammation in utero alters cardiopulmonary hemodynamics, resulting in cerebral hemodynamic disturbance and related brain injury during the initiation of ventilation. Furthermore, we aimed to determine whether inflammation in utero alters the cerebral hemodynamic response to challenge induced by high mean airway pressures. Pregnant ewes received intra-amniotic lipopolysaccharide (LPS) or saline either 2 or 4-days before preterm delivery (at 128 ± 1 days of gestation). Lambs were surgically instrumented for assessment of pulmonary and cerebral hemodynamics before delivery and positive pressure ventilation. After 30 min, lambs were challenged hemodynamically by incrementing and decrementing positive end-expiratory pressure. Blood gases, arterial pressures, and blood flows were recorded. The brain was collected for biochemical and histological assessment of inflammation, brain damage, vascular extravasation, hemorrhage, and oxidative injury. Carotid arterial pressure was higher and carotid blood flow was more variable in 2-day LPS lambs than in controls during the initial 15 min of ventilation. All lambs responded similarly to the hemodynamic challenge. Both 2- and 4-day LPS lambs had increased brain interleukin (IL)-1β, IL-6, and IL-8 mRNA expression; increased number of inflammatory cells in the white matter; increased incidence and severity of brain damage; and vascular extravasation relative to controls. Microvascular hemorrhage was increased in 2-day LPS lambs compared with controls. Cerebral oxidative injury was not different between groups. Antenatal inflammation causes adverse cerebral hemodynamics and increases the incidence and severity of brain injury in ventilated preterm lambs.
Collapse
Affiliation(s)
- Graeme R Polglase
- Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mallard C, Wang X. Infection-induced vulnerability of perinatal brain injury. Neurol Res Int 2011; 2012:102153. [PMID: 22135745 PMCID: PMC3216257 DOI: 10.1155/2012/102153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022] Open
Abstract
A growing body of evidence demonstrates that susceptibility and progression of both acute and chronic central nervous system disease in the newborn is closely associated with an innate immune response that can manifest from either direct infection and/or infection-triggered damage. A common feature of many of these diseases is the systemic exposure of the neonate to bacterial infections that elicit brain inflammation. In recent years, the importance of innate immune receptors in newborn brain injury, the so-called Toll-like receptors, has been demonstrated. In this paper we will discuss how neonatal sepsis, with particular emphasis on Escherichia coli, coagulase-negative staphylococci, and group B streptococcal infections in preterm infants, and Toll-like receptor-mediated inflammation can increase the vulnerability of the newborn brain to injury.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, P.O. Box 432, 40530 Göteborg, Sweden
| | | |
Collapse
|
83
|
Dean JM, van de Looij Y, Sizonenko SV, Lodygensky GA, Lazeyras F, Bolouri H, Kjellmer I, Huppi PS, Hagberg H, Mallard C. Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol 2011; 70:846-56. [PMID: 22002627 DOI: 10.1002/ana.22480] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Preterm infants exhibit chronic deficits in white matter (WM) and cortical maturation. Although fetal infection/inflammation may contribute to WM pathology, the factors contributing to cortical changes are largely unknown. We examined the effect of fetal lipopolysaccharide (LPS) exposure on WM and cortical development as assessed by magnetic resonance imaging (MRI), electroencephalography (EEG), and histopathology in fetal sheep at preterm human equivalent age. METHODS LPS was administered to fetal sheep at 102.5 ± 0.5 days of gestation. Continuous biophysical recordings were analyzed for 10 days after LPS. At postmortem, measurement of cerebral WM and cortical tissue volumes was achieved by stereological techniques. Specific effects of LPS on MRI-assessed T(1)-weighted and T(2)-weighted images, and immunohistochemical expression of oligodendrocytes, proliferating cells, cortical NeuN-positive and Nurr1-positive neurons (subplate marker), and cell death mechanisms were examined. RESULTS We observed reductions in WM (~21%; LPS, 1.19 ± 0.04 vs control, 1.51 ± 0.07 cm(3); p < 0.001) and cortical (~18%; LPS, 2.34 ± 0.10 vs control, 2.85 ± 0.07 cm(3); p < 0.001) volumes, associated with overt and diffuse WM injury, T(1)-/T(2) -weighted signal alterations, and reduced numbers of WM oligodendrocytes (LPS, 485 ± 31 vs control, 699 ± 69 cells/mm(2); p = 0.0189) and NeuN-positive (LPS, 421 ± 71 vs control 718 ± 92 cells/mm(2); p = 0.04) and Nurr1-positive (control, 2.5 ± 0.6 vs LPS, 0.6 ± 0.1 cells/mm(2); p = 0.007) cortical neurons after LPS. Moreover, there was loss of the normal maturational increase in cortical EEG amplitude, which correlated with reduced cortical volumes. INTERPRETATION Fetal exposure to LPS prior to myelination onset can impair both white matter and cortical development in a preclinical large animal model, supporting a role for maternal/fetal infection in the pathogenesis of preterm brain injury.
Collapse
Affiliation(s)
- Justin M Dean
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci 2011; 29:551-63. [PMID: 21527338 PMCID: PMC3168707 DOI: 10.1016/j.ijdevneu.2011.04.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/08/2011] [Indexed: 12/29/2022] Open
Abstract
A compromised intrauterine environment that delivers low levels of oxygen and/or nutrients, or is infected or inflammatory, can result in fetal brain injury, abnormal brain development and in cases of chronic compromise, intrauterine growth restriction. Preterm birth can also be associated with injury to the developing brain and affect the normal trajectory of brain growth. This review will focus on the effects that episodes of perinatal hypoxia (acute, chronic, associated with inflammation or as an antecedent of preterm birth) can have on the developing brain. In animal models of these conditions we have found that relatively brief (acute) periods of fetal hypoxemia can have significant effects on the fetal brain, for example death of susceptible neuronal populations (cerebellum, hippocampus, cortex) and cerebral white matter damage. Chronic placental insufficiency which includes fetal hypoxemia, nutrient restriction and altered endocrine status can result in fetal growth restriction and long-term deficits in neural connectivity in addition to altered postnatal function, for example in the auditory and visual systems. Maternal/fetal inflammation can result in fetal brain damage, particularly but not exclusively in the white matter; injury is more pronounced when associated with fetal hypoxemia. In the baboon, in which the normal trajectory of growth is affected by preterm birth, there is a direct correlation between a higher flux in oxygen saturation and a greater extent of neuropathological damage. Currently, the only established therapy for neonatal encephalopathy in full term neonates is moderate hypothermia although this only offers some protection to moderately but not severely affected brains. There is no accepted therapy for injured preterm brains. Consequently the search for more efficacious treatments continues; we discuss neuroprotective agents (erythropoietin, N-acetyl cysteine, melatonin, creatine, neurosteroids) which we have trialed in appropriate animal models. The possibility of combining hypothermia with such agents or growth factors is now being considered. A deeper understanding of causal pathways in brain injury is essential for the development of efficacious strategies for neuroprotection.
Collapse
Affiliation(s)
- Sandra Rees
- Department of Anatomy and Cell Biology, University of Melbourne, Vic. 3010, Australia.
| | | | | |
Collapse
|
85
|
Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci 2011; 29:663-71. [PMID: 21382466 PMCID: PMC3140629 DOI: 10.1016/j.ijdevneu.2011.02.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 02/08/2023] Open
Abstract
Exposure to prenatal inflammation is a known risk factor for long term neurobehavioral disorders including cerebral palsy, schizophrenia, and autism. Models of systemic inflammation during pregnancy have demonstrated an association with an immune response an adverse neurobehavioral outcomes for the exposed fetus. Yet, the most common route for an inflammatory exposure to a fetus is from intrauterine inflammation as occurs with chorioamnionitis. The aims of this study were to assess the effect of intrauterine inflammation on fetal and neonatal brain development and to determine if the gestational age of exposure altered the maternal or fetal response to inflammation. CD-1 timed pregnant mice on embryonic day 15 (E15) and E18.5 were utilized for this study. Dams were randomized to receive intrauterine infusion of lipopolysaccharide (LPS, 50 μg/dam) or normal saline. Different experimental groups were used to assess both acute and long-term outcomes. For each gestational age and each treatment group, fetal brains, amniotic fluid, maternal serum and placentas were collected 6h after intrauterine infusion. Rates of preterm birth, maternal morbidity and litter size were assessed. IL6 levels were assayed in maternal serum and amniotic fluid. An immune response was determined in the fetal brains and placentas by QPCR. Cortical cultures were performed to assess for fetal neuronal injury. Gene expression changes in postnatal day 7 brains from exposed and unexposed pups were determined. In the preterm period, low dose LPS resulted in a 30% preterm birth rate. Litter sizes were not different between the groups at either gestational age. IL6 levels were not significantly increased in maternal serum at either gestational time period. Low dose LPS increased IL6 levels in the amniotic fluid from exposed dams in the term but not preterm period. Regardless of gestational age of exposure, low dose intrauterine LPS activated an immune response in the placenta and fetal brain. Exposure to intrauterine LPS significantly decreased dendritic counts in cortical cultures from both the preterm and term period. Exposure to intrauterine inflammation altered gene expression patterns in the postnatal brain; this effect was dependent on gestational age of exposure. In conclusion, intrauterine inflammation, even in the absence of preterm parturition, can evoke fetal brain injury as evidence by alterations in cytokine expression and neuronal injury. Despite an absent or limited maternal immune response in low dose intrauterine inflammation, the immune system in the placenta is activated which is likely sufficient to induce a fetal immune response and subsequent brain injury. Changes in the fetal brain lead to changes in gene expression patterns into the neonatal period. Subclinical intrauterine inflammation can lead to fetal brain injury and is likely to be mechanistically associated with long term adverse outcomes for exposed offspring.
Collapse
Affiliation(s)
- Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research in Reproduction and Women's Health, University of Pennsylvania School of Medicine, 421 Curie Blvd., 1354 BRB 2/3, Philadelphia, PA 19104-6142, United States.
| | | | | | | | | | | |
Collapse
|
86
|
Tolcos M, Bateman E, O'Dowd R, Markwick R, Vrijsen K, Rehn A, Rees S. Intrauterine growth restriction affects the maturation of myelin. Exp Neurol 2011; 232:53-65. [PMID: 21867703 DOI: 10.1016/j.expneurol.2011.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 05/21/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
Intrauterine growth-restriction (IUGR) can lead to adverse neurodevelopmental sequelae in postnatal life. Our objective was to determine whether IUGR, induced by chronic placental insufficiency (CPI) in the guinea pig results in long-term deficits in brain myelination and could therefore contribute to altered neural function. CPI was induced by unilateral ligation of the uterine artery at mid-gestation (term~67 days of gestation; dg), producing growth-restricted (GR) foetuses (60 dg), neonates (1 week) and young adults (8 week); controls were from the unligated horn or sham-operated animals. In GR foetuses (n=8) and neonates (n=7), white matter (WM) volume was reduced (p<0.05); this reduction did not persist in young adults (n=11) however the corpus callosum width was reduced (p<0.05). Immunoreactivity (IR) for myelin basic protein (MBP), myelin-associated glycoprotein (MAG) and myelin proteolipid protein (PLP), all markers of myelinating oligodendrocytes (OL), was reduced in GR foetuses compared to controls. MBP was the most markedly affected with an abnormal retention of protein in the OL soma and a reduction of its incorporation into the myelin sheath. MAG-IR OL density was reduced (p<0.05), while the density of OLs immunoreactive for Olig-2, a transcription factor expressed throughout the entire OL lineage, was increased (p<0.05). MBP-, MAG- and PLP-IR recovered to control levels postnatally. These results suggest that IUGR transiently delays OL maturation and myelination in utero but that myelination and WM volume are restored to control levels postnatally. Long-term deficits in myelination are therefore unlikely to be the major factor underlying the altered neurological function which can be associated with IUGR.
Collapse
Affiliation(s)
- Mary Tolcos
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
87
|
Shen Y, Liu XB, Pleasure DE, Deng W. Axon-glia synapses are highly vulnerable to white matter injury in the developing brain. J Neurosci Res 2011; 90:105-21. [PMID: 21812016 DOI: 10.1002/jnr.22722] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 12/21/2022]
Abstract
The biology of cerebral white matter injury has been woefully understudied, in part because of the difficulty of reliably modeling this type of injury in rodents. Periventricular leukomalacia (PVL) is the predominant form of brain injury and the most common cause of cerebral palsy in premature infants. PVL is characterized by predominant white matter injury. No specific therapy for PVL is presently available, because the pathogenesis is not well understood. Here we report that two types of mouse PVL models have been created by hypoxia-ischemia with or without systemic coadministration of lipopolysaccharide (LPS). LPS coadministration exacerbated hypoxic-ischemic white matter injury and led to enhanced microglial activation and astrogliosis. Drug trials with the antiinflammatory agent minocycline, the antiexcitotoxic agent NBQX, and the antioxidant agent edaravone showed various degrees of protection in the two models, indicating that excitotoxic, oxidative, and inflammatory forms of injury are involved in the pathogenesis of injury to immature white matter. We then applied immunoelectron microscopy to reveal fine structural changes in the injured white matter and found that synapses between axons and oligodendroglial precursor cells (OPCs) are quickly and profoundly damaged. Hypoxia-ischemia caused a drastic decrease in the number of postsynaptic densities associated with the glutamatergic axon-OPC synapses defined by the expression of vesicular glutamate transporters, vGluT1 and vGluT2, on axon terminals that formed contacts with OPCs in the periventricular white matter, resulted in selective shrinkage of the postsynaptic OPCs contacted by vGluT2 labeled synapses, and led to excitotoxicity mediated by GluR2-lacking, Ca(2+) -permeable AMPA receptors. Overall, the present study provides novel mechanistic insights into the pathogenesis of PVL and reveals that axon-glia synapses are highly vulnerable to white matter injury in the developing brain. More broadly, the study of white matter development and injury has general implications for a variety of neurological diseases, including PVL, stroke, spinal cord injury, and multiple sclerosis.
Collapse
Affiliation(s)
- Yan Shen
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
88
|
Andersen CC, Pillow JJ, Gill AW, Allison BJ, Moss TJM, Hooper SB, Nitsos I, Kluckow M, Polglase GR. The cerebral critical oxygen threshold of ventilated preterm lambs and the influence of antenatal inflammation. J Appl Physiol (1985) 2011; 111:775-81. [PMID: 21719723 DOI: 10.1152/japplphysiol.00214.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perinatal inflammation is associated with adverse neurodevelopmental outcomes, which may be partly due to changes in the cerebral oxygen delivery/consumption relationship. We aimed to determine the critical oxygen delivery threshold of the brain of preterm, ventilated lambs and to determine whether the critical threshold is affected by exposure to inflammation in utero. Pregnant ewes received intra-amniotic injection of lipopolysaccharide or saline at 125 or 127 days of gestation. Pulmonary and systemic flow probes and catheters were surgically positioned in the fetus immediately before delivery at 129 days of gestation. After delivery, lambs were ventilated for 90 min using a positive end-expiratory pressure recruitment strategy. Cardio-respiratory variables and blood gases were measured regularly. Systemic and cerebral oxygen delivery, consumption (Fick), and extraction were calculated, and the relationship between cerebral delivery and consumption analyzed. Linear regression was used to define the transition or "critical" oxygen threshold as the point at which the slope of the oxygen delivery/consumption curve changed to be > 10°. Four subgroups were defined according to the calculated critical threshold. A total of 150 measurements were recorded in 18 lambs. Fetal cerebral oxygen consumption was increased by antenatal lipopolysaccharide (P < 0.05). The postnatal critical oxygen threshold was 3.6 ml·kg⁻¹·min⁻¹, corresponding to cerebral oxygen consumption of 0.73 ml·kg⁻¹·min⁻¹. High oxygen delivery and consumption were associated with increased pulmonary and carotid blood flow and systemic extraction compared with low oxygen delivery and consumption. No postnatal effect of antenatal inflammation was observed. Inflammation in utero increases fetal, but not postnatal, cerebral oxygen consumption. Adverse alterations to pulmonary blood flow can result in reduced cerebral blood flow, oxygen delivery, and consumption. Regardless of exposure to inflammation, there is a consistent postnatal relationship between cerebral oxygen delivery and consumption.
Collapse
Affiliation(s)
- C C Andersen
- Perinatal Medicine, Women's and Children's Hospital, 72 King William Rd., North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Animal models of periventricular leukomalacia. Lab Anim Res 2011; 27:77-84. [PMID: 21826166 PMCID: PMC3145996 DOI: 10.5625/lar.2011.27.2.77] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/15/2023] Open
Abstract
Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics.
Collapse
|
90
|
Willette AA, Lubach GR, Knickmeyer RC, Short SJ, Styner M, Gilmore JH, Coe CL. Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behav Brain Res 2011; 219:108-15. [PMID: 21192986 PMCID: PMC3662233 DOI: 10.1016/j.bbr.2010.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/29/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022]
Abstract
Infections and inflammatory conditions during pregnancy can dysregulate neural development and increase the risk for developing autism and schizophrenia. The following research utilized a nonhuman primate model to investigate the potential impact of a mild endotoxemia during pregnancy on brain maturation and behavioral reactivity as well as the infants' hormone and immune physiology. Nine pregnant female rhesus monkeys (Macaca mulatta) were administered nanogram concentrations of lipopolysaccharide (LPS) on two consecutive days, 6 weeks before term, and their offspring were compared to nine control animals. When tested under arousing challenge conditions, infants from the LPS pregnancies were more behaviorally disturbed, including a failure to show a normal attenuation of startle responses on tests of prepulse inhibition. Examination of their brains at 1 year of age with magnetic resonance imaging (MRI) revealed the unexpected finding of a significant 8.8% increase in global white matter volume distributed across many cortical regions compared to controls. More selective changes in regional gray matter volume and cortical thickness were noted in parietal, medial temporal, and frontal areas. While inhibited neural growth has been described previously after prenatal infection and LPS administration at higher doses in rodents, this low dose endotoxemia in the monkey is the first paradigm to produce a neural phenotype associated with augmented gray and white matter growth.
Collapse
Affiliation(s)
- Auriel A Willette
- Harlow Primate Laboratory, University of Wisconsin, Madison, WI 53715, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Nitsos I, Newnham JP, Rees SM, Harding R, Moss TJM. The impact of chronic intrauterine inflammation on the physiologic and neurodevelopmental consequences of intermittent umbilical cord occlusion in fetal sheep. Reprod Sci 2011; 21:658-70. [PMID: 21421894 DOI: 10.1177/1933719111399928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the effect of intrauterine inflammation on fetal responses to umbilical cord occlusion (UCO). STUDY DESIGN In pregnant sheep, lipopolysaccharide (LPS) or saline (SAL) was infused intra-amniotically for 4 weeks from 80 days of gestation (d). At 110 d, fetuses were instrumented for UCOs (5 × 2-minutes, 30-minute intervals: LPS + UCO, n = 6; SAL + UCO, n = 8) or no UCO (sham, n = 6) on 117 and 118 d. Tissues were collected at 126 d. RESULTS Fetal physiological responses to UCO were similar between LPS + UCO and SAL + UCO. Histologic chorioamnionitis and increased amniotic fluid interleukin 8 (IL-8) were observed in LPS + UCO pregnancies (versus SAL + UCO, P < .05). CNPase-positive oligodendrocyte number in the cerebral white matter was lower in LPS + UCO and SAL + UCO than sham (P < .05); there was no effect on astrocytes or activated microglia/macrophages. Two of the SAL + UCO fetuses had white matter lesions; none were observed in LPS + UCO or sham. CONCLUSION Chronic pre-existing intrauterine inflammation did not exacerbate fetal brain injury induced by intermittent UCO.
Collapse
Affiliation(s)
- Ilias Nitsos
- 1School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | |
Collapse
|
92
|
Zaga-Clavellina V, Garcia-Lopez G, Flores-Pliego A, Merchant-Larios H, Vadillo-Ortega F. In vitro secretion and activity profiles of matrix metalloproteinases, MMP-9 and MMP-2, in human term extra-placental membranes after exposure to Escherichia coli. Reprod Biol Endocrinol 2011; 9:13. [PMID: 21266053 PMCID: PMC3036613 DOI: 10.1186/1477-7827-9-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/25/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Premature rupture of fetal membranes (PROM) complicated with intrauterine infection has been associated to alterations of the extracellular matrix (ECM) homeostasis. The aim of this work was to evaluate the integral/functional response of the amnion (AMN) and choriodecidua (CHD) to synthesis, secretion, and activity of MMP-2 and MMP-9 and of their inhibitors TIMP-1, -2, and -4, after stimulation with Escherichia coli. METHODS Full-thickness membranes were mounted on a Transwell device, constituting two independent chambers, Escherichia coli (1×10 (6) CFU/mL) were added to either the amniotic or the choriodecidual face or to both. Secretion profiles of MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-4 were quantified by ELISA and gelatinolytic activity by zymography. Immunoreactivity for MMP-2 and MMP-9 was revealed by immunohistochemistry and the collagen content was assessed by the hydroxyproline assay. RESULTS Levels of MMP-9 in CHD and AMN increased 4- and 8-fold, respectively, after simultaneous infection. MMP-2 secreted to the medium by CHD increased a mean of 3 times after direct stimulation. Secretion profiles of TIMP-1, TIMP-2, and TIMP-4 remained without significant changes. Collagen content was significantly decreased (4-fold) in infected membranes, and was associated with loss of structural continuity and co-localization with immunoreactive forms of MMP-2 and MMP-9. CONCLUSIONS Infection of chorioamniotic membranes with E. coli induces an increase in the secretion of inactive forms and an association to ECM of active forms of MMP-2 and MMP-9 without changes in TIMP-1, -2, and -4. These changes could explain the significant decrease of collagen content and loss of structural continuity.
Collapse
Affiliation(s)
- Veronica Zaga-Clavellina
- Biomedical Research Branch, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Guadalupe Garcia-Lopez
- Biomedical Research Branch, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Arturo Flores-Pliego
- Direction of Research, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Horacio Merchant-Larios
- Biomedical Research Institute, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Departament of Experimental Medicine, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
93
|
Abdulkadir AA, Kimimasa T, Bell MJ, Macpherson TA, Keller BB, Yanowitz TD. Placental inflammation and fetal hemodynamics in a rat model of chorioamnionitis. Pediatr Res 2010; 68:513-8. [PMID: 20736882 DOI: 10.1203/pdr.0b013e3181f851ed] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The relative contributions of inflammation and ischemia to the pathogenesis of periventricular leukomalacia (PVL) have not been elucidated. We hypothesized that fetal cardiovascular function and cerebral blood flow velocity (BFV) would be decreased in a rat model of chorioamnionitis. We also tested whether placental inflammation was related to proximity to the cervix in our model of chorioamnionitis [intracervical lipopolysaccharide (LPS) or vehicle (PBS) injection]. On embryonic d 15, Sprague-Dawley rats underwent baseline maternal and fetal echocardiography, followed by LPS or PBS injection, then serial echocardiographic evaluations until embryonic day (ED) 21. One hour after birth, pups had middle cerebral artery (MCA) BFV measured. Placentas of LPS-exposed pups exhibited uniform, higher inflammation grades (p < 0.001). All fetal BFVs increased with advancing GA (p < 0.001) whereas resistance index (RI) decreased (p < 0.001). There was no difference in fetal BFV between the groups other than a reduced gestation-related increase in descending aorta BFV in LPS-exposed rats (p < 0.05). Newborn pups exposed to LPS had lower heart rate (p = 0.006) and MCA BFV (p = 0.024) and higher RI (p = 0.003) and pulsatility index (PI; p = 0.004). In conclusion, intracervical LPS injection produces an inflammation independent of placental position, a blunted increase in gestation-related aortic BFV, and a decrease in MCA BFV in newborn pups.
Collapse
Affiliation(s)
- Adegboyega A Abdulkadir
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
94
|
Garcia-Lopez G, Flores-Espinosa P, Zaga-Clavellina V. Tissue-specific human beta-defensins (HBD)1, HBD2, and HBD3 secretion from human extra-placental membranes stimulated with Escherichia coli. Reprod Biol Endocrinol 2010; 8:146. [PMID: 21122132 PMCID: PMC3001729 DOI: 10.1186/1477-7827-8-146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/01/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND During an ascending infection along the reproductive tract, the extra-placental membranes must act as a selective and competent barrier against pathogens. Human beta defensins (HBD)1, HBD2, and HBD3 are key elements of innate immunity that are secreted to neutralize/control the progression of infection. METHODS Full-thickness membranes were mounted on a Transwell device, constituted by two independent chambers, 1 × 10(6) CFU/ml of Escherichia coli were added to either the amnion (AMN) or the choriodecidual (CHD) face or to both. Secretion profiles of HBD1, HBD2, and HBD3 to the culture medium were quantified by ELISA. RESULTS In comparison with basal conditions, the secretion profile of HBD1 remained without significant changes; HBD2 level in CHD and AMN increased 1.9- and 1.4-times, respectively, after stimulation with bacteria. HBD3 secretion level increased significantly (7.8 +/- 1.9 pg/micrograms) in the CHD but only if the stimulus was applied on the AMN side. CONCLUSIONS Selective stimulation of extra-placental membranes with E. coli, results in a tissue specific secretion of HBD1, HBD2, and HBD3 mainly in the CHD, which is the first infected region during an ascending infection.
Collapse
Affiliation(s)
- Guadalupe Garcia-Lopez
- Cell Biology Department, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", México City, México
| | - Pilar Flores-Espinosa
- Cell Biology Department, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", México City, México
| | - Veronica Zaga-Clavellina
- Cell Biology Department, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", México City, México
| |
Collapse
|
95
|
Resch B, Radinger A, Mannhalter C, Horvath B, Binder A, Zenz W, Walcher W, Haas J, Müller WD, Pertl B. Maternal interleukin-6 (-174) C/C polymorphism is associated with chorioamnionitis and cystic periventricular leucomalacia of the preterm infant. J Perinatol 2010; 30:712-716. [PMID: 20237486 DOI: 10.1038/jp.2010.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/03/2009] [Accepted: 01/27/2010] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the association between maternal interleukin (IL)-6 G(-174)C polymorphism and cystic periventricular leukomalacia (cPVL) of the preterm newborn. STUDY DESIGN After searching a local database, we recruited 132 preterm infants with diagnosis of cPVL, 44 Caucasian mothers were also recruited to participate in this candidate gene-association study at a single teritary care center. Data related to maternal IL-6 G(-174)C polymorphisms were compared with 41 controls, and furthermore compared with data from umbilical cord blood samples from a consecutive birth cohort of 395 healthy newborns, and published data from Caucasian populations including 1104 adults, respectively. In addition, subgroup analysis was performed in cases with either history of preterm premature rupture of the membranes (PPROM) or clinical chorioamnionitis (CCA). IL-6 genotyping was performed using an allele-specific polymerase chain reaction technique. RESULT Frequencies of the IL-6 G(-174)C polymorphisms did not differ between cases (GG, 29.5%; GC, 54.5% and CC, 15.9%) and controls (GG, 34.2; GC, 51.2 and CC, 14.6%). Subgroup analysis of 31 cases with history of PPROM (GG, 25.8; GC, 54.8 and CC 19.4%) and controls did not reveal significant differences, but a significantly higher frequency of the CC genotype was found in 23 cases with a history of CCA (34.8%) compared with controls by either univariate (P=0.032; odds ratio 3.11, 95% confidence interval (CI) 1.11 to 8.68) or multivariate analysis (P=0.049, odds ratio 2.54, 95% CI 1.01 to 6.45). These data were confirmed by a comparing the CC genotype frequency to 395 term controls (CC 14.7%, P=0.005) and to the mean CC genotype frequency of 1104 Caucasian adults (CC 15.6%, P<0.0001). CONCLUSION Frequencies of the IL-6 G(-174)C polymorphisms did not differ between groups. Subgroup analysis revealed an association of the CC genotype with CCA and cPVL in the preterm newborn.
Collapse
Affiliation(s)
- B Resch
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Bennet L, Cowie RV, Stone PR, Barrett R, Naylor AS, Blood AB, Gunn AJ. The neural and vascular effects of killed Su-Streptococcus pyogenes (OK-432) in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2010; 299:R664-72. [PMID: 20484698 DOI: 10.1152/ajpregu.00116.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fetal exposure to inflammatory mediators is associated with a greater risk of brain injury and may cause endothelial dysfunction; however, nearly all the evidence is derived from gram-negative bacteria. Intrapleural injections of OK-432, a killed Su-strain of Streptococcus pyogenes, has been used to treat fetal chylothorax. In this study, we evaluated the neural and cardiovascular effects of OK-432 in preterm fetal sheep (104 +/- 1 days, term 147 days). OK-432 (0.1 mg, n = 6) or saline vehicle (n = 7) was infused in the fetal pleura, and fetuses were monitored for 7 days. Blood samples were taken routinely for plasma nitrite measurement. Fetal brains were taken for histological assessment at the end of the experiment. Between 3 and 7 h postinjection, OK-432 administration was associated with transient suppression of fetal body and breathing movements and electtroencephalogram activity (P < 0.05), increased carotid and femoral vascular resistance (P < 0.05), but no change in blood pressure. Brain activity and behavior then returned to normal except in one fetus that developed seizures. OK-432 fetuses showed progressive, sustained vasodilatation (P < 0.05), with lower blood pressure after 4 days (P < 0.05), but normal heart rate. There were no changes in plasma nitrite levels. Histological studies showed bilateral infarction in the dorsal limb of the hippocampus of the fetus that developed seizures, but no injury in other fetuses. We conclude that a single low-dose injection of OK-432 can be associated with risk of focal cerebral injury in the preterm fetus and chronic central and peripheral vasodilatation that does not appear to be mediated by nitric oxide.
Collapse
Affiliation(s)
- L Bennet
- Department of Physiology, The University of Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
97
|
Yuan TM, Yu HM. Notch signaling: key role in intrauterine infection/inflammation, embryonic development, and white matter damage? J Neurosci Res 2010; 88:461-8. [PMID: 19768798 DOI: 10.1002/jnr.22229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms or pathophysiologies that lead to cerebral white matter damage during development are complex and not fully understood. It is postulated that exposure of the preterm brain to inflammatory cytokines during intrauterine infection/inflammation contributes to brain white matter damage, and this damage may affect the function and differentiation of progenitor oligodendrocyte cells under physiological conditions. The Notch pathway, an important signaling pathway controlling various cells' differentiation, functions in the timing of oligodendrocyte differentiation, and Notch signaling may contribute to white matter damage and may mediate neurogenesis in a pathophysiological phase. Recent studies have led to recognition of the role of the Notch pathway in neurogenesis in cerebral ischemic damage and in myelination and axonal damage of neurodegenerative diseases. Moreover, Notch plays a critical role in steering an immune response toward inflammation by regulating expression of various cytokines and proinflammatory cytokines resulting in the activation of Notch signaling. Thus, the Notch signaling pathway likely plays a key role in intrauterine infection/inflammation, brain development, and white matter damage, and future research directed toward understanding its role will be important. Insofar as Notch signaling could have an important effect on neurogenesis, mobilization of progenitor cells is one strategy for compensating for the neuronal losses seen in white matter damage after intrauterine infection/inflammation.
Collapse
Affiliation(s)
- Tian-Ming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | | |
Collapse
|
98
|
Feng SYS, Samarasinghe T, Phillips DJ, Alexiou T, Hollis JH, Yu VYH, Walker AM. Acute and chronic effects of endotoxin on cerebral circulation in lambs. Am J Physiol Regul Integr Comp Physiol 2010; 298:R760-6. [DOI: 10.1152/ajpregu.00398.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of endotoxemia on cerebral endothelium and cerebral blood flow (CBF) regulation was studied in conscious newborn lambs. Bacterial endotoxin [LPS, 2 μg/kg iv] was infused on 3 consecutive days. Cerebrovascular function was assessed by monitoring CBF and cerebral vascular resistance (CVR) over 12 h each day and by the endothelium-dependent vasodilator bradykinin (BK) ( n = 10). Inflammatory responses were assessed by plasma tumor necrosis factor-α (TNF-α, n = 5). Acutely, LPS disrupted the cerebral circulation within 1 h, with peak cerebral vasoconstriction at 3 h (CBF −28 and CVR +118%, P < 0.05) followed by recovery to baseline by 12 h. TNF-α and body temperature peaked ∼1 h post-LPS. BK-induced vasodilatation (CVR −20%, P < 0.05) declined with each LPS infusion, was abolished after 3 days, and remained absent for at least the subsequent 5 days. Histological evidence of brain injury was found in four of five LPS-treated newborns. We conclude that endotoxin impairs cerebral perfusion in newborn lambs via two mechanisms: 1) acute vasoconstriction (over several hours); and 2) persistent endothelial dysfunction (over several days). Endotoxin-induced circulatory impairments may place the newborn brain at prolonged risk of CBF dysregulation and injury as a legacy of endotoxin exposure.
Collapse
Affiliation(s)
- Susan Y. S. Feng
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University
| | - Thilini Samarasinghe
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University
| | - David J. Phillips
- Centre of Reproduction and Development, Monash Institute of Medical Research, Monash University; and
| | - Theodora Alexiou
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University
| | - Jacob H. Hollis
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Victor Y. H. Yu
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University
- Newborn Services, Monash Medical Centre
| | - Adrian M. Walker
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University
| |
Collapse
|
99
|
Dijkstra F, Jozwiak M, De Matteo R, Duncan J, Hale N, Harding R, Rees S. Erythropoietin ameliorates damage to the placenta and fetal liver induced by exposure to lipopolysaccharide. Placenta 2010; 31:282-8. [PMID: 20106521 DOI: 10.1016/j.placenta.2009.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/17/2022]
Abstract
Intrauterine infection and inflammation have been causally linked to preterm birth and fetal brain injury. Using an ovine model of endotoxin-induced brain injury we have recently shown that recombinant human erythropoietin (rhEPO) reduces brain injury and protects against damage to myelination in major myelinated axon tracts. Our present objective was to determine whether rhEPO is also protective of the placenta and the fetal liver, organs which could influence fetal well-being. At 107 +/- 1 days of gestational age (DGA) chronically catheterized fetal sheep were randomly assigned to receive, on 3 consecutive days, either: 1) an i.v. bolus dose of lipopolysaccharide (LPS; approximately 0.9 microg/kg; n = 8); 2) i.v. bolus dose of LPS, followed at 1 h by 5000 IU/kg of rhEPO (LPS + rhEPO, n = 8); 3) rhEPO (n = 3). Seven untreated fetuses served as controls (n = 7). The placenta and fetal liver were examined histologically at 116 +/- 1 DGA; a placental injury index was formulated comprising measures of placental area, apoptosis, tissue injury and the size of the intervillous space. In LPS-exposed fetuses this index was greater than in control or rhEPO alone fetuses (p < 0.02). Treatment of LPS-exposed fetuses with rhEPO resulted in a reduction in the index (p < 0.05) and in the extent of liver necrosis. We conclude that rhEPO offers protection to the placenta and fetal liver in the presence of acute inflammation.
Collapse
Affiliation(s)
- F Dijkstra
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
100
|
The encephalopathy of prematurity--brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 2009; 16:167-78. [PMID: 19945651 PMCID: PMC2799246 DOI: 10.1016/j.spen.2009.09.005] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The field of neonatal neurology, and specifically its focus on the premature infant, had its inception in neuropathologic studies. Since then, the development of advanced imaging techniques has guided our developing understanding of the etiology and nature of neonatal brain injury. This review promotes the concept that neonatal brain injury has serious and diverse effects on subsequent brain development, and that these effects likely are more important than simple tissue loss in determining neurologic outcome. Brain injury in the premature infant is best illustrative of this concept. This "encephalopathy of prematurity" is reviewed in the context of the remarkable array of developmental events actively proceeding during the last 16-20 weeks of human gestation. Recent insights into the brain abnormalities in survivors of preterm birth obtained by both advanced magnetic resonance imaging and neuropathologic techniques suggest that this encephalopathy is a complex amalgam of destructive and developmental disturbances. The interrelations between destructive and developmental mechanisms in the genesis of the encephalopathy are emphasized. In the future, advances in neonatal neurology will likely reiterate the dependence of this field on neuropathologic studies, including new cellular and molecular approaches in developmental neurobiology.
Collapse
|