51
|
Inconsistencies in the Nutrition Management of Glutaric Aciduria Type 1: An International Survey. Nutrients 2020; 12:nu12103162. [PMID: 33081139 PMCID: PMC7602866 DOI: 10.3390/nu12103162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Glutaric aciduria type 1 (GA-1) is a cerebral organic aciduria characterized by striatal injury and progressive movement disorder. Nutrition management shifted from a general restriction of intact protein to targeted restriction of lysine and tryptophan. Recent guidelines advocate for a low-lysine diet using lysine-free, tryptophan-reduced medical foods. GA-1 guideline recommendations for dietary management of patients over the age of six are unclear, ranging from avoiding excessive intake of intact protein to counting milligrams of lysine intake. A 22–question survey on the nutrition management of GA-1 was developed with the goal of understanding approaches to diet management for patients identified by newborn screening under age six years compared to management after diet liberalization, as well as to gain insight into how clinicians define diet liberalization. Seventy-six responses (25% of possible responses) to the survey were received. Nutrition management with GA-1 is divergent among surveyed clinicians. There was congruency among survey responses to the guidelines, but there is still uncertainty about how to counsel patients on diet optimization and when diet liberalization should occur. Ongoing clinical research and better understanding of the natural history of this disease will help establish stronger recommendations from which clinicians can best counsel families.
Collapse
|
52
|
Imerci A, Strauss KA, Oleas-Santillan GF, Miller F. Orthopaedic manifestations of glutaric acidemia Type 1. J Child Orthop 2020; 14:473-479. [PMID: 33204356 PMCID: PMC7666789 DOI: 10.1302/1863-2548.14.200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Glutaric acidemia type 1 (GA1), a rare hereditary metabolic disease caused by biallelic mutations of GCDH, can result in acute or insidious striatal degeneration within the first few years of life. We reviewed the orthopaedic sequelae and management of 114 neurologically injured patients with a confirmed molecular diagnosis of GA1. METHODS We performed a retrospective chart review spanning 28 years identifying 114 GA1 patients, most from the Old Order Amish population of Lancaster County, Pennsylvania, who were homozygous for a pathogenic founder variant of GCDH (c.1262C>T). We collected demographics, medical comorbidities, muscle tone patterns, Gross Motor Function Classification System level, gastrostomy tube status, seizure history, inpatient events, orthopaedic diagnoses and operative characteristics. RESULTS Over an average follow-up of 4.7 ± 3.4 years, 24 (21%) of 114 patients had musculoskeletal problems requiring orthopaedic consultation. Scoliosis (n = 14), hip dislocation (n = 8/15 hips), hip subluxation (n = 2/three hips), and windswept hip deformity (n = 2) in the spine and hip joint were most common. In total, 35 orthopaedic surgeries were performed in 17 (71%) patients. The most common primary operations were one-stage procedures with proximal femoral varus derotation osteotomy and/or pelvic osteotomy (n = 8/14 hips) for subluxation or dislocation. In all, 11 patients had posterior spinal fusion for severe scoliosis. With the recommended metabolic management, there were no disease-specific complications in this cohort. CONCLUSIONS Children with GA1 who have static striatal lesions are at risk for musculoskeletal complications, especially scoliosis and hip dislocation, and appropriate operative management requires consultation with a metabolic specialist with specific considerations for fluid management and nutrition. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Ahmet Imerci
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | | | | | - Freeman Miller
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA,Correspondence should be sent to Freeman Miller, Department of Orthopaedics, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA. E-mail:
| |
Collapse
|
53
|
Ulmanová O, Koens LH, Jahnová H, Vries JJ, Koning TJ, Růžička E, Tijssen MA. Inborn Errors of Metabolism in Adults: Two Patients with Movement Disorders Caused by Glutaric Aciduria Type 1. Mov Disord Clin Pract 2020; 7:S85-S88. [PMID: 33015233 PMCID: PMC7525196 DOI: 10.1002/mdc3.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/28/2020] [Accepted: 07/28/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Olga Ulmanová
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czech Republic
| | - Lisette H. Koens
- Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands
- Expertise Center Movement Disorders Groningen, University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Helena Jahnová
- Department of Paediatrics and Adolescent Medicine, Metabolic Center, First Faculty of Medicine Charles University and General University Hospital Prague Czech Republic
| | - Jeroen J. Vries
- Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands
- Expertise Center Movement Disorders Groningen, University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Tom J. Koning
- Expertise Center Movement Disorders Groningen, University of Groningen, University Medical Center Groningen Groningen The Netherlands
- Department of Genetics University of Groningen, University Medical Center Groningen Groningen The Netherlands
- Department Pediatrics, Clinical Sciences Lund University Lund Sweden
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czech Republic
| | - Marina A.J. Tijssen
- Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
54
|
Gürbüz BB, Yılmaz DY, Coşkun T, Tokatlı A, Dursun A, Sivri HS. Glutaric aciduria type 1: Genetic and phenotypic spectrum in 53 patients. Eur J Med Genet 2020; 63:104032. [PMID: 32777384 DOI: 10.1016/j.ejmg.2020.104032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/20/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Glutaric aciduria type 1 (GA1) is a rare and inherited autosomal-recessive metabolic disorder that occurs in the deficiency of glutaryl-co-enzyme A dehydrogenase (GCDH) enzyme encoded by GCDH gene. In this study, we aim to retrospectively investigate the clinical, biochemical, and neuroradiological parameters and examine the spectrum of GCDH gene variants in Turkish patients with glutaric aciduria type 1. METHODS This is a descriptive cross-sectional study. The study was conducted in fifty-three patients from 39 unrelated Turkish families who were diagnosed with GA1 based on their clinical presentation, neuroimaging, and biochemical measurements, at the department of pediatric metabolism of a university hospital between June 1998 and August 2019. Pathogenic variants screening of GCDH gene was performed by direct DNA sequence analysis in forty-six patients with GA1. Pathogenicity of the novel variants was predicted via computational programs. RESULTS A total of 53 patients were diagnosed with GA1. Of those, 32 (60.3%) had encephalopathic crisis and 33 (62.3%) had macrocephaly. Twenty different pathogenic variants were detected, 7 of which are novel (p.Glu57Lys, p.Ser145Profs*79, p.Ser246Glyfs*96 p.Ala293Val, p.His348Gln, p.His417Tyr, p.Asp418Val). The p.Arg402Trp, p.Pro248Leu and p.Leu340Phe variants were the most common in Turkish patients, with a frequency of 21.2%, 18.2% and 12.1% respectively. CONCLUSION This study is the first comprehensive research from Turkey that provides information about disease-causing variants in the GCDH gene. The identification of common variants and hot spot regions of the GCDH gene is important for genetic counselling and the prenatal diagnosis of Turkish patients with GA1.
Collapse
Affiliation(s)
- Berrak Bilginer Gürbüz
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - Didem Yücel Yılmaz
- Hacettepe University Institute of Child Health, Division of Genetics, Ankara, Turkey.
| | - Turgay Coşkun
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - Ayşegül Tokatlı
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - Ali Dursun
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| | - H Serap Sivri
- Hacettepe University Faculty of Medicine, Division of Pediatric Metabolism, Ankara, Turkey.
| |
Collapse
|
55
|
Adult-onset glutaric aciduria type I: rare presentation of a treatable disorder. Neurogenetics 2020; 21:179-186. [PMID: 32306145 DOI: 10.1007/s10048-020-00610-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Glutaric aciduria type I (GA1; OMIM #231670) is an autosomal recessively inherited and treatable disorder characterized by the accumulation and irregular excretion of glutaric acid due to a defect in the glutaryl-CoA dehydrogenase enzyme involved in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. Glutaryl-CoA dehydrogenase is encoded by the GCDH gene (OMIM #608801), and several mutations in this gene are known to result in GA1. GA1 usually presents in the first 18-36 months of life with mild or severe acute encephalopathy, movement disorders, and striatal degeneration. Few cases of adult-onset GA1 have been described so far in the literature, often with non-specific and sometimes longstanding neurological symptoms. Since a preventive metabolic treatment is available, neurologists must be aware of this rare but likely underdiagnosed presentation, especially when typical neuroimaging features are identified. Here, we describe 35-year-old presenting with headache and subjective memory problems. There was no history of dystonic movement disorders. Neurological examination and neurocognitive tests were normal. Brain MRI scan revealed white matter abnormalities associated with subependymal nodules and mild frontotemporal hypoplasia suggestive of glutaric aciduria type 1 (GA1). Genetic testing confirmed the presence of homozygous c.1204C > T (p.R402W) variant in the GCDH gene, inherited from heterozygous parents.
Collapse
|
56
|
Sanju S, Tullu MS, Seshadri N, Agrawal M. Glutaric Aciduria Type 1: A Case Report and Review of Literature. J Pediatr Intensive Care 2020; 10:65-70. [PMID: 33585064 DOI: 10.1055/s-0040-1709704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022] Open
Abstract
An 8-month-old male infant patient was referred to our institution (from elsewhere) with a history of fever, convulsions, dystonic posturing, altered sensorium, and loss of motor and mental milestones since past 1 month. Upon admission to our institution, a neuroimaging (magnetic resonance imaging of the brain) revealed frontoparietal atrophy, "bat-wing appearance," and basal ganglia changes. Carnitine and acylcarnitine profile revealed low total carnitine, very low free carnitine, and low free/acylcarnitine ratio, with normal levels of plasma amino acids. Urine gas chromatography mass spectrometry showed an elevated level of ketones (3-hydroxybutyric acid and acetoacetate) and glutaric acid with the presence of 3-hydroxyglutaric acid, suggestive of glutaric aciduria type 1. Diet modification and pharmacotherapy with riboflavin and carnitine arrested the neurological deterioration in the patient.
Collapse
Affiliation(s)
- Sidaraddi Sanju
- Department of Pediatrics, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Milind S Tullu
- Department of Pediatrics, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Nithya Seshadri
- Department of Pediatrics, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Mukesh Agrawal
- Department of Pediatrics, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
57
|
Guerreiro G, Diaz Jaques CE, Wajner M, Vargas CR. Elevated levels of BDNF and cathepsin‐
d
as possible peripheral markers of neurodegeneration in plasma of patients with glutaric acidemia type I. Int J Dev Neurosci 2020; 80:42-49. [DOI: 10.1002/jdn.10006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia UFRGS Porto Alegre Brazil
- Serviço de Genética Médica HCPA UFRGS Porto Alegre Brazil
| | | | - Moacir Wajner
- Serviço de Genética Médica HCPA UFRGS Porto Alegre Brazil
- Programa de Pós‐Graduação em CB:Bioquímica UFRGS Porto Alegre Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia UFRGS Porto Alegre Brazil
- Serviço de Genética Médica HCPA UFRGS Porto Alegre Brazil
- Programa de Pós‐Graduação em CB:Bioquímica UFRGS Porto Alegre Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas UFRGS Porto Alegre Brazil
| |
Collapse
|
58
|
Shaik M, T P KV, Kamate M, A B V. Is Expanded Newborn Screening Adequate to Detect Indian Biochemical Low Excretor Phenotype Patients of Glutaric Aciduria Type I? Indian J Pediatr 2019; 86:995-1001. [PMID: 31302874 DOI: 10.1007/s12098-019-03017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate if expanded newborn screening using tandem mass spectroscopy (TMS) is adequate to detect low excretor phenotype in Indian Glutaric aciduria type I (GA-I) patients. METHODS Ten GA-I patients were investigated for blood glutaryl carnitine (C5DC) levels on dried blood spot (DBS) by tandem mass spectroscopy and urine glutaric acid (GA) and 3-hydroxyglutaric acid (3-OH-GA) by gas chromatography-mass spectroscopy. The student's T test and Pearson's correlation were applied to draw a relationship between various biochemical parameters. Further confirmation of low excretors by DNA mutation analysis in the glutaryl CoA dehydrogenase (GCDH) gene was performed by polymerase chain reaction and Sangers sequencing. RESULTS Among 10 GA-I patients, 7 patients were found to have high excretor, and 3 were found to have low excretor phenotype. The low excretors were found to have GCDH gene mutations. The mean C5DC levels in high and low excretors were 2.61 ± 2.02 μmol/L and 2.31 ± 1.00 μmol/L, respectively. In high excretors, C5DC levels correlated with GA (r = 0.95). In low excretors, C5DC levels correlated with 3-OH-GA (r = 0.99). No significant difference was found between C5DC levels of high and low excretors (p = 0.82). CONCLUSIONS The MS/MS, C5DC screening is a sensitive technique and detected 10 GA-I patients. Irrespective of the urine organic acid levels, Indian GA-I patients including low excretors seem to have a significantly elevated C5DC level and well above the stipulated cut-off values and therefore, expanded newborn screening is probably adequate to diagnose them.
Collapse
Affiliation(s)
- Muntaj Shaik
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| | - Kruthika-Vinod T P
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Mahesh Kamate
- Department of Pediatrics, Jawaharlal Nehru Medical College, KLE University, Belgaum, Karnataka, India
| | - Vedamurthy A B
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India.
| |
Collapse
|
59
|
Acute lysine overload provokes marked striatum injury involving oxidative stress signaling pathways in glutaryl-CoA dehydrogenase deficient mice. Neurochem Int 2019; 129:104467. [DOI: 10.1016/j.neuint.2019.104467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
|
60
|
Zayed H, El Khayat H, Tomoum H, Khalifa O, Siddiq E, Mohammad SA, Gamal R, Shi Z, Mosailhy A, Zaki OK. Clinical, biochemical, neuroradiological and molecular characterization of Egyptian patients with glutaric acidemia type 1. Metab Brain Dis 2019; 34:1231-1241. [PMID: 31062211 PMCID: PMC6617250 DOI: 10.1007/s11011-019-00422-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 12/02/2022]
Abstract
Glutaric acidemia type 1 (GA1) is an inherited metabolic autosomal recessive disorder that is caused by a deficiency in glutaryl-CoA dehydrogenase (GCDH). Untreated patients suffer primarily from severe striatal damage. More than 250 variants in the GCDH gene have been reported with a variable frequency among different ethnic groups. In this study, we aimed to characterize 89 Egyptian patients with GA1 and identify the variants in the 41 patients who were available for genotyping. All of our patients demonstrated clinical, neuroradiological, and biochemical characteristics that are consistent with a diagnosis of GA1. All patients presented with variable degrees of developmental delay ranging from mild to severe. Most of the 89 patients presented with acute onset type (71.9%), followed by insidious (19%) and asymptomatic (9%). A delay in diagnosis was inversely associated with macrocephaly. The prevalence rate ratio (PR) for macrocephaly that was associated with each 6-month delay was 0.95 (95%CI 0.91-0.99). However, high body weight was associated with a higher likelihood of having macrocephaly (PR 1.16, 95%CI 1.06-1.26 per 1 SD increment of Z score weight). However, body weight was inversely associated with the morbidity score. Consanguinity level was 64% among our patient's cohort and was positively associated with the C5DC level (β (95%CI) 1.06 (0.12-1.99)). Forty-one patients were available for genotyping and were sequenced for the GCDH gene. We identified a total of 25 variants, of which the following six novel variants were identified: three missense variants, c.320G > T (p.Gly107Val), c.481C > T (p.Arg161Trp) and c.572 T > G (p.Met191Arg); two deletions, c.78delG (p.Ala27Argfs34) and c.1035delG (p.Gly346Alafs*11); and one indel, c.272_331del (p.Val91_Lys111delinsGlu). All of the novel variants were absent in the 300 normal chromosomes. The most common variant, c.*165A > G, was detected in 42 alleles, and the most commonly detected missense variant, c.1204C > T (p.Arg402Trp), was identified in 29 mutated alleles in 15/41 (34.2%) of patients. Our findings suggest that GA1 is not uncommon organic acidemia disease in Egypt; therefore, there is a need for supporting neonatal screening programs in Egypt.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/diagnostic imaging
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Body Weight/physiology
- Brain/diagnostic imaging
- Brain Diseases, Metabolic/diagnosis
- Brain Diseases, Metabolic/diagnostic imaging
- Brain Diseases, Metabolic/genetics
- Brain Diseases, Metabolic/metabolism
- Child
- Child, Preschool
- Egypt
- Female
- Genotype
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Magnetic Resonance Imaging
- Male
- Mutation, Missense
- Severity of Illness Index
- Symptom Assessment
Collapse
Affiliation(s)
- Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.
| | - Hamed El Khayat
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt
| | - Hoda Tomoum
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt
| | - Ola Khalifa
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt
| | - Ehab Siddiq
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt
| | - Shaimaa A Mohammad
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt
| | - Radwa Gamal
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt
| | - Zumin Shi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ahmed Mosailhy
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt
| | - Osama K Zaki
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams Pediatrics Hospital, Ain-Shams University, Cairo, 11665, Egypt.
| |
Collapse
|
61
|
Guerreiro G, Amaral AU, Ribeiro RT, Faverzani J, Groehs AC, Sitta A, Deon M, Wajner M, Vargas CR. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2420-2427. [PMID: 31181292 DOI: 10.1016/j.bbadis.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022]
Abstract
The deficiency of the enzyme glutaryl-CoA dehydrogenase leads to predominant accumulation of glutaric acid (GA) in the organism and is known as glutaric acidemia type I (GA1). Despite the mechanisms of brain damage involved in GA1 are not fully understood, oxidative stress may be involved in this process. Treatment is based on protein/lysine (Lys) restriction and l-carnitine (L-car) supplementation. L-car was recently shown to have an important antioxidant role. A knockout mice model (Gcdh-/-) submitted to a dietary overload of Lys was developed to better understand the GA1 pathogenesis. In this study, we evaluated L-car and glutarylcarnitine levels, the lipid and protein damage, reactive oxygen species (ROS) production and antioxidant enzymes activities in striatum of Gcdh-/- and wild-type (WT) mice. We also determined the effect of the L-car treatment on these parameters. Thirty-day-old Gcdh-/- and WT mice were fed a normal chow (0.9% Lys) or submitted to a high Lys diet (4.7%) for 72 h. Additionally, these animals were administered with three intraperitoneal injections of saline or L-car in different times. Gcdh-/- mice were deficient in L-car and presented a higher glutarylcarnitine levels. They also presented lipid and protein damage, an increased ROS production and altered antioxidant enzymes compared to WT mice. Additionally, mice exposed to Lys overload presented higher alterations in these parameters than mice under normal diet, which were significantly decreased or normalized in those receiving L-car. Thus, we demonstrated a new beneficial effect of the L-car treatment attenuating or abolishing the oxidative stress process in Gcdh-/- mice.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil.
| | - Alexandre U Amaral
- Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil
| | - Jéssica Faverzani
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Ana Carolina Groehs
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Marion Deon
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90035-903 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em CB:Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, 90035 000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
62
|
Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model. Int J Dev Neurosci 2019; 78:215-221. [DOI: 10.1016/j.ijdevneu.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022] Open
|
63
|
Mulroy E, Balint B, Adams ME, Campion T, Merello M, Bhatia KP. Animals in the Brain. Mov Disord Clin Pract 2019; 6:189-198. [PMID: 30949548 DOI: 10.1002/mdc3.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background Pareidolic associations are commonly used in medical education to enhance perception of radiological abnormalities. A number of animal-inspired neuroradiological pareidolias have been defined which should alert clinicians to specific movement disorder diagnoses. Methods A review of the published literature detailing neuroradiological abnormalities in movement disorder syndromes was conducted, looking specifically for established animal-inspired pareidolic associations. Results A number of animal-inspired neuroradiological patterns with specific movement disorder associations have been defined. These include eye of the tiger sign, face of the panda sign, swallow tail sign, hummingbird sign, Mickey Mouse sign, ears of the lynx sign, dragonfly cerebellum, tadpole sign, tigroid/leopard skin sign, and bat wing sign. Conclusion Pareidolias represent a quick and easy way of enhancing perception, thereby improving the efficiency and accuracy of image analysis. Movement disorder physicians should keep in mind these associations, given that they will likely facilitate scan analysis.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences National Hospital for Neurology and Neurosurgery Queen Square London United Kingdom
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences National Hospital for Neurology and Neurosurgery Queen Square London United Kingdom.,Department of Neurology University Hospital Heidelberg Germany
| | - Matthew E Adams
- Department of Neuroradiology National Hospital for Neurology and Neurosurgery Queen Square London United Kingdom
| | - Tom Campion
- Department of Neuroradiology National Hospital for Neurology and Neurosurgery Queen Square London United Kingdom
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience Department Raul Carrea Institute for Neurological Research (FLENI) Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences National Hospital for Neurology and Neurosurgery Queen Square London United Kingdom
| |
Collapse
|
64
|
Cudré-Cung HP, Remacle N, do Vale-Pereira S, Gonzalez M, Henry H, Ivanisevic J, Schmiesing J, Mühlhausen C, Braissant O, Ballhausen D. Ammonium accumulation and chemokine decrease in culture media of Gcdh -/- 3D reaggregated brain cell cultures. Mol Genet Metab 2019; 126:416-428. [PMID: 30686684 DOI: 10.1016/j.ymgme.2019.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/05/2023]
Abstract
Glutaric Aciduria type I (GA-I) is caused by mutations in the GCDH gene. Its deficiency results in accumulation of the key metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body tissues and fluids. Present knowledge on the neuropathogenesis of GA-I suggests that GA and 3-OHGA have toxic properties on the developing brain. We analyzed morphological and biochemical features of 3D brain cell aggregates issued from Gcdh-/- mice at two different developmental stages, day-in-vitro (DIV) 8 and 14, corresponding to the neonatal period and early childhood. We also induced a metabolic stress by exposing the aggregates to 10 mM l-lysine (Lys). Significant amounts of GA and 3-OHGA were detected in Gcdh-/- aggregates and their culture media. Ammonium was significantly increased in culture media of Gcdh-/- aggregates at the early developmental stage. Concentrations of GA, 3-OHGA and ammonium increased significantly after exposure to Lys. Gcdh-/- aggregates manifested morphological alterations of all brain cell types at DIV 8 while at DIV 14 they were only visible after exposure to Lys. Several chemokine levels were significantly decreased in culture media of Gcdh-/- aggregates at DIV 14 and after exposure to Lys at DIV 8. This new in vitro model for brain damage in GA-I mimics well in vivo conditions. As seen previously in WT aggregates exposed to 3-OHGA, we confirmed a significant ammonium production by immature Gcdh-/- brain cells. We described for the first time a decrease of chemokines in Gcdh-/- culture media which might contribute to brain cell injury in GA-I.
Collapse
Affiliation(s)
- Hong-Phuc Cudré-Cung
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| | - Noémie Remacle
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| | - Sonia do Vale-Pereira
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland
| | - Mary Gonzalez
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| | - Hugues Henry
- Service of Clinical Chemistry, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, 1005 Lausanne, Switzerland.
| | - Jessica Schmiesing
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Chris Mühlhausen
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Olivier Braissant
- Service of Clinical Chemistry, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Disease Unit, Department of Pediatrics, Lausanne University Hospital, Chemin de Mont-Paisible 18, 1011 Lausanne, Switzerland.
| |
Collapse
|
65
|
|
66
|
Boy N, Garbade SF, Heringer J, Seitz A, Kölker S, Harting I. Patterns, evolution, and severity of striatal injury in insidious- vs acute-onset glutaric aciduria type 1. J Inherit Metab Dis 2019; 42:117-127. [PMID: 30740735 DOI: 10.1002/jimd.12033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Striatal injury in patients with glutaric aciduria type 1 (GA1) results in a complex, predominantly dystonic, movement disorder. Onset may be acute following acute encephalopathic crisis (AEC) or insidious without apparent acute event. METHODS We analyzed clinical and striatal magnetic resonance imaging (MRI) findings in 21 symptomatic GA1 patients to investigate if insidious- and acute-onset patients differed in timing, pattern of striatal injury, and outcome. RESULTS Eleven patients had acute and ten had insidious onset, two with later AEC (acute-on-insidious). The median onset of dystonia was 10 months in both groups, and severity was greater in patients after AEC (n = 8 severe, n = 5 moderate) than in insidious onset (n = 4 mild, n = 3 moderate, n = 1 severe). Deviations from guideline-recommended basic metabolic treatment were identified in six insidious-onset patients. Striatal lesions were extensive in all acute-onset patients and restricted to the dorsolateral putamen in eight of ten insidious-onset patients. After AEC, the two acute-on-insidious patients had extensive striatal changes superimposed on pre-existing dorsolateral putaminal lesions. Two insidious-onset patients with progressive dystonia without overt AEC also had extensive striatal changes, one with sequential striatal injury revealed by diffusion-weighted imaging. Insidious-onset patients had a latency phase of 3.5 months to 6.5 years between detection and clinical manifestation of dorsolateral putaminal lesions. CONCLUSIONS Insidious-onset type GA1 is characterized by dorsolateral putaminal lesions, less severe dystonia, and an asymptomatic latency phase, despite already existing lesions. Initially normal MRI during the first months and deviations from guideline-recommended treatment in a large proportion of insidious-onset patients substantiate the protective effect of neonatally initiated treatment.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
67
|
Molema F, Jacobs EH, Onkenhout W, Schoonderwoerd GC, Langendonk JG, Williams M. Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias. J Inherit Metab Dis 2018; 41:1179-1187. [PMID: 30159853 PMCID: PMC6327009 DOI: 10.1007/s10545-018-0244-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND There is increasing evidence that long-term complications in organic acidemias are caused by impaired mitochondrial metabolism. Currently, there is no specific biomarker to monitor mitochondrial dysfunction in organic acidemias. Serum fibroblast growth factor 21 (FGF-21) is a biomarker for mitochondrial disease and could be a candidate to monitor mitochondrial function in the deleterious course of disease. METHODS Data of 17 patients with classical organic acidemias (11 propionic acidemia (PA), four methylmalonic acidemia (MMA) and two isovaleric acidemia (IVA) patients) were included. The clinical course was evaluated; metabolic decompensations and long-term complications were correlated with plasma FGF-21 levels. Cardiomyopathy, prolonged QT interval, renal failure, and optic neuropathy were defined as long-term complications. RESULTS Patients ages ranged from 16 months up to 32 years. Serious long-term complications occurred in eight patients (five PA and three MMA patients). In MMA and PA patients plasma FGF-21 levels during stable metabolic periods were significantly higher in patients with long-term complications (Mdn = 2556.0 pg/ml) compared to patients without (Mdn = 287.0 pg/ml). A median plasma FGF-21 level above 1500 pg/ml during a stable metabolic period, measured before the occurrence of long-term complications, had a positive predictive value of 0.83 and a negative predictive value of 1.00 on long-term complications in MMA and PA patients. CONCLUSION This study demonstrates the potential role of FGF-21 as a biomarker for long-term complications in classical organic acidemias, attributed to mitochondrial dysfunction.
Collapse
Affiliation(s)
- F Molema
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
| | - E H Jacobs
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Onkenhout
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - G C Schoonderwoerd
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J G Langendonk
- Center of Lysosomal and Metabolic Disorders, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monique Williams
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands.
| |
Collapse
|
68
|
Shadmehri AA, Fattahi N, Pourreza MR, Koohiyan M, Zarifi S, Darbouy M, Sharifi R, Tavakkoly Bazzaz J, Tabatabaiefar MA. Molecular genetic study of glutaric aciduria, type I: Identification of a novel mutation. J Cell Biochem 2018; 120:3367-3372. [PMID: 30203563 DOI: 10.1002/jcb.27607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 08/07/2018] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-1) is an inborn error of metabolism due to deficiency of glutaryl-CoA dehydrogenase (GCDH), which catalyzes the conversion of glutaryl-CoA to crotonyl-CoA. GA-1 occurs in about 1 in 100 000 infants worldwide. The GCDH gene is on human chromosome 19p13.2, spans about 7 kb and comprises 11 exons and 10 introns. Tandem mass spectrometry (MS/MS) was used for clinical diagnosis in a proband from Iran with GA-1. Sanger sequencing was performed using primers specific for coding exons and exon-intron flanking regions of the GCDH gene in the proband. Cosegregation analysis and in silico assessment were performed to confirm the pathogenicity of the candidate variant. A novel homozygous missense variant c.1147C > A (p.Arg383Ser) in exon 11 of GCDH was identified. Examination of variant through in silico software tools determines its deleterious effect on protein in terms of function and stability. The variant cosegregates with the disease in family. In this study, the clinical and molecular aspects of GA-1 were investigated, which showed one novel mutation in the GCDH gene in an Iranian patient. The variant is categorized as pathogenic according to the the guideline of the American College of Medical Genetics and Genomics (ACMG) for variant interpretation. This mutation c.1147C > A (p.Arg383Ser) may also be prevalent among Iranian populations.
Collapse
Affiliation(s)
- Azam Ahmadi Shadmehri
- Department of Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.,Department of Molecular Genetics, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Najmeh Fattahi
- Cilinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Pourreza
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Koohiyan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahnaz Zarifi
- Social Welfare Organization of South Khorasan Province, Birjand, Iran
| | - Mojtaba Darbouy
- Department of Molecular Genetics, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Reza Sharifi
- Biomedical Sciences Division, Human Genetics Research Centre, St George's University of London, London, UK
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
69
|
Peng HH, Shaw SW, Huang KG. Prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous mutations in GCDH gene. Taiwan J Obstet Gynecol 2018; 57:137-140. [PMID: 29458885 DOI: 10.1016/j.tjog.2017.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Glutaric aciduria type 1 is a rare disease, with the estimated prevalence about 1 in 100,000 newborns. GCDH gene mutation can lead to glutaric acid and 3- OH glutaric acid accumulation, with clinical manifestation of neuronal damage, brain atrophy, microencephalic macrocephaly, decreased coordination of swallowing, poor muscle coordination, spasticity, and severe dystonic movement disorder. CASE REPORT A 22-year-old female, Gravida 4 Para 2, is pregnancy at 13 weeks of gestational age. Her first child is normal, however, the second child was diagnosed as glutaric aciduria type I after birth. She came to our hospital for prenatal genetic counselling of her fetus at 13 weeks of gestational age. We performed GCDH gene mutation analysis of maternal blood showed IVS 3 + 1 G > A heterozygous mutation, GCDH gene mutation analysis of paternal blood showed c. 1240 G > A heterozygous mutation, and the second child has compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. Later, we performed amniocentesis at 16 weeks of gestational age for chromosome study and GCDH gene mutation analysis for the fetus. The fetal chromosome study showed normal karyotype, however, GCDH gene mutation analysis showed compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. The couple decided to termination of pregnancy thereafter. CONCLUSION Glutaric acidemia type 1 is an autosomal recessive disorder because of pathogenic mutations in the GCDH gene. Early diagnosis and therapy of glutaric acidemia type 1 can reduce the risk of neuronal damage and acute dystonia. We report a case of prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous GCDH gene mutation at IVS 3 + 1 G > A and c. 1240 G > A mutations, which provide better genetic counselling for the couples.
Collapse
Affiliation(s)
- Hsiu-Huei Peng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Sheng-Wen Shaw
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kuan-Gen Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
70
|
Saudubray JM, Mochel F. The phenotype of adult versus pediatric patients with inborn errors of metabolism. J Inherit Metab Dis 2018; 41:753-756. [PMID: 29876767 DOI: 10.1007/s10545-018-0209-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Until recently, inborn errors of metabolism (IEM) were considered a pediatric specialty, as emphasized by the term "inborn," and the concept of adult onset IEM has only very recently reached the adult medical community. Still, an increasing number of adult onset IEM have now been recognized, as new metabolomics and molecular diagnostic techniques have become available. Here, we discuss possible mechanisms underlying phenotypic variability in adult versus children with IEM. Specifically, phenotypic severity and age of onset are expected to be modulated by differences in residual protein activity possibly driven by various genetic factors. Phenotypic variability may also occur in the context of similar protein expression, which suggests the intervention of environmental, ontogenic, and aging factors.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France.
| | - Fanny Mochel
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France.
- Centre de Référence Neurométabolique Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
- Sorbonne Universités, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and ICM, 75013, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
71
|
Tuncel AT, Boy N, Morath MA, Hörster F, Mütze U, Kölker S. Organic acidurias in adults: late complications and management. J Inherit Metab Dis 2018; 41:765-776. [PMID: 29335813 DOI: 10.1007/s10545-017-0135-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.
Collapse
Affiliation(s)
- Ali Tunç Tuncel
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marina A Morath
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
72
|
Boy N, Garbade SF, Heringer J, Seitz A, Kölker S, Harting I. Patterns, evolution, and severity of striatal injury in insidious- versus acute-onset glutaric aciduria type 1. J Inherit Metab Dis 2018:10.1007/s10545-018-0187-y. [PMID: 29721918 DOI: 10.1007/s10545-018-0187-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/23/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Striatal injury in patients with glutaric aciduria type 1 (GA1) results in a complex, predominantly dystonic, movement disorder. Onset may be acute following acute encephalopathic crisis (AEC) or insidious without apparent acute event. METHODS We analyzed clinical and striatal magnetic resonance imaging (MRI) findings in 21 symptomatic GA1 patients to investigate if insidious- and acute-onset patients differed in timing, pattern of striatal injury, and outcome. RESULTS Eleven patients had acute and ten had insidious onset, two with later AEC (acute-on-insidious). The median onset of dystonia was 10 months in both groups, and severity was greater in patients after AEC (n = 8 severe, n = 5 moderate) than in insidious onset (n = 4 mild, n = 3 moderate, n = 1 severe). Deviations from guideline-recommended basic metabolic treatment were identified in six insidious-onset patients. Striatal lesions were extensive in all acute-onset patients and restricted to the dorsolateral putamen in eight of ten insidious-onset patients. After AEC, the two acute-on-insidious patients had extensive striatal changes superimposed on pre-existing dorsolateral putaminal lesions. Two insidious-onset patients with progressive dystonia without overt AEC also had extensive striatal changes, one with sequential striatal injury revealed by diffusion-weighted imaging. Insidious-onset patients had a latency phase of 3.5 months to 6.5 years between detection and clinical manifestation of dorsolateral putaminal lesions. CONCLUSIONS Insidious-onset type GA1 is characterized by dorsolateral putaminal lesions, less severe dystonia, and an asymptomatic latency phase, despite already existing lesions. Initially normal MRI during the first months and deviations from guideline-recommended treatment in a large proportion of insidious-onset patients substantiate the protective effect of neonatally initiated treatment.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, University of Heidelberg Medical Center, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
73
|
Boy N, Mengler K, Thimm E, Schiergens KA, Marquardt T, Weinhold N, Marquardt I, Das AM, Freisinger P, Grünert SC, Vossbeck J, Steinfeld R, Baumgartner MR, Beblo S, Dieckmann A, Näke A, Lindner M, Heringer J, Hoffmann GF, Mühlhausen C, Maier EM, Ensenauer R, Garbade SF, Kölker S. Newborn screening: A disease-changing intervention for glutaric aciduria type 1. Ann Neurol 2018; 83:970-979. [DOI: 10.1002/ana.25233] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/02/2018] [Accepted: 04/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Katharina Mengler
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Eva Thimm
- Division of Experimental Pediatrics and Metabolism, Department of General Pediatrics; Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | | | - Thorsten Marquardt
- Department of General Pediatrics; Metabolic Diseases, University Children's Hospital Münster; Münster Germany
| | - Natalie Weinhold
- Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Center for Chronically Sick Children; Berlin Germany
| | - Iris Marquardt
- Department of Child Neurology; Children's Hospital Oldenburg; Oldenburg Germany
| | - Anibh M. Das
- Department of Pediatrics; Pediatric Metabolic Medicine, Hannover Medical School; Hannover Germany
| | | | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine, and Neonatology, Faculty of Medicine; Medical Center, University of Freiburg; Freiburg Germany
| | - Judith Vossbeck
- Department of Pediatric and Adolescent Medicine; Ulm University Medical School; Ulm Germany
| | - Robert Steinfeld
- Department of Pediatrics and Pediatric Neurology; University Medical Center; Göttingen Germany
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research Center; University Children's Hospital Zurich; Zurich Switzerland
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents; Center for Pediatric Research Leipzig, University Hospitals, University of Leipzig; Leipzig Germany
| | - Andrea Dieckmann
- Center for Inborn Metabolic Disorders, Department of Neuropediatrics; Jena University Hospital; Jena Germany
| | - Andrea Näke
- Children's Hospital Carl Gustav Carus; Technical University Dresden; Dresden Germany
| | - Martin Lindner
- Division of Pediatric Neurology; University Children's Hospital Frankfurt; Frankfurt Germany
| | - Jana Heringer
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Chris Mühlhausen
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Esther M. Maier
- Dr von Hauner Children's Hospital; Ludwig Maximilian University; Munich Germany
| | - Regina Ensenauer
- Division of Experimental Pediatrics and Metabolism, Department of General Pediatrics; Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine; University Hospital Heidelberg; Heidelberg Germany
| |
Collapse
|
74
|
Thomas A, Dobbels EFM, Springer PE, Ackermann C, Cotton MF, Laughton B. Favourable outcome in a child with symptomatic diagnosis of Glutaric aciduria type 1 despite vertical HIV infection and minor head trauma. Metab Brain Dis 2018; 33:537-544. [PMID: 29427049 DOI: 10.1007/s11011-018-0196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/25/2018] [Indexed: 11/29/2022]
Abstract
The first case of Glutaric aciduria Type 1(GA1) in an African child was reported in 2001. GA1 has a prevalence of 1:5000 in black South Africans. Although early diagnosis is essential for a favourable outcome, newborn screening is not routine in South Africa where an estimated 320,000 children have HIV infection. Neurodevelopmental delay and encephalopathy are complications of both HIV and GA1. In such a setting it is important to recognise that HIV and GA1 can occur simultaneously. We present an HIV-infected South African male child of Xhosa descent with macrocephaly who commenced combination antiretroviral therapy (ART) at 8 weeks of age in a clinical trial which included a neurodevelopmental sub-study. He developed short-lived focal seizures at 16 months after minor head trauma. Neurological examination was normal. Neuroimaging showed temporal lobe atrophy, subtle hyperintense signal change in the globus pallidus, and focal haemosiderosis in the right Sylvian fissure region. As findings were not in keeping with HIV encephalopathy, a urine metabolic screen was undertaken which suggested GA1. Genetic testing confirmed Arg293Trp mutation. He began L-carnitine and a low protein diet as a restricted diet was not practicable. At 21 months he developed pulmonary tuberculosis, requiring 6 months treatment. He did not develop any neurologic motor symptoms. Serial neurodevelopmental and neuropsychological test scores until 9 years were similar to healthy neighbourhood controls, except for mild language delay at 3½ years. Detection of GA1, probably facilitated through participation in a clinical trial, was pivotal for a favourable outcome. The concomitant use of ART and anti-tuberculous therapy in a child with GA1 appears safe.
Collapse
Affiliation(s)
- Angeline Thomas
- Developmental Paediatrics, Department of Paediatrics and Child Health, Tygerberg Hospital and Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Els F M Dobbels
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Tygerberg Hospital and Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Priscilla E Springer
- Developmental Paediatrics, Department of Paediatrics and Child Health, Tygerberg Hospital and Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Christelle Ackermann
- Department of Radiology, Tygerberg Hospital and Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Mark F Cotton
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Tygerberg Hospital and Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Tygerberg Hospital and Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town, South Africa.
| |
Collapse
|
75
|
Abstract
Many inherited metabolic diseases or inborn errors of metabolism (IEM) cause movement disorders in children. This review focuses on chorea, dystonia, myoclonus, tremor, and parkinsonism. Broad neurometabolic categories commonly responsible for pediatric movement disorders include mitochondrial cytopathies, organic acidemias, mineral metabolism and transport disorders, neurotransmitter diseases, purine metabolism abnormalities, lipid storage conditions, and creatine metabolism dysfunction. Each movement disorder can be caused by many IEM and several of them can cause multiple movement abnormalities. Dietary modifications, medications, and increasingly specific therapy can improve outcomes in children with movement disorders caused by IEM. Recognition and characterization of secondary movement disorders in children facilitate their management and diagnosis, and possible treatment of an underlying IEM.
Collapse
Affiliation(s)
- Celanie K Christensen
- Department of Neurology, Section of Child Neurology, Indiana University School of Medicine, Indianapolis, IN; Department of Pediatrics, Section of Developmental Pediatrics, Indiana University School of Medicine, Indianapolis, IN.
| | - Laurence Walsh
- Department of Neurology, Section of Child Neurology, Indiana University School of Medicine, Indianapolis, IN; Department of Pediatrics, Section of Developmental Pediatrics, Indiana University School of Medicine, Indianapolis, IN; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
76
|
Altered Redox Homeostasis in Branched-Chain Amino Acid Disorders, Organic Acidurias, and Homocystinuria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1246069. [PMID: 29743968 PMCID: PMC5884027 DOI: 10.1155/2018/1246069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/26/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Inborn errors of metabolism (IEMs) are a group of monogenic disorders characterized by dysregulation of the metabolic networks that underlie development and homeostasis. Emerging evidence points to oxidative stress and mitochondrial dysfunction as major contributors to the multiorgan alterations observed in several IEMs. The accumulation of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation disorders inhibits mitochondrial enzymes and processes resulting in elevated levels of reactive oxygen species (ROS). In other IEMs, as in homocystinuria, different sources of ROS have been proposed. In patients' samples, as well as in cellular and animal models, several studies have identified significant increases in ROS levels along with decreases in antioxidant defences, correlating with oxidative damage to proteins, lipids, and DNA. Elevated ROS disturb redox-signaling pathways regulating biological processes such as cell growth, differentiation, or cell death; however, there are few studies investigating these processes in IEMs. In this review, we describe the published data on mitochondrial dysfunction, oxidative stress, and impaired redox signaling in branched-chain amino acid disorders, other organic acidurias, and homocystinuria, along with recent studies exploring the efficiency of antioxidants and mitochondria-targeted therapies as therapeutic compounds in these diseases.
Collapse
|
77
|
Biasucci G, Morelli N, Natacci F, Mastrangelo M. Early neonatal Glutaric aciduria type I hidden by perinatal asphyxia: a case report. Ital J Pediatr 2018; 44:8. [PMID: 29335023 PMCID: PMC5769368 DOI: 10.1186/s13052-018-0450-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/08/2018] [Indexed: 12/04/2022] Open
Abstract
Background Perinatal asphyxia (PA) occurs in about 2 to 10 per 1000 live full-term births. Although neonatal epileptic seizures are observed in up to 60% of cases, PA may mimic or subtend other conditions. Hypoxia related brain injury is particularly relevant, as it may have permanent effects on neuropsychomotor development. Antepartum obstetric conditions, may, in turn, lead to hypoxic-ischemic damage to the fetus and the newborn, often underlying PA. Herein, a case of PA that hid and triggered signs and symptoms of Glutaric Aciduria type I (GA-I), is reported. Case presentation R.F. was born at term after prolonged labour, by induced vaginal delivery with the Kristeller manoeuvre. He presented with severe asphyxia and asystoly. Immediate cardiopulmonary resuscitation promptly restored cardiorespiratory parameters, allowing for early extubation 30 min after. During the following hours, severe axial muscle hypotonia with an increased tone of the limb extensor muscles became evident. The absence of crying and archaic reflexes persisted and there was an onset of generalized tonic or clonic seizure. First level metabolic and inflammatory markers were within the normal range. An inherited metabolic disease was then suspected, due to the persistent clinical signs of severe neurological damage without any detectable septic parameter. GA-I was assessed and specific treatment started without any clinical improvement, although ensuring adequate growth and metabolic control. Thereafter, the baby developed a severe encephalopathy with drug resistant epileptic seizures. The progression of the neurological damage and a CVC-related sepsis led him to exitus at 2 years. Conclusions To the best of our knowledge, this is the first case of early post-natal onset of GA-I reported in literature to date, in the absence of expanded newborn screening (NBS) programme. As expanded NBS programmes for inborn errors of metabolism have not yet been internationally adopted, we are of the opinion that such diseases may well be hidden by misleading signs and symptoms imputable to other more frequent harmful clinical conditions. Moreover, it would be advisable that neonatologists be trained to include GA-I in the differential diagnosis of neurological damage secondary to PA.
Collapse
Affiliation(s)
- Giacomo Biasucci
- Pediatrics & Neonatology Unit, "Guglielmo da Saliceto" City Hospital, Cantone del Cristo, 50, 29121, Piacenza, Italy.
| | - Nicola Morelli
- Neurology and Radiology Unit, "Guglielmo da Saliceto" City Hospital, Piacenza, Italy
| | - Federica Natacci
- Medical Genetics Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Mastrangelo
- Pediatric Neurology Unit, "Vittore Buzzi" Children's Hospital, ASST FBF-Sacco, Milan, Italy
| |
Collapse
|
78
|
Two Uneventful Pregnancies in a Woman with Glutaric Aciduria Type 1. JIMD Rep 2018; 41:29-36. [PMID: 29292490 DOI: 10.1007/8904_2017_81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
Glutaric aciduria type 1 (GA1) is an autosomal recessive rare disorder caused by mutations in the GCDH gene resulting in deficiency of glutaryl-CoA dehydrogenase, leading to accumulation of the amino acids lysine, hydroxylysine and tryptophan and other metabolites. The phenotypic spectrum of disease is broad. Stress caused by infection and fever and possibly pregnancy may lead to worsening of the signs and symptoms, often with uncertain recovery.We describe a case of a female patient with GA1 who had two clinically uneventful pregnancies.At the age of 11 she was diagnosed with GA1 by family screening. The cultured skin fibroblast showed reduced glutaryl-CoA dehydrogenase activity (0.16 mg protein per min).The initial diagnostic urine glutaric acid level for this patient was 1,784 μmol/mmol creatinine. Mutation analysis showed compound heterozygosity for the p.(Gly185Arg), c.553G>A in exon 7 and p.(Arg402Trp), c.1204C.T in exon 11 mutations of the GCDH.Her pregnancy at the age of 23 was complicated by pre-eclampsia and required treatment with beta-blockers. Four years later the second pregnancy was uncomplicated. The management plan during the caesarean section included intravenous dextrose and lipid infusions. The patient rapidly recovered from both surgeries.Both babies have had normal development to date. On newborn screening, plasma acylcarnitine showed a transient increase in glutarylcarnitine, and the urine organic acid analysis showed a trace of 3-hydroxyglutarylcarnitine, likely to be of maternal transfer.The multidisciplinary team, consisting of metabolic, dietetic and obstetric care providers, have responsibility to ensure the risk of acute decompensation in pregnant GA1 women is minimal.
Collapse
|
79
|
Komatsuzaki S, Ediga RD, Okun JG, Kölker S, Sauer SW. Impairment of astrocytic glutaminolysis in glutaric aciduria type I. J Inherit Metab Dis 2018; 41:91-99. [PMID: 29098534 DOI: 10.1007/s10545-017-0096-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022]
Abstract
Glutaric aciduria type I is a rare, autosomal recessive, inherited defect of glutaryl-CoA dehydrogenase. Deficiency of this protein in L-lysine degradation leads to the characteristic accumulation of nontoxic glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, and 3-hydroxyglutaric acid. Untreated patients develop bilateral lesions of basal ganglia resulting in a complex movement disorder with predominant dystonia in infancy and early childhood. The current pathomechanistic concept strongly focuses on imbalanced neuronal energy metabolism due to accumulating metabolites, whereas little is known about the pathomechanistic role of astrocytes, which are thought to be in constant metabolic crosstalk with neurons. We found that glutaric acid (GA) causes astrocytic cell death under starvation cell culture conditions, i.e. low glucose, without glutamine and fetal calf serum. Glutamine completely abolished GA-induced toxicity, suggesting involvement of glutaminolysis. Increasing dependence on glutaminolysis by chemical induction of hypoxia signaling-potentiated GA-induced toxicity. We further show that GA disturbs glutamine degradation by specifically inhibiting glutamate dehydrogenase. Summarizing our study shows that pathologically relevant concentrations of GA block an important step in the metabolic crosstalk between neurons and astrocytes, ultimately leading to astrocytic cell death.
Collapse
Affiliation(s)
- Shoko Komatsuzaki
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Raga Deepthi Ediga
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany
| | - Sven W Sauer
- Center for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany.
| |
Collapse
|
80
|
Mosaeilhy A, Mohamed MM, C GPD, El Abd HSA, Gamal R, Zaki OK, Zayed H. Genotype-phenotype correlation in 18 Egyptian patients with glutaric acidemia type I. Metab Brain Dis 2017; 32:1417-1426. [PMID: 28389991 DOI: 10.1007/s11011-017-0006-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/29/2017] [Indexed: 11/26/2022]
Abstract
Glutaric acidemia I (GAI) is an autosomal recessive metabolic disease caused by a deficiency of glutaryl-CoA dehydrogenase enzyme (GCDH). Patients with GAI are characterized by macrocephaly, acute encephalitis-like crises, dystonia and frontotemporal atrophy. In this study, we investigated 18 Egyptian patients that were diagnosed with GAI based on their clinical, neuroradiological, and biochemical profiles. Of the 18 patients, 16 had developmental delay and/or regression, dystonia was prominent in 75% of the cases, and three patients died. Molecular genetics analysis identified 14 different mutations in the GCDH gene in the 18 patients, of the 14 mutations, nine were missense, three were in the 3'-Untranslated Region (3'-UTR), one was nonsense, and one was a silent mutation. Four novel mutations were identified (c.148 T > A; p.Trp50Arg, c.158C > A; p.Pro53Gln, c.1284C > G; p.Ile428Met, and c.1189G > T; p.Glu397*) that were all absent in 300 normal chromosomes. The 3'-UTR mutation (c.*165A > G; rs8012), was the most frequent mutation observed (0.5; 18/36), followed by the most common mutation among Caucasian patients (p.Arg402Trp; rs121434369) with allele frequency of 0.36 (13/36), and the 3'-UTR mutation (c.*288G > T; rs9384, 0.22; 8/16). The p.Arg257Gln mutation was found with allele frequency of ~0.17 (6/36). The marked homozygosity observed in our patients is probably due to the high level of consanguinity that is observed in 100% of the cases. We used nine in silico prediction tools to predict the pathogenicity (SIFT, PhD-SNP, SNAP, Meta-SNP, PolyPhen2, and Align GVGD) and protein stability (I-Mutant2.0, Mupro, and istable) of the nine missense mutants. The mutant p.Arg402Trp was predicted to be most deleterious by all the six pathogenicity prediction tools and destabilizing by all the three-stability prediction tools, and highly conserved by the ConSurf server. Using the clinical, biochemical, family history of the 18 patients, and the in silico analysis of the missense mutations, our study showed a mix of conclusive and inconclusive genotype-phenotype correlations among our patient's cohort and suggests the usefulness of using various sophisticated computational analysis to be utilized for future variant classifications in the genetic clinics.
Collapse
Affiliation(s)
- Ahmed Mosaeilhy
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Magdy M Mohamed
- Department of Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - George Priya Doss C
- Department of Integrative Biology, School of BioSciences and Technology, VIT- University, Vellore, India
| | - Heba S A El Abd
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Radwa Gamal
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Osama K Zaki
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.
- Genetics Unit, Ain Shams Pediatrics Hospital, Cairo, 11566, Egypt.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
81
|
Schmiesing J, Lohmöller B, Schweizer M, Tidow H, Gersting SW, Muntau AC, Braulke T, Mühlhausen C. Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture. Hum Mol Genet 2017; 26:538-551. [PMID: 28062662 DOI: 10.1093/hmg/ddw411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023] Open
Abstract
The neurometabolic disorder glutaric aciduria type 1 (GA1) is caused by mutations in the GCDH gene encoding the mitochondrial matrix protein glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes. Twenty percent of all pathogenic mutations affect single amino acid residues on the surface of GCDH resulting in a severe clinical phenotype. We report here on heterologous expression studies of 18 missense mutations identified in GA1 patients affecting surface amino acids. Western blot and pulse chase experiments revealed that the stability of half of the GCDH mutants was significantly reduced. In silico analyses showed that none of the mutations impaired the 3D structure of GCDH. Immunofluorescence co-localisation studies in HeLa cells demonstrated that all GCDH mutants were correctly translocated into mitochondria. Surprisingly, the expression of p.Arg88Cys GCDH as well as further substitutions by alanine, lysine, or methionine but not histidine or leucine resulted in the disruption of mitochondrial architecture forming longitudinal structures composed of stacks of cristae and partial loss of the outer mitochondrial membrane. The expression of mitochondrial fusion or fission proteins was not affected in these cells. Bioluminescence resonance energy transfer analyses revealed that all GCDH mutants exhibit an increased binding affinity to electron transfer flavoprotein beta, whereas only p.Tyr155His GCDH showed a reduced interaction with dihydrolipoamide succinyl transferase. Our data underscore the impact of GCDH protein interactions mediated by amino acid residues on the surface of GCDH required for proper enzymatic activity.
Collapse
Affiliation(s)
- Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Lohmöller
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging & Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Childrens Hospital, Ludwig-Maximilians-University, Munich, Germany and
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
82
|
Biagosch C, Ediga RD, Hensler SV, Faerberboeck M, Kuehn R, Wurst W, Meitinger T, Kölker S, Sauer S, Prokisch H. Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2220-2228. [PMID: 28545977 DOI: 10.1016/j.bbadis.2017.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
Glutaric aciduria type I (GA-I) is a rare organic aciduria caused by the autosomal recessive inherited deficiency of glutaryl-CoA dehydrogenase (GCDH). GCDH deficiency leads to disruption of l-lysine degradation with characteristic accumulation of glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, 3-hydroxyglutaric acid (3-OHGA). DHTKD1 acts upstream of GCDH, and its deficiency leads to none or often mild clinical phenotype in humans, 2-aminoadipic 2-oxoadipic aciduria. We hypothesized that inhibition of DHTKD1 may prevent the accumulation of neurotoxic dicarboxylic metabolites suggesting DHTKD1 inhibition as a possible treatment strategy for GA-I. In order to validate this hypothesis we took advantage of an existing GA-I (Gcdh-/-) mouse model and established a Dhtkd1 deficient mouse model. Both models reproduced the biochemical and clinical phenotype observed in patients. Under challenging conditions of a high lysine diet, only Gcdh-/- mice but not Dhtkd1-/- mice developed clinical symptoms such as lethargic behaviour and weight loss. However, the genetic Dhtkd1 inhibition in Dhtkd1-/-/Gcdh-/- mice could not rescue the GA-I phenotype. Biochemical results confirm this finding with double knockout mice showing similar metabolite accumulations as Gcdh-/- mice with high GA in brain and liver. This suggests that DHTKD1 inhibition alone is not sufficient to treat GA-I, but instead a more complex strategy is needed. Our data highlights the many unresolved questions within the l-lysine degradation pathway and provides evidence for a so far unknown mechanism leading to glutaryl-CoA.
Collapse
Affiliation(s)
- Caroline Biagosch
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Raga Deepthi Ediga
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany
| | - Svenja-Viola Hensler
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Michael Faerberboeck
- Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Ralf Kuehn
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Stefan Kölker
- University Hospital Heidelberg, Centre for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - Sven Sauer
- University Hospital Heidelberg, Centre for Child and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany.
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
83
|
Boy N, Heringer J, Brackmann R, Bodamer O, Seitz A, Kölker S, Harting I. Extrastriatal changes in patients with late-onset glutaric aciduria type I highlight the risk of long-term neurotoxicity. Orphanet J Rare Dis 2017; 12:77. [PMID: 28438223 PMCID: PMC5402644 DOI: 10.1186/s13023-017-0612-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Without neonatal initiation of treatment, 80-90% of patients with glutaric aciduria type 1 (GA1) develop striatal injury during the first six years of life resulting in a complex, predominantly dystonic movement disorder. Onset of motor symptoms may be acute following encephalopathic crisis or insidious without apparent crisis. Additionally, so-called late-onset GA1 has been described in single patients diagnosed after the age of 6 years. With the aim of better characterizing and understanding late-onset GA1 we analyzed clinical findings, biochemical phenotype, and MRI changes of eight late-onset patients and compared these to eight control patients over the age of 6 years with early diagnosis and start of treatment. RESULTS No late-onset or control patient had either dystonia or striatal lesions on MRI. All late-onset (8/8) patients were high excretors, but only four of eight control patients. Two of eight late-onset patients were diagnosed after the age of 60 years, presenting with dementia, tremor, and epilepsy, while six were diagnosed before the age of 30 years: Three were asymptomatic mothers identified by following a positive screening result in their newborns and three had non-specific general symptoms, one with additional mild neurological deficits. Frontotemporal hypoplasia and white matter changes were present in all eight and subependymal lesions in six late-onset patients. At comparable age a greater proportion of late-onset patients had (non-specific) clinical symptoms and possibly subependymal nodules compared to control patients, in particular in comparison to the four clinically and MR-wise asymptomatic low-excreting control patients. CONCLUSIONS While clinical findings are non-specific, frontotemporal hypoplasia and subependymal nodules are characteristic MRI findings of late-onset GA1 and should trigger diagnostic investigation for this rare disease. Apart from their apparent non-susceptibility for striatal injury despite lack of treatment, patients with late-onset GA1 are not categorically different from early treated control patients. Differences between late-onset patients and early treated control patients most likely reflect greater cumulative neurotoxicity in individuals remaining undiagnosed and untreated for years, even decades as well as the higher long-term risk of high excretors for intracerebral accumulation of neurotoxic metabolites compared to low excretors.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Renate Brackmann
- Department of Child and Adolescent Medicine, Klinikum Herford, Schwarzenmoorstrasse 70, 32049 Herford, Germany
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA USA
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 60120 Heidelberg, Germany
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Clinic I, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 60120 Heidelberg, Germany
| |
Collapse
|
84
|
Kaya Ozcora GD, Gokay S, Canpolat M, Kardaş F, Kendirci M, Kumandaş S. Glutaric Acidemia Type 1: A Case of Infantile Stroke. JIMD Rep 2017; 38:7-12. [PMID: 28411331 DOI: 10.1007/8904_2017_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glutaric acidemia Type 1 (GA-1) is an autosomal recessively inherited metabolic disorder which is associated with GCDH gene mutations which alters the glutaryl-CoA dehydrogenase, an enzyme playing role in the catabolic pathways of the amino acids lysine, hydroxylysine, and tryptophan. Clinical findings are often encephalopathic crises, dystonia, and extrapyramidal symptoms. CASE REPORT A 9-month-old male infant referred to our department with focal tonic-clonic seizures during rotavirus infection and acute infarcts in MRI. Clinical manifestation, MRI findings, and metabolic investigations directed thoughts towards GA-I. Molecular genetic testing revealed a homozygous c.572T>C (p.M191T) mutation in GCDH gene which confirmed the diagnosis. Application of protein restricted diet, carnitine and riboflavin supplementations prevented the progression of Magnetic Resonance Imaging (MRI) and clinical pathologic findings during the 1 year of follow-up period. CONCLUSION This case is of great importance since it shows possibility of infantile stroke in GA-1, significance of early diagnosis and phenotypic variability of disease.
Collapse
Affiliation(s)
- Gül Demet Kaya Ozcora
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Erciyes University, Kayseri, Turkey.
| | - Songul Gokay
- Division of Pediatric Nutrition and Metabolism, Erciyes University, Kayseri, Turkey
| | - Mehmet Canpolat
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| | - Fatih Kardaş
- Division of Pediatric Nutrition and Metabolism, Erciyes University, Kayseri, Turkey
| | - Mustafa Kendirci
- Division of Pediatric Nutrition and Metabolism, Erciyes University, Kayseri, Turkey
| | - Sefer Kumandaş
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
85
|
Moseilhy A, Hassan MM, El Abd HSA, Mohammad SA, El Bekay R, Abdel-Motal UM, Ouhtit A, Zaki OK, Zayed H. Severe neurological manifestations in an Egyptian patient with a novel frameshift mutation in the Glutaryl-CoA dehydrogenase gene. Metab Brain Dis 2017; 32:35-40. [PMID: 27476540 DOI: 10.1007/s11011-016-9879-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Abstract
To characterize an Egyptian patient with glutaric acidemia type I (GA I) and to identify the causative mutation(s) that may be responsible for the disease phenotype. MRI was performed on the patient using the 1.5 T magnet, biochemical analysis was carried out using gas chromatography/mass spectrometry on the patient's dried blood spot, and the patient's organic acids were measured in dried blood and a urine sample using MS/MS and GC/MS, respectively. Total RNA was isolated from the patient's peripheral blood, and the synthesized cDNA was bi-directionally sequenced. The patient exhibited clinical features and MRI findings compatible with a diagnosis of GA I. The abnormal elevation of organic acids in the urine supported the presence of glutaryl-CoA dehydrogenase deficiency. Gene sequencing revealed a novel homozygous frameshift mutation, c.644_645insCTCG; p.(Pro217Leufs*14), in exon 8 of the GCDH gene. The present study revealed a novel frameshift mutation responsible for a severe GA I phenotype in an Egyptian patient. This novel mutation will ultimately contribute to a better understanding of the molecular pathology of the disease and shed light on the intricacies of the genotype-phenotype correlation of GA I disease.
Collapse
Affiliation(s)
- Ahmed Moseilhy
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams University Hospital, Cairo, 11665, Egypt
| | - Magdy M Hassan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Heba S A El Abd
- Medical Genetics Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shaimaa A Mohammad
- Department of Radiodiagnosis, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Rajaa El Bekay
- Laboratory of Biomedical Research, Virgen de la Victoria Clinical University Hospital, 29010, Málaga, Spain
| | | | - Allal Ouhtit
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Osama K Zaki
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain Shams University Hospital, Cairo, 11665, Egypt.
- Medical Genetics Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Hatem Zayed
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
86
|
Boy N, Mühlhausen C, Maier EM, Heringer J, Assmann B, Burgard P, Dixon M, Fleissner S, Greenberg CR, Harting I, Hoffmann GF, Karall D, Koeller DM, Krawinkel MB, Okun JG, Opladen T, Posset R, Sahm K, Zschocke J, Kölker S. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017; 40:75-101. [PMID: 27853989 DOI: 10.1007/s10545-016-9999-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Chris Mühlhausen
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Birgit Assmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Peter Burgard
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sandra Fleissner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Cheryl R Greenberg
- Department of Pediatrics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
- Department of Biochemistry and Medical Genetics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
| | - Inga Harting
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Daniela Karall
- Clinic for Paediatrics I, Inherited Metabolic Disorders, Medical, University of Innsbruck, Innsbruck, Austria
| | - David M Koeller
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Michael B Krawinkel
- Justus Liebig University Giessen, Institute of Nutritional Science, Giessen, Germany
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Thomas Opladen
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Roland Posset
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Katja Sahm
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
87
|
Ishige M, Fuchigami T, Ogawa E, Usui H, Kohira R, Watanabe Y, Takahashi S. Severe Acute Subdural Hemorrhages in a Patient with Glutaric Acidemia Type 1 under Recommended Treatment. Pediatr Neurosurg 2017; 52:46-50. [PMID: 27721316 DOI: 10.1159/000448736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 07/27/2016] [Indexed: 11/19/2022]
Abstract
Glutaric acidemia type 1 is a rare autosomal recessive disease caused by a deficiency of glutaryl-CoA dehydrogenase. Previous studies have reported subdural hemorrhage in untreated patients with glutaric acidemia type 1. However, there is only one report of severe acute subdural hemorrhage after minor head trauma in a patient with glutaric acidemia type 1 under guideline-recommended treatment. We report a second case of life-threatening severe acute subdural hemorrhage after a minor head trauma in a patient with glutaric acidemia type 1. This patient was previously diagnosed by newborn screening, and treatment began at 25 days of age. Early diagnosis and guideline-recommended treatment produce better outcomes for patients with glutaric acidemia type 1, although the risk of subdural hemorrhage remains.
Collapse
Affiliation(s)
- Mika Ishige
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Pena IA, MacKenzie A, Van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab 2017; 12:5-20. [PMID: 30058881 DOI: 10.1080/17446651.2017.1273107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare genetic condition characterized by intractable and recurrent neonatal seizures that are uniquely alleviated by high doses of pyridoxine (vitamin B6). This recessive disease is caused by mutations in ALDH7A1, a gene encoding Antiquitin, an enzyme central to lysine degradation. This results in the pathogenic accumulation of the lysine intermediates Aminoadipate Semialdehyde (AASA) and its cyclic equilibrium form Piperideine-6-carboxylate (P6C) in body fluids; P6C reacts with pyridoxal-5'-phosphate (PLP, the active form of vitamin B6) causing its inactivation and leading to pyridoxine-dependent seizures. While PDE is responsive to pharmacological dosages of pyridoxine, despite lifelong supplementation, neurodevelopment delays are observed in >75% of PDE cases. Thus, adjunct treatment strategies are emerging to both improve seizure control and moderate the delays in cognition. These adjunctive therapies, lysine restriction and arginine supplementation, separately or in combination (with pyridoxine thus termed 'triple therapy'), have shown promising results and are recommended in all PDE patients. Other new therapeutic strategies currently in preclinical phase of study include antisense therapy and substrate reduction therapy. We present here a comprehensive review of current treatment options as well as PDE phenotype, differential diagnosis, current management and views upon the future of PDE research.
Collapse
Affiliation(s)
- Izabella Agostinho Pena
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Alex MacKenzie
- a Children's Hospital of Eastern Ontario (CHEO) Research Institute , Ottawa , ON , Canada
- b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , ON , Canada
| | - Clara D M Van Karnebeek
- c Department of Pediatrics, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics , University of British Columbia , Vancouver BC , Canada
| |
Collapse
|
89
|
Goldstein A, Vockley J. Clinical trials examining treatments for inborn errors of amino acid metabolism. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1275565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amy Goldstein
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jerry Vockley
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
90
|
Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4074365. [PMID: 27672653 PMCID: PMC5031822 DOI: 10.1155/2016/4074365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.
Collapse
|
91
|
Posset R, Garcia-Cazorla A, Valayannopoulos V, Teles EL, Dionisi-Vici C, Brassier A, Burlina AB, Burgard P, Cortès-Saladelafont E, Dobbelaere D, Couce ML, Sykut-Cegielska J, Häberle J, Lund AM, Chakrapani A, Schiff M, Walter JH, Zeman J, Vara R, Kölker S. Age at disease onset and peak ammonium level rather than interventional variables predict the neurological outcome in urea cycle disorders. J Inherit Metab Dis 2016; 39:661-672. [PMID: 27106216 DOI: 10.1007/s10545-016-9938-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Patients with urea cycle disorders (UCDs) have an increased risk of neurological disease manifestation. AIMS Determining the effect of diagnostic and therapeutic interventions on the neurological outcome. METHODS Evaluation of baseline, regular follow-up and emergency visits of 456 UCD patients prospectively followed between 2011 and 2015 by the E-IMD patient registry. RESULTS About two-thirds of UCD patients remained asymptomatic until age 12 days [i.e. the median age at diagnosis of patients identified by newborn screening (NBS)] suggesting a potential benefit of NBS. In fact, NBS lowered the age at diagnosis in patients with late onset of symptoms (>28 days), and a trend towards improved long-term neurological outcome was found for patients with argininosuccinate synthetase and lyase deficiency as well as argininemia identified by NBS. Three to 17 different drug combinations were used for maintenance therapy, but superiority of any single drug or specific drug combination above other combinations was not demonstrated. Importantly, non-interventional variables of disease severity, such as age at disease onset and peak ammonium level of the initial hyperammonemic crisis (cut-off level: 500 μmol/L) best predicted the neurological outcome. CONCLUSIONS Promising results of NBS for late onset UCD patients are reported and should be re-evaluated in a larger and more advanced age group. However, non-interventional variables affect the neurological outcome of UCD patients. Available evidence-based guideline recommendations are currently heterogeneously implemented into practice, leading to a high variability of drug combinations that hamper our understanding of optimised long-term and emergency treatment.
Collapse
Affiliation(s)
- Roland Posset
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | | | - Vassili Valayannopoulos
- Assistance Publique-Hôpitaux de Paris, Service de Maladies Metaboliques, Hôpital Necker-Enfants Malades, Paris, France
| | - Elisa Leão Teles
- Hospital de S. João, EPE, Unidade de Doenças Metabólicas, Serviço de Pediatria, Porto, Portugal
| | - Carlo Dionisi-Vici
- Ospedale Pediatrico Bambino Gésu, U.O.C. Patologia Metabolica, Rome, Italy
| | - Anaïs Brassier
- Assistance Publique-Hôpitaux de Paris, Service de Maladies Metaboliques, Hôpital Necker-Enfants Malades, Paris, France
| | - Alberto B Burlina
- Azienda Ospedaliera di Padova, U.O.C. Malattie Metaboliche Ereditarie, Padova, Italy
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | | | - Dries Dobbelaere
- Centre de Référence Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Jeanne de Flandre Hospital, CHRU Lille, and RADEME EA 7364, Faculty of Medicine, University Lille 2, Lille, 59037, France
| | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Manuel Schiff
- Hôpital Robert Debré, Reference Centre for Inborn Errors of Metabolism, APHP and Université Paris-Diderot, Paris, France
| | - John H Walter
- Manchester Academic Health Science Centre, Willink Biochemical Genetics Unit, Genetic Medicine, University of Manchester, Manchester, UK
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | - Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
92
|
Kuiper A, Eggink H, Tijssen MAJ, de Koning TJ. Neurometabolic disorders are treatable causes of dystonia. Rev Neurol (Paris) 2016; 172:455-464. [PMID: 27561437 DOI: 10.1016/j.neurol.2016.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
A broad range of rare inherited metabolic disorders can present with dystonia. For clinicians, it is important to recognize dystonic features, but it can be complicated by the mixed and complex clinical picture seen in many neurometabolic patients. Careful phenotyping is the first step towards the diagnosis of the underlying condition and subsequent targeted treatment, further supported by imaging, biochemical diagnostics and the availability of modern diagnostic techniques such as next generation sequencing. As several neurometabolic disorders are treatable causes of dystonia, these should have priority in the diagnostic process. In the symptomatic treatment of dystonia, several therapeutic options are available. Awareness for the occurrence and optimal treatment of dystonia and other movement disorders in neurometabolic conditions is important because these symptoms can have a substantial impact on the quality of life and daily functioning; this effect is not only exerted by the dystonia itself, but also by the frequently associated non-motor features. In this paper, the highlights and key concepts of neurometabolic forms of dystonia are discussed, with a focus on phenomenology, the diagnostic approach, the most important neurometabolic aetiologies, co-occurring non-motor features and therapeutic options.
Collapse
Affiliation(s)
- A Kuiper
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Eggink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T J de Koning
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
93
|
Newborn Screening Programmes in Europe, Arguments and Efforts Regarding Harmonisation: Focus on Organic Acidurias. JIMD Rep 2016; 32:105-115. [PMID: 27344647 DOI: 10.1007/8904_2016_537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The state of newborn screening (NBS) programmes for organic acidurias in Europe was assessed by a web-based questionnaire in the EU programme of Community Action in Public Health 2010/2011 among the - at that time - 27 EU member states, candidate countries, potential candidates and three EFTA countries. RESULTS Thirty-seven data sets from 39 target countries were analysed. Newborn screening for glutaric aciduria type I (GA-I) was performed in ten, for isovaleric aciduria (IVA) in nine and for methylmalonic aciduria including cblA, cblB, cblC and cblD (MMACBL) as well as for propionic aciduria (PA) in seven countries. Samples were obtained at a median age of 2.5 days and laboratory analysis began at median age of 4.5 days. Positive screening results were mostly confirmed in specialised centres by analysis of organic acids in urine. Confirmation of a positive screening result usually did not start before the second week of life (median ages: 9.5 days [IVA], 9 days [GA-I], 8.5 days [PA, MMACBL]) and was completed early in the third week of life (median ages: 15 days [IVA, PA, MMA], 14.5 days [GA-I]). Treatment was initiated in GA-I and IVA at a median age of 14 days and in MMACBL and PA at a median age of 15 days. CONCLUSION NBS for organic acidurias in Europe is variable and less often established than for amino acid disorders. While for GA-I its benefit has already been demonstrated, there is room for debate of NBS for IVA and especially PA and MMACBL.
Collapse
|
94
|
Heringer J, Valayannopoulos V, Lund AM, Wijburg FA, Freisinger P, Barić I, Baumgartner MR, Burgard P, Burlina AB, Chapman KA, I Saladelafont EC, Karall D, Mühlhausen C, Riches V, Schiff M, Sykut-Cegielska J, Walter JH, Zeman J, Chabrol B, Kölker S. Impact of age at onset and newborn screening on outcome in organic acidurias. J Inherit Metab Dis 2016; 39:341-353. [PMID: 26689403 DOI: 10.1007/s10545-015-9907-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIM To describe current diagnostic and therapeutic strategies in organic acidurias (OADs) and to evaluate their impact on the disease course allowing harmonisation. METHODS Datasets of 567 OAD patients from the E-IMD registry were analysed. The sample includes patients with methylmalonic (MMA, n = 164), propionic (PA, n = 144) and isovaleric aciduria (IVA, n = 83), and glutaric aciduria type 1 (GA1, n = 176). Statistical analysis included description and recursive partitioning of diagnostic and therapeutic strategies, and odds ratios (OR) for health outcome parameters. For some analyses, symptomatic patients were divided into those presenting with first symptoms during (i.e. early onset, EO) or after the newborn period (i.e. late onset, LO). RESULTS Patients identified by newborn screening (NBS) had a significantly lower median age of diagnosis (8 days) compared to the LO group (363 days, p < 0.001], but not compared to the EO group. Of all OAD patients 71 % remained asymptomatic until day 8. Patients with cobalamin-nonresponsive MMA (MMA-Cbl(-)) and GA1 identified by NBS were less likely to have movement disorders than those diagnosed by selective screening (MMA-Cbl(-): 10 % versus 39 %, p = 0.002; GA1: 26 % versus 73 %, p < 0.001). For other OADs, the clinical benefit of NBS was less clear. Reported age-adjusted intake of natural protein and calories was significantly higher in LO patients than in EO patients reflecting different disease severities. Variable drug combinations, ranging from 12 in MMA-Cbl(-) to two in isovaleric aciduria, were used for maintenance treatment. The effects of specific metabolic treatment strategies on the health outcomes remain unclear because of the strong influences of age at onset (EO versus LO), diagnostic mode (NBS versus selective screening), and the various treatment combinations used. CONCLUSIONS NBS is an effective intervention to reduce time until diagnosis especially for LO patients and to prevent irreversible cerebral damage in GA1 and MMA-Cbl(-). Huge diversity of therapeutic interventions hampers our understanding of optimal treatment.
Collapse
MESH Headings
- Adolescent
- Adult
- Age of Onset
- Amino Acid Metabolism, Inborn Errors/metabolism
- Amino Acid Metabolism, Inborn Errors/pathology
- Amino Acid Transport Disorders, Inborn/metabolism
- Amino Acid Transport Disorders, Inborn/pathology
- Brain Diseases, Metabolic/metabolism
- Brain Diseases, Metabolic/pathology
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Child
- Child, Preschool
- Female
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Infant
- Infant, Newborn
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Male
- Metabolic Diseases/metabolism
- Metabolic Diseases/pathology
- Methylmalonic Acid/metabolism
- Middle Aged
- Neonatal Screening/methods
- Vitamin B 12/metabolism
- Young Adult
Collapse
Affiliation(s)
- Jana Heringer
- Department of General Pediatrics, Division of Neuropediatrics and Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Vassili Valayannopoulos
- Assistance Publique-Hôpitaux de Paris, Centre de Référence de Maladies Métaboliques (MaMEA), Hôpital Universitaire Necker-Enfants Malades and Insitut MAGINE, Paris, France
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frits A Wijburg
- Department of Pediatrics, Academic Medical Center, Amsterdam, Netherlands
| | - Peter Freisinger
- Klinikum am Steinenberg, Klinik für Kinder- und Jugendmedizin, Reutlingen, Germany
| | - Ivo Barić
- School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Peter Burgard
- Department of General Pediatrics, Division of Neuropediatrics and Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | - Kimberly A Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Chris Mühlhausen
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Victoria Riches
- Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, APHP, University Paris-Diderot and INSERM U1141, Robert-Debré Hospital, Paris, France
| | | | - John H Walter
- Willink Biochemical Genetics Unit, Genetic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Stefan Kölker
- Department of General Pediatrics, Division of Neuropediatrics and Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
95
|
Occurrence of subdural hematomas in Dutch glutaric aciduria type 1 patients. Eur J Pediatr 2016; 175:1001-6. [PMID: 27246831 PMCID: PMC4908155 DOI: 10.1007/s00431-016-2734-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 10/31/2022]
Abstract
UNLABELLED Patients with glutaric aciduria type 1 (GA1), a rare inherited metabolic disorder, have an increased risk for subdural hematomas (SDHs). GA1 is therefore generally included in the differential diagnosis of children presenting with SDHs. This retrospective cohort study reviews all 25 registered, in the Dutch Diagnosis Registration for Metabolic Disorders, GA1 patients in the Netherlands. This was done between May 2014 and November 2014 to determine the lifetime incidence of SDHs in this population. Seventeen patients were diagnosed either due to clinical symptoms or because of family members with GA1. One out of these 17 had a SDH. This patient showed widened Sylvian fissures on MRI, characteristic for GA1. Eight patients were diagnosed by newborn screening. Three of them had neuroimaging results, and none of them had SDHs. This study shows an overall lower incidence (4.0 %) of SDHs in patients with GA1 than reported in the literature (20-30 %). CONCLUSION This finding, in combination with the fact that SDHs in GA1 appear to occur only in the presence of characteristic brain abnormalities on imaging, we recommend that GA1 should not routinely be a part of the differential diagnosis of children with unexplained SDHs in the absence of imaging characteristics suggestive of GA1. WHAT IS KNOWN • Glutaric aciduria type 1 is a rare metabolic disorder predisposing children to subdural hematoma development due to brain abnormalities. • Because of these subdural hematomas, glutaric aciduria type 1 testing is part of abusive head trauma work-up. What is new: • The overall subdural hematoma incidence in glutaric aciduria type 1 patients is much lower than previously reported and only occurs in case of predisposing brain abnormalities.
Collapse
|
96
|
Boy N, Heringer J, Haege G, Glahn EM, Hoffmann GF, Garbade SF, Kölker S, Burgard P. A cross-sectional controlled developmental study of neuropsychological functions in patients with glutaric aciduria type I. Orphanet J Rare Dis 2015; 10:163. [PMID: 26693825 PMCID: PMC4689061 DOI: 10.1186/s13023-015-0379-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/14/2015] [Indexed: 01/26/2023] Open
Abstract
Background Glutaric aciduria type I (GA-I) is an inherited metabolic disease due to deficiency of glutaryl-CoA dehydrogenase (GCDH). Cognitive functions are generally thought to be spared, but have not yet been studied in detail. Methods Thirty patients detected by newborn screening (n = 13), high-risk screening (n = 3) or targeted metabolic testing (n = 14) were studied for simple reaction time (SRT), continuous performance (CP), visual working memory (VWM), visual-motor coordination (Tracking) and visual search (VS). Dystonia (n = 13 patients) was categorized using the Barry-Albright-Dystonia Scale (BADS). Patients were compared with 196 healthy controls. Developmental functions of cognitive performances were analysed using a negative exponential function model. Results BADS scores correlated with speed tests but not with tests measuring stability or higher cognitive functions without time constraints. Developmental functions of GA-I patients significantly differed from controls for SRT and VS but not for VWM and showed obvious trends for CP and Tracking. Dystonic patients were slower in SRT and CP but reached their asymptote of performance similar to asymptomatic patients and controls in all tests. Asymptomatic patients did not differ from controls, except showing significantly better results in Tracking and a trend for slower reactions in visual search. Data across all age groups of patients and controls fitted well to a model of negative exponential development. Conclusions Dystonic patients predominantly showed motor speed impairment, whereas performance improved with higher cognitive load. Patients without motor symptoms did not differ from controls. Developmental functions of cognitive performances were similar in patients and controls. Performance in tests with higher cognitive demand might be preserved in GA-I, even in patients with striatal degeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0379-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolas Boy
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Jana Heringer
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Gisela Haege
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Esther M Glahn
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Georg F Hoffmann
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Sven F Garbade
- Faculty of Applied Psychology, SRH University of Applied Sciences, D-69123, Heidelberg, Germany.
| | - Stefan Kölker
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Peter Burgard
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
97
|
Zhang Y, Li H, Ma R, Mei L, Wei X, Liang D, Wu L. Clinical and molecular investigation in Chinese patients with glutaric aciduria type I. Clin Chim Acta 2015; 453:75-9. [PMID: 26656312 DOI: 10.1016/j.cca.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 11/28/2022]
Abstract
Glutaric aciduria type I (GA-I) is a rare autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH), leading to an abnormal metabolism of lysine, hydroxylysine and tryptophan. It results in accumulations of glutaric acid, 3-hydroxyglutaric acid and glutaconic acid. Clinical features include the sudden onset of encephalopathy, hypotonia and macrocephaly usually before age 18months. Here we report five cases of GA-I confirmed with mutation analysis. GCDH gene mutations were identified in all five probands with GA-I. Three of them had compound heterozygous mutations and two had homozygous mutations. Mutations of two alleles (c.334G>T and IVS11-11A>G) were novel and both of them were confirmed to be splice site mutations by reverse transcription PCR.
Collapse
Affiliation(s)
- Yanghui Zhang
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Haoxian Li
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Hunan Jiahui Genetics Hospital, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Ruiyu Ma
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Libin Mei
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Xianda Wei
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Hunan Jiahui Genetics Hospital, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Hunan Jiahui Genetics Hospital, 110 Xiangya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
98
|
Kölker S, Valayannopoulos V, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Boy SPN, Rasmussen MB, Burgard P, Chabrol B, Chakrapani A, Chapman K, Cortès I Saladelafont E, Couce ML, de Meirleir L, Dobbelaere D, Furlan F, Gleich F, González MJ, Gradowska W, Grünewald S, Honzik T, Hörster F, Ioannou H, Jalan A, Häberle J, Haege G, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, Murphy E, de Baulny HO, Ortez C, Pedrón CC, Pintos-Morell G, Pena-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Lund AM, Garcia-Cazorla A. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis 2015; 38:1059-74. [PMID: 25875216 DOI: 10.1007/s10545-015-9840-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The disease course and long-term outcome of patients with organic acidurias (OAD) and urea cycle disorders (UCD) are incompletely understood. AIMS To evaluate the complex clinical phenotype of OAD and UCD patients at different ages. RESULTS Acquired microcephaly and movement disorders were common in OAD and UCD highlighting that the brain is the major organ involved in these diseases. Cardiomyopathy [methylmalonic (MMA) and propionic aciduria (PA)], prolonged QTc interval (PA), optic nerve atrophy [MMA, isovaleric aciduria (IVA)], pancytopenia (PA), and macrocephaly [glutaric aciduria type 1 (GA1)] were exclusively found in OAD patients, whereas hepatic involvement was more frequent in UCD patients, in particular in argininosuccinate lyase (ASL) deficiency. Chronic renal failure was often found in MMA, with highest frequency in mut(0) patients. Unexpectedly, chronic renal failure was also observed in adolescent and adult patients with GA1 and ASL deficiency. It had a similar frequency in patients with or without a movement disorder suggesting different pathophysiology. Thirteen patients (classic OAD: 3, UCD: 10) died during the study interval, ten of them during the initial metabolic crisis in the newborn period. Male patients with late-onset ornithine transcarbamylase deficiency were presumably overrepresented in the study population. CONCLUSIONS Neurologic impairment is common in OAD and UCD, whereas the involvement of other organs (heart, liver, kidneys, eyes) follows a disease-specific pattern. The identification of unexpected chronic renal failure in GA1 and ASL deficiency emphasizes the importance of a systematic follow-up in patients with rare diseases.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Alberto B Burlina
- Azienda Ospedaliera di Padova, U.O.C. Malattie Metaboliche Ereditarie, Padova, Italy
| | | | - Frits A Wijburg
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Jiri Zeman
- First Faculty of Medicine Charles University and General University of Prague, Prague, Czech Republic
| | - Carlo Dionisi-Vici
- Ospedale Pediatrico Bambino Gésu, U.O.C. Patologia Metabolica, Rome, Italy
| | - Ivo Barić
- School of Medicine University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Daniela Karall
- Medical University of Innsbruck, Clinic for Pediatrics I, Inherited Metabolic Disorders, Innsbruck, Austria
| | - Jean-Baptiste Arnoux
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Paula Avram
- Institute of Mother and Child Care "Alfred Rusescu", Bucharest, Romania
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, 8032, Zurich, Switzerland
| | | | - S P Nikolas Boy
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Marlene Bøgehus Rasmussen
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Kimberly Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Hôpital Jeanne de Flandre, Lille, France
| | - Francesca Furlan
- Azienda Ospedaliera di Padova, U.O.C. Malattie Metaboliche Ereditarie, Padova, Italy
| | - Florian Gleich
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | | | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Grünewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Tomas Honzik
- First Faculty of Medicine Charles University and General University of Prague, Prague, Czech Republic
| | - Friederike Hörster
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Hariklea Ioannou
- 1st Pediatric Department, Metabolic Laboratory, General Hospital of Thessaloniki 'Hippocration', Thessaloniki, Greece
| | - Anil Jalan
- N.I.R.M.A.N., Om Rachna Society, Vashi, Navi Mumbai, Mumbai, India
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, 8032, Zurich, Switzerland
| | - Gisela Haege
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Eveline Langereis
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Diego Martinelli
- Ospedale Pediatrico Bambino Gésu, U.O.C. Patologia Metabolica, Rome, Italy
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto City, Japan
| | - Chris Mühlhausen
- Universitätsklinikum Hamburg-Eppendorf, Klinik für Kinder- und Jugendmedizin, Hamburg, Germany
| | - Elaine Murphy
- National Hospital for Neurology and Neurosurgery, Charles Dent Metabolic Unit, London, UK
| | | | - Carlos Ortez
- Hospital San Joan de Deu, Servicio de Neurologia and CIBERER, ISCIII, Barcelona, Spain
| | - Consuelo C Pedrón
- Department of Pediatrics, Metabolic Diseases Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Guillem Pintos-Morell
- Department of Pediatrics, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | | | | | - Esmeralda Rodrigues
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Sabine Scholl-Bürgi
- Medical University of Innsbruck, Clinic for Pediatrics I, Inherited Metabolic Disorders, Innsbruck, Austria
| | - Etienne Sokal
- Cliniques Universitaires St Luc, Université Catholique de Louvain, Service Gastroentérologie and Hépatologie Pédiatrique, Bruxelles, Belgium
| | - Marshall L Summar
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Nicholas Thompson
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, United Kingdom
| | | | - John H Walter
- Manchester Academic Health Science Centre, University of Manchester, Willink Biochemical Genetics Unit, Genetic Medicine, Manchester, UK
| | - Monique Williams
- Erasmus MC-Sophia Kinderziekenhuis, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
99
|
Kölker S, Garcia-Cazorla A, Valayannopoulos V, Lund AM, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Augoustides-Savvopoulou P, Aksglaede L, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Chabrol B, Chakrapani A, Chapman K, I Saladelafont EC, Couce ML, de Meirleir L, Dobbelaere D, Dvorakova V, Furlan F, Gleich F, Gradowska W, Grünewald S, Jalan A, Häberle J, Haege G, Lachmann R, Laemmle A, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, de Baulny HO, Ortez C, Peña-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Staufner C, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Burgard P. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis 2015; 38:1041-57. [PMID: 25875215 DOI: 10.1007/s10545-015-9839-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The clinical presentation of patients with organic acidurias (OAD) and urea cycle disorders (UCD) is variable; symptoms are often non-specific. AIMS/METHODS To improve the knowledge about OAD and UCD the E-IMD consortium established a web-based patient registry. RESULTS We registered 795 patients with OAD (n = 452) and UCD (n = 343), with ornithine transcarbamylase (OTC) deficiency (n = 196), glutaric aciduria type 1 (GA1; n = 150) and methylmalonic aciduria (MMA; n = 149) being the most frequent diseases. Overall, 548 patients (69 %) were symptomatic. The majority of them (n = 463) presented with acute metabolic crisis during (n = 220) or after the newborn period (n = 243) frequently demonstrating impaired consciousness, vomiting and/or muscular hypotonia. Neonatal onset of symptoms was most frequent in argininosuccinic synthetase and lyase deficiency and carbamylphosphate 1 synthetase deficiency, unexpectedly low in male OTC deficiency, and least frequently in GA1 and female OTC deficiency. For patients with MMA, propionic aciduria (PA) and OTC deficiency (male and female), hyperammonemia was more severe in metabolic crises during than after the newborn period, whereas metabolic acidosis tended to be more severe in MMA and PA patients with late onset of symptoms. Symptomatic patients without metabolic crises (n = 94) often presented with a movement disorder, mental retardation, epilepsy and psychiatric disorders (the latter in UCD only). CONCLUSIONS The initial presentation varies widely in OAD and UCD patients. This is a challenge for rapid diagnosis and early start of treatment. Patients with a sepsis-like neonatal crisis and those with late-onset of symptoms are both at risk of delayed or missed diagnosis.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | | | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Frits A Wijburg
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Carlo Dionisi-Vici
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Ivo Barić
- School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jean-Baptiste Arnoux
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Paula Avram
- Institute of Mother and Child Care "Alfred Rusescu", Bucharest, Romania
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | | | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Kimberly Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Hôpital Jeanne de Flandre, Lille, France
| | - Veronika Dvorakova
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Francesca Furlan
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | - Florian Gleich
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Grünewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Anil Jalan
- N.I.R.M.A.N., Om Rachna Society, Vashi, Navi Mumbai, Mumbai, India
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Gisela Haege
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander Laemmle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Eveline Langereis
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Diego Martinelli
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto City, Japan
| | - Chris Mühlhausen
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carlos Ortez
- Servicio de Neurologia and CIBERER, ISCIII, Hospital San Joan de Deu, Barcelona, Spain
| | - Luis Peña-Quintana
- Hospital Universitario Materno-Infantil de Canarias, Unit of Pediatric Gastroenterology, Hepatology and Nutrition, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Esmeralda Rodrigues
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Etienne Sokal
- Service Gastroentérologie and Hépatologie Pédiatrique, Cliniques Universitaires St Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Christian Staufner
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marshall L Summar
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Nicholas Thompson
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | | | - John H Walter
- Manchester Academic Health Science Centre, Willink Biochemical Genetics Unit, Genetic Medicine, University of Manchester, Manchester, UK
| | - Monique Williams
- Erasmus MC-Sophia Kinderziekenhuis, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
100
|
Mohammad SA, Abdelkhalek HS, Ahmed KA, Zaki OK. Glutaric aciduria type 1: neuroimaging features with clinical correlation. Pediatr Radiol 2015; 45:1696-705. [PMID: 26111870 DOI: 10.1007/s00247-015-3395-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/16/2015] [Accepted: 05/20/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glutaric aciduria type 1 is a rare neurometabolic disease with high morbidity. OBJECTIVE To describe the MR imaging abnormalities in glutaric aciduria type 1 and to identify any association between the clinical and imaging features. MATERIALS AND METHODS MRI scans of 29 children (mean age: 16.9 months) with confirmed diagnosis of glutaric aciduria type 1 were retrospectively reviewed. Gray matter and white matter scores were calculated based on a previously published pattern-recognition approach of assessing leukoencephalopathies. Hippocampal formation and opercular topography were assessed in relation to the known embryological basis. MRI scores were correlated with morbidity score. RESULTS The most consistent MRI abnormality was widened operculum with dilatation of the subarachnoid spaces surrounding underdeveloped frontotemporal lobes. Incomplete hippocampal inversion was also seen. The globus pallidus was the most frequently involved gray matter structure (86%). In addition to the central tegmental tract, white matter abnormalities preferentially involved the central and periventricular regions. The morbidity score correlated with the gray matter abnormality score (P = 0.004). Patients with dystonia had higher gray matter and morbidity scores. CONCLUSION Morbidity is significantly correlated with abnormality of gray matter, rather than white matter, whether secondary to acute encephalopathic crisis or insidious onset disease.
Collapse
Affiliation(s)
- Shaimaa Abdelsattar Mohammad
- Department of Radiodiagnosis, Faculty of Medicine, Ain-Shams University, 9 Ain-Shams university staff buildings, Lotfi Elsayed St., Cairo, Egypt, 11657.
| | - Heba Salah Abdelkhalek
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Khaled A Ahmed
- Department of Radiodiagnosis, Faculty of Medicine, Ain-Shams University, 9 Ain-Shams university staff buildings, Lotfi Elsayed St., Cairo, Egypt, 11657
| | - Osama K Zaki
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|