51
|
Webster CM, Mittal N, Dhurandhar EJ, Dhurandhar NV. Potential contributors to variation in weight-loss response to liraglutide. Obes Rev 2023:e13568. [PMID: 37069131 DOI: 10.1111/obr.13568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Obesity treatment requires a chronic state of negative energy balance. Obesity medications can help with this, increasing long-term dietary compliance by promoting satiety or reducing hunger. However, efficacy and safety of obesity medications vary for individuals. Early identification of non-responders to obesity medications may limit drug exposure while optimizing benefits for responders. This review summarizes factors that impact weight-loss response to liraglutide. Factors linked to greater weight loss on liraglutide include being female, not having diabetes, having relatively high baseline weight, and losing at least 4% of initial weight after 16 weeks of treatment. Other covariates that may predict treatment response but require further confirmation include central effects, nausea, gastric emptying of solids, and genotype. Baseline body mass index, race, and age seem less relevant for predicting weight-loss response to liraglutide. Lesser known and harder-to-measure factors such as cerebral blood flow, food cue reactivity, gut hormone levels, and dietary adherence possibly impact variability of response to liraglutide. This information should assist healthcare providers with establishing realistic weight-loss probability for individual patients. Future research should improve the ability to identify responders to liraglutide. Importantly, this review may provide a framework to identify responders to other obesity medications.
Collapse
Affiliation(s)
- Chelsi M Webster
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Neha Mittal
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - Nikhil V Dhurandhar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
52
|
Zhang Q, Bai Y, Wang W, Li J, Zhang L, Tang Y, Yue S. Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116127. [PMID: 36603782 DOI: 10.1016/j.jep.2022.116127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is a common metabolic dysfunction disease, which is highly correlated with the homeostasis of gut microbiota (GM). The dysregulation of GM on energy metabolism, immune response, insulin resistance and endogenous metabolites (e.g., short chain fatty acids and secondary bile acids) can affect the occurrence and development of obesity. Herbal medicine (HM) has particular advantages and definite therapeutic effects in the prevention and treatment of obesity, but its underlying mechanism is not fully clear. AIM OF THE STUDY In this review, the representative basic and clinical anti-obesity studies associated with the homeostasis of GM regulated by HM including active components, single herb and herbal formulae were summarized and discussed. We aim to provide a state of art reference for the mechanism research of HM in treating obesity and the further development of new anti-obesity drugs. MATERIALS AND METHODS The relevant information was collected by searching keywords (obesity, herbal medicine, prescriptions, mechanism, GM, short chain fatty acids, etc.) from scientific databases (CNKI, PubMed, SpringerLink, Web of Science, SciFinder, etc.). RESULTS GM dysbiosis did occur in obese patients and mice, whiles the intervention of GM could ameliorate the condition of obesity. HM (e.g., berberine, Ephedra sinica, Rehjnannia glutinosa, and Buzhong Yiqi prescription) has been proved to possess a certain regulation on GM and an explicit effect on obesity, but the exact mechanism of HM in improving obesity by regulating GM remains superficial. CONCLUSION GM is involved in HM against obesity, and GM can be a novel therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yaya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Jiajia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu Province, China.
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
53
|
Walmsley R, Sumithran P. Current and emerging medications for the management of obesity in adults. Med J Aust 2023; 218:276-283. [PMID: 36934408 PMCID: PMC10952877 DOI: 10.5694/mja2.51871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/20/2023]
Affiliation(s)
| | - Priya Sumithran
- University of MelbourneMelbourneVIC
- Austin HealthMelbourneVIC
| |
Collapse
|
54
|
Jensterle M, Ferjan S, Ležaič L, Sočan A, Goričar K, Zaletel K, Janez A. Semaglutide delays 4-hour gastric emptying in women with polycystic ovary syndrome and obesity. Diabetes Obes Metab 2023; 25:975-984. [PMID: 36511825 DOI: 10.1111/dom.14944] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
AIM To evaluate the effect of once-weekly subcutaneous semaglutide 1.0 mg on the late digestive period of gastric emptying (GE) after ingestion of a standardized solid test meal by using technetium scintigraphy, the reference method for this purpose. METHODS We conducted a single-blind, placebo-controlled trial in 20 obese women with polycystic ovary syndrome (PCOS; mean [range] age 35 [32.3-40.8] years, body mass index 37 [30.7-39.8] kg/m2 ) randomized to subcutaneous semaglutide 1.0 mg once weekly or placebo for 12 weeks. GE was assessed after ingestion of [99mT c] colloid in a pancake labelled with radiopharmaceutical by scintigraphy using sequential static imaging and dynamic acquisition at baseline and at Week 13. Estimation of GE was obtained by repeated imaging of remaining [99mT c] activity at fixed time intervals over the course of 4 hours after ingestion. RESULTS From baseline to the study end, semaglutide increased the estimated retention of gastric contents by 3.5% at 1 hour, 25.5% at 2 hours, 38.0% at 3 hours and 30.0% at 4 hours after ingestion of the radioactively labelled solid meal. Four hours after ingestion, semaglutide retained 37% of solid meal in the stomach compared to no gastric retention in the placebo group (P = 0.002). Time taken for half the radiolabelled meal to empty from the stomach was significantly longer in the semaglutide group than the placebo group (171 vs. 118 min; P < 0.001). CONCLUSION Semaglutide markedly delayed 4-hour GE in women with PCOS and obesity.
Collapse
Affiliation(s)
- Mojca Jensterle
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simona Ferjan
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Ležaič
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aljaž Sočan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Zaletel
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Andrej Janez
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
55
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
56
|
Hurley MM, Smith KR, Harris C, Goodman EJ, Carnell S, Kamath V, Moran TH, Steele KE. Investigating relationships between post-prandial gut hormone responses and taste liking ratings prior to and following bariatric surgery: a pilot study. Int J Obes (Lond) 2022; 46:2114-2119. [PMID: 36045151 PMCID: PMC10805172 DOI: 10.1038/s41366-022-01214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Alterations in gut hormone secretion and reported changes in taste preferences have been suggested to contribute to the weight-reducing effects of bariatric surgery. However, a link between changes in gut hormone secretion and taste preferences following bariatric surgery has yet to be elucidated. METHODS Here we examined the potential relationships between gut hormone responses (GLP-1 and PYY3-36 peak, ghrelin trough) to a test meal of Ensure and liking ratings for taste mixtures varying in sugar and fat content before and following bariatric surgery (vertical sleeve gastrectomy (VSG): N = 4; Roux-en Y gastric bypass (RYGB): N = 8). RESULTS Significant increases in GLP-1 and PYY3-36 peak and a significant drop in ghrelin trough were observed following surgery. Pre- and postoperation, patients with higher postprandial GLP-1 or PYY3-36 peaks gave lower liking ratings for mixtures containing a combination of fat and sugar (half and half + 20% added sugar) whereas, for the combined surgery analyses, no relationships were found with solutions comprised of high fat (half and half + 0% sugar), predominantly high sugar (skim milk + 20% added sugar), or low fat and low sugar (skim milk + 0% added sugar). Within the RYGB patients, patients with the greatest increase in postprandial GLP-1 peak from preoperation to postoperation also demonstrated the greatest decrease in liking for half & half + 20% added sugar and skim milk + 20% added sugar, but not the unsweetened version of each solution. No pre- or postoperative relationship between ghrelin and liking ratings were observed. CONCLUSION Gut hormone responses following bariatric surgery may contribute to taste processing of sugar+fat mixtures and together influence weight loss.
Collapse
Affiliation(s)
- Matthew M Hurley
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Civonnia Harris
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan J Goodman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Division of Medical Psychology, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
57
|
Nicolau J, Pujol A, Tofé S, Bonet A, Gil A. SHORT TERM EFFECTS OF SEMAGLUTIDE ON EMOTIONAL EATING AND OTHER ABNORMAL EATING PATTERNS AMONG SUBJECTS LIVING WITH OBESITY. Physiol Behav 2022; 257:113967. [PMID: 36162525 DOI: 10.1016/j.physbeh.2022.113967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Emotional eating (EE) and other abnormal eating patterns are highly prevalent among people living with obesity (PWO). In this sense, semaglutide, by acting on areas of the brain involved in the reward system and emotion regulation, could have the potential to ameliorate these eating patterns. METHOD 69 PWO attending an obesity clinic were evaluated baseline and after 3 months since the beginning of semaglutide. To rule out abnormal EE, the Emotional Eating Questionnaire was administered, and a structured interview was conducted. RESULTS 69 PWO (82.6%♀, 43.7±1years, and 34.3±6kg/m 2) were included. After 3 months of semaglutide, there was a significant reduction in weight (96.1±20.9 vs 91.3±19.7kg; p<0.001) and BMI (34.3±6 vs 32.4±5.6kg/m 2; p<0.0001). The proportion of patients with EE (72.5% vs 11.5%; p<0.001), external eating (27.5% vs 10.1%; p<0.001) cravings (49.3% vs 21.7%; p<0.001) and savory cravings (53.6% vs 14.5%; p<0.001) was significantly reduced after 3 months of semaglutide. Also, the proportion of PWO with regular exercise was increased (15.9% vs 39.1%; p<0.001). However, Logistic regression analysis showed that only sweet cravings at baseline were the only factor associated, although not significant, with a poorer weight loss (p=0.05). DISCUSSION Semaglutide is an effective weight-loss treatment in PWO at short term. Moreover, semaglutide was highly effective in ameliorating EE and other abnormal eating patterns that exert a negative influence on weight.
Collapse
Affiliation(s)
- Joana Nicolau
- Endocrinology and Nutrition Department, Hospital Universitario Son Llàtzer. Health Research Institute of the Balearic Islands (IdISBa) .Ctra Manacor km 4, 07198 Palma de Mallorca, Baleares, Spain; Clínica Rotger (Grupo Quirón). Via Roma,3. 07012 Palma de Mallorca, Baleares Spain.
| | - Antelm Pujol
- Endocrinology and Nutrition Department, Hospital Universitario Son Llàtzer. Health Research Institute of the Balearic Islands (IdISBa) .Ctra Manacor km 4, 07198 Palma de Mallorca, Baleares, Spain
| | - Santiago Tofé
- Clínica Juaneda (Grupo Juaneda). Palma de Mallorca; Servicio de Endocrinología y Nutrición. Hospital Universitario Son Espases. Palma de Mallorca
| | - Aina Bonet
- Clínica Rotger (Grupo Quirón). Via Roma,3. 07012 Palma de Mallorca, Baleares Spain
| | - Apolonia Gil
- Clínica Rotger (Grupo Quirón). Via Roma,3. 07012 Palma de Mallorca, Baleares Spain
| |
Collapse
|
58
|
Maselli D, Atieh J, Clark MM, Eckert D, Taylor A, Carlson P, Burton DD, Busciglio I, Harmsen WS, Vella A, Acosta A, Camilleri M. Effects of liraglutide on gastrointestinal functions and weight in obesity: A randomized clinical and pharmacogenomic trial. Obesity (Silver Spring) 2022; 30:1608-1620. [PMID: 35894080 PMCID: PMC9335902 DOI: 10.1002/oby.23481] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aimed to determine the effects of a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist, liraglutide, and placebo subcutaneously over 16 weeks on weight and gastric functions and to evaluate associations of single-nucleotide polymorphisms in GLP1R (rs6923761) and TCF7L2 (rs7903146) with effects of liraglutide. METHODS The study conducted a randomized, parallel-group, placebo-controlled, 16-week trial of liraglutide, escalated to 3 mg subcutaneously daily in 136 otherwise healthy adults with obesity. Weight, gastric emptying of solids (GES), gastric volumes, satiation, and body composition measured at baseline and after treatment were compared in two treatment groups using analysis of covariance. RESULTS Liraglutide (n = 59) and placebo (n = 65) groups completed treatment. Relative to placebo, liraglutide increased weight loss at 5 and 16 weeks (both p < 0.05), slowed time to half GES (T1/2 ) at 5 and 16 weeks (both p < 0.001), and increased fasting gastric volume (p = 0.01) and satiation (p < 0.01) at 16 weeks. GES T1/2 was positively correlated with weight loss on liraglutide (both p < 0.001). After 16 weeks of liraglutide, GLP1R rs6923761 (AG/AA vs. GG) was associated with reduced percent body fat (p = 0.062), and TCF7L2 rs7903146 (CC vs. CT/TT) was associated with lower body weight (p = 0.015). CONCLUSIONS Liraglutide, 3 mg, induces weight loss with delay in GES T1/2 and reduces calorie intake. Slowing GES and variations in GLP1R and TCF7L2 are associated with liraglutide effects in obesity.
Collapse
Affiliation(s)
- Daniel Maselli
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Atieh
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew M Clark
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ann Taylor
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Duane D Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Irene Busciglio
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - W Scott Harmsen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Adrian Vella
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
59
|
Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022; 133:155217. [PMID: 35584732 PMCID: PMC9107388 DOI: 10.1016/j.metabol.2022.155217] [Citation(s) in RCA: 485] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022]
Abstract
The WHO just released in May 2022 a report on the state of the obesity pandemic in Europe, stating that 60% of citizens in the area of Europe are either overweight or obese, and highlighting the implications of the obesity pandemic, especially as it interacts with the COVID pandemic to create a twin pandemic, to increase morbidity and mortality. Obesity is a complex disease which has reached pandemic dimensions. The worldwide prevalence of obesity has nearly tripled since 1975, mainly due to the adoption of a progressively more sedentary lifestyle and the consumption of less healthy diets. We first report herein updated prevalence rates of overweight and obesity by sex, age, and region first in Europe, per the WHO report, and then worldwide between 1980 and 2019, as we analyze and present herein the data provided by the Global Burden of Disease Study. The prevalence of obesity is higher in women than in men of any age and the prevalence of both overweight and obesity increases with age and has reached their highest point between the ages of 50 to 65 years showing a slight downward trend afterwards. The age-standardized prevalence of obesity has increased from 4.6% in 1980 to 14.0% in 2019. The American and European region have the highest obesity prevalence and the USA and Russia are the countries with the most obese residents. Given dire implications in terms of comorbidities and mortality, these updated epidemiological findings call for coordinated actions from local and regional governments, the scientific community and individual patients alike, as well as the food industry for the obesity pandemic to be controlled and alleviated. We can hopefully learn from the COVID-19 pandemic, where collaborative efforts worldwide, focused intense work at both the local and global level and well-coordinated leadership have demonstrated that humankind is capable of amazing accomplishments by leveraging science and public health, and that we can finally make strides in terms of understanding and combating the obesity pandemic and its dire comorbidities including diabetes, NAFLD, CVD and obesity associated malignancies.
Collapse
Affiliation(s)
- Chrysoula Boutari
- Department of Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Slosberg-Landay SL-419, Boston, MA 02215, USA.
| |
Collapse
|
60
|
Piazzolla G, Vozza A, Volpe S, Bergamasco A, Triggiani V, Lisco G, Falconieri M, Tortorella C, Solfrizzi V, Sabbà C. Effectiveness and clinical benefits of new anti-diabetic drugs: A real life experience. Open Med (Wars) 2022; 17:1203-1215. [PMID: 35859794 PMCID: PMC9263895 DOI: 10.1515/med-2022-0504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
We evaluated the clinical impact, in daily clinical practice, of sodium-glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1RA) therapies in patients with type 2 diabetes. Data from 500 unselected consecutive patients were retrospectively analyzed. Only those with a full assessment at baseline (T0) and after 3 (T3), 6 (T6), and 12 (T12) months of treatment with SGLT2i or GLP1RA were included in the study (n = 167). At baseline, patients had a high mean body weight (BW), abdominal circumference (AC), body mass index (BMI), and HOMA index. Despite normal C-peptide values, 39 patients were being treated with insulin (up to 120 IU/day). During therapy, a progressive improvement in BW, BMI, and AC was observed with both the molecules. Fasting glucose and glycated Hb decrease was already significant at T3 in all patients, while the HOMA index selectively improved with SGLT2i therapy. Renal function parameters remained stable regardless of the drug used. Finally, SGLT2i reduced serum uric acid and improved the lipid profile, while GLP1RA reduced serum levels of liver enzymes. Both the therapeutic regimens allowed a significant reduction or complete suspension of unnecessary insulin therapies. Our real life data confirm the results obtained from randomized clinical trials and should be taken as a warning against inappropriate use of insulin in patients with preserved β-cell function.
Collapse
Affiliation(s)
- Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari, Piazza G. Cesare 11 , 70124 Bari , Italy
| | - Alfredo Vozza
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Sara Volpe
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Alessandro Bergamasco
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Michela Falconieri
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Cosimo Tortorella
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro,” School of Medicine , Bari , 70124 Bari , Italy
| |
Collapse
|
61
|
Sylivris A, Mesinovic J, Scott D, Jansons P. Body composition changes at 12 months following different surgical weight loss interventions in adults with obesity: A systematic review and meta-analysis of randomized control trials. Obes Rev 2022; 23:e13442. [PMID: 35257480 PMCID: PMC9286475 DOI: 10.1111/obr.13442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
To determine relative lean mass and fat mass changes in adults with obesity following surgical weight loss interventions, a systematic review and meta-analysis was conducted. The Cochrane Central Register of Controlled Trials, PubMed, Web of Science, EMBASE, and Scopus were screened for eligible studies. Inclusion criteria included randomized controlled trials (RCTs) performed in populations with obesity (body mass index ≥30 kg/m2 ) aged over 18 years, who underwent any type of bariatric surgery and reported body composition measures via dual-energy X-ray absorptiometry or bio-electrical impedance analysis. Authors conducted full text screening and determined that there were six RCTs eligible for inclusion, with data extracted at 12 months post-surgery. Meta-analysis revealed that, relative to gastric banding, Roux-en-Y gastric bypass (RYGB) led to greater total body mass loss (mean difference [MD]: -9.33 kg [95% CI: -12.10, -6.56]) and greater fat mass loss (MD: -8.86 kg [95% CI: -11.80, -5.93], but similar lean mass loss (MD: -0.55 kg [95% CI: -3.82, 2.71]. RYGB also led to similar changes in total body mass, fat mass, and lean mass compared with sleeve gastrectomy. RYGB results in greater 12-month weight and fat loss, but similar changes in lean mass, compared with gastric banding. Further RCTs comparing body composition changes following different bariatric surgery procedures are required.
Collapse
Affiliation(s)
- Amy Sylivris
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Paul Jansons
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
62
|
Iacobellis G, Baroni MG. Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat. J Endocrinol Invest 2022; 45:489-495. [PMID: 34643917 DOI: 10.1007/s40618-021-01687-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
Epicardial adipose tissue is a novel cardiovascular risk factor. It plays a role in the progression of coronary artery disease, heart failure and atrial fibrillation. Given its rapid metabolism, clinical measurability, and modifiability, epicardial fat works well as therapeutic target of drugs modulating the adipose tissue. Epicardial fat responds to glucagon-like peptide 1 receptor agonists (GLP1A) and sodium glucose co-transporter 2 inhibitors (SGLT2i). GLP-1A and SGLT2i provide weight loss and cardiovascular protective effects beyond diabetes control, as recently demonstrated. The potential of modulating the epicardial fat morphology and genetic profile with targeted pharmacological agents can open new avenues in the pharmacotherapy of diabetes and obesity, with particular focus on cardiovascular risk reduction.
Collapse
Affiliation(s)
- G Iacobellis
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, 1400 NW 10th Ave, Dominion Tower suite 805-807, Miami, FL, 33136, USA.
| | - M G Baroni
- Endocrinology and Diabetes, Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
63
|
Al-Alsheikh AS, Alabdulkader S, Johnson B, Goldstone AP, Miras AD. Effect of Obesity Surgery on Taste. Nutrients 2022; 14:866. [PMID: 35215515 PMCID: PMC8878262 DOI: 10.3390/nu14040866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity surgery is a highly efficacious treatment for obesity and its comorbidities. The underlying mechanisms of weight loss after obesity surgery are not yet fully understood. Changes to taste function could be a contributing factor. However, the pattern of change in different taste domains and among obesity surgery operations is not consistent in the literature. A systematic search was performed to identify all articles investigating gustation in human studies following bariatric procedures. A total of 3323 articles were identified after database searches, searching references and deduplication, and 17 articles were included. These articles provided evidence of changes in the sensory and reward domains of taste following obesity procedures. No study investigated the effect of obesity surgery on the physiological domain of taste. Taste detection sensitivity for sweetness increases shortly after Roux-en-Y gastric bypass. Additionally, patients have a reduced appetitive reward value to sweet stimuli. For the subgroup of patients who experience changes in their food preferences after Roux-en-Y gastric bypass or vertical sleeve gastrectomy, changes in taste function may be underlying mechanisms for changing food preferences which may lead to weight loss and its maintenance. However, data are heterogeneous; the potential effect dilutes over time and varies significantly between different procedures.
Collapse
Affiliation(s)
- Alhanouf S. Al-Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahd Alabdulkader
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Brett Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Alexander Dimitri Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
| |
Collapse
|
64
|
Schmidt S, Frandsen CS, Dejgaard TF, Vistisen D, Halldórsson T, Olsen SF, Jensen JEB, Madsbad S, Andersen HU, Nørgaard K. Liraglutide changes body composition and lowers added sugar intake in overweight persons with insulin pump-treated type 1 diabetes. Diabetes Obes Metab 2022; 24:212-220. [PMID: 34595827 DOI: 10.1111/dom.14567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
AIMS To present secondary outcome analyses of liraglutide treatment in overweight adults with insulin pump-treated type 1 diabetes (T1D), focusing on changes in body composition and dimensions, and to evaluate changes in food intake to identify potential dietary drivers of liraglutide-associated weight loss. MATERIALS AND METHODS A 26-week randomized placebo-controlled study was conducted to investigate the efficacy and safety of liraglutide 1.8 mg daily in 44 overweight adults with insulin pump-treated T1D and glucose levels above target, and demonstrated significant glycated haemoglobin (HbA1c)- and body weight-reducing effects. For secondary outcome analysis, dual X-ray absorptiometry scans were completed at Weeks 0 and 26, and questionnaire-based food frequency recordings were obtained at Weeks 0, 13 and 26 to characterize liraglutide-induced changes in body composition and food intake. RESULTS Total fat and lean body mass decreased in liraglutide-treated participants (fat mass -4.6 kg [95% confidence interval {CI} -5.7; -3.5], P < 0.001; lean mass -2.5 kg [95% CI -3.2;-1.7], P < 0.001), but remained stable in placebo-treated participants (fat mass -0.3 kg [95% CI -1.3;0.8], P = 0.604; lean mass 0.0 kg [95% CI -0.7;0.7]; P = 0.965 [between-group P values <0.001]). Participants reduced their energy intake numerically more in the liraglutide arm (-1.1 MJ [95% CI -2.0;-0.02], P = 0.02) than in the placebo arm (-0.9 MJ [95% CI -2.0;0.1], P = 0.22), but the between-group difference was statistically insignificant (P = 0.42). However, energy derived from added sugars decreased by 27% in the liraglutide arm compared with an increase of 14% in the placebo arm (P = 0.004). CONCLUSIONS Liraglutide lowered fat and lean body mass compared with placebo. Further, liraglutide reduced intake of added sugars. However, no significant difference in total daily energy intake was detected between liraglutide- and placebo-treated participants.
Collapse
Affiliation(s)
- Signe Schmidt
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Christian S Frandsen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Obstetrics and Gynecology, Rigshospitalet, Glostrup, Denmark
| | - Thomas F Dejgaard
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Centre for Clinical Metabolic Research, Copenhagen University Hospital Gentofte, Gentofte, Denmark
| | - Dorte Vistisen
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thórhallur Halldórsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sjudur F Olsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jens-Erik B Jensen
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik U Andersen
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kirsten Nørgaard
- Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
|
66
|
Jones B, Sands C, Alexiadou K, Minnion J, Tharakan G, Behary P, Ahmed AR, Purkayastha S, Lewis MR, Bloom S, Li JV, Tan TM. The Metabolomic Effects of Tripeptide Gut Hormone Infusion Compared to Roux-en-Y Gastric Bypass and Caloric Restriction. J Clin Endocrinol Metab 2022; 107:e767-e782. [PMID: 34460933 PMCID: PMC8764224 DOI: 10.1210/clinem/dgab608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/23/2022]
Abstract
CONTEXT The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY) are regulators of energy intake and glucose homeostasis and are thought to contribute to the glucose-lowering effects of bariatric surgery. OBJECTIVE To establish the metabolomic effects of a combined infusion of GLP-1, OXM, and PYY (tripeptide GOP) in comparison to a placebo infusion, Roux-en-Y gastric bypass (RYGB) surgery, and a very low-calorie diet (VLCD). DESIGN AND SETTING Subanalysis of a single-blind, randomized, placebo-controlled study of GOP infusion (ClinicalTrials.gov NCT01945840), including VLCD and RYGB comparator groups. PATIENTS AND INTERVENTIONS Twenty-five obese patients with type 2 diabetes or prediabetes were randomly allocated to receive a 4-week subcutaneous infusion of GOP (n = 14) or 0.9% saline control (n = 11). An additional 22 patients followed a VLCD, and 21 underwent RYGB surgery. MAIN OUTCOME MEASURES Plasma and urine samples collected at baseline and 4 weeks into each intervention were subjected to cross-platform metabolomic analysis, followed by unsupervised and supervised modeling approaches to identify similarities and differences between the effects of each intervention. RESULTS Aside from glucose, very few metabolites were affected by GOP, contrasting with major metabolomic changes seen with VLCD and RYGB. CONCLUSIONS Treatment with GOP provides a powerful glucose-lowering effect but does not replicate the broader metabolomic changes seen with VLCD and RYGB. The contribution of these metabolomic changes to the clinical benefits of RYGB remains to be elucidated.
Collapse
MESH Headings
- Adult
- Aged
- Blood Glucose/analysis
- Caloric Restriction/methods
- Caloric Restriction/statistics & numerical data
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diabetes Mellitus, Type 2/urine
- Drug Therapy, Combination/methods
- Female
- Gastric Bypass/methods
- Gastric Bypass/statistics & numerical data
- Gastrointestinal Hormones/administration & dosage
- Glucagon-Like Peptide 1/administration & dosage
- Humans
- Infusions, Subcutaneous
- Male
- Metabolomics/statistics & numerical data
- Middle Aged
- Obesity, Morbid/blood
- Obesity, Morbid/metabolism
- Obesity, Morbid/therapy
- Obesity, Morbid/urine
- Oxyntomodulin/administration & dosage
- Peptide YY/administration & dosage
- Single-Blind Method
- Treatment Outcome
- Weight Loss
- Young Adult
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Caroline Sands
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Preeshila Behary
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Stephen Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Correspondence: Tricia M. Tan, MB, ChB, BSc, PhD, FRCP, FRCPath, 6th Floor, Commonwealth Building, Hammersmith Campus, Imperial College London, London W12 0HS, UK.
| |
Collapse
|
67
|
Laurindo LF, Barbalho SM, Guiguer EL, da Silva Soares de Souza M, de Souza GA, Fidalgo TM, Araújo AC, de Souza Gonzaga HF, de Bortoli Teixeira D, de Oliveira Silva Ullmann T, Sloan KP, Sloan LA. GLP-1a: Going beyond Traditional Use. Int J Mol Sci 2022; 23:739. [PMID: 35054924 PMCID: PMC8775408 DOI: 10.3390/ijms23020739] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a human incretin hormone derived from the proglucagon molecule. GLP-1 receptor agonists are frequently used to treat type 2 diabetes mellitus and obesity. However, the hormone affects the liver, pancreas, brain, fat cells, heart, and gastrointestinal tract. The objective of this study was to perform a systematic review on the use of GLP-1 other than in treating diabetes. PubMed, Cochrane, and Embase were searched, and the PRISMA guidelines were followed. Nineteen clinical studies were selected. The results showed that GLP-1 agonists can benefit defined off-medication motor scores in Parkinson's Disease and improve emotional well-being. In Alzheimer's disease, GLP-1 analogs can improve the brain's glucose metabolism by improving glucose transport across the blood-brain barrier. In depression, the analogs can improve quality of life and depression scales. GLP-1 analogs can also have a role in treating chemical dependency, inhibiting dopaminergic release in the brain's reward centers, decreasing withdrawal effects and relapses. These medications can also improve lipotoxicity by reducing visceral adiposity and decreasing liver fat deposition, reducing insulin resistance and the development of non-alcoholic fatty liver diseases. The adverse effects are primarily gastrointestinal. Therefore, GLP-1 analogs can benefit other conditions besides traditional diabetes and obesity uses.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Gabriela Achete de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Thiago Marques Fidalgo
- Department of Psychiatry, Federal University of São Paulo, R. Sena Madureira 04021-001, SP, Brazil;
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Heron F. de Souza Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia, Marília 17525-902, SP, Brazil;
| | - Thais de Oliveira Silva Ullmann
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Katia Portero Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
| | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
68
|
Xie F, Shen J, Liu T, Zhou M, Johnston LJ, Zhao J, Zhang H, Ma X. Sensation of dietary nutrients by gut taste receptors and its mechanisms. Crit Rev Food Sci Nutr 2022; 63:5594-5607. [PMID: 34978220 DOI: 10.1080/10408398.2021.2021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nutrients sensing is crucial for fundamental metabolism and physiological functions, and it is also an essential component for maintaining body homeostasis. Traditionally, basic taste receptors exist in oral cavity to sense sour, sweet, bitter, umami, salty and et al. Recent studies indicate that gut can sense the composition of nutrients by activating relevant taste receptors, thereby exerting specific direct or indirect effects. Gut taste receptors, also named as intestinal nutrition receptors, including at least bitter, sweet and umami receptors, have been considered to be activated by certain nutrients and participate in important intestinal physiological activities such as eating behavior, intestinal motility, nutrient absorption and metabolism. Additionally, gut taste receptors can regulate appetite and body weight, as well as maintain homeostasis via targeting hormone secretion or regulating the gut microbiota. On the other hand, malfunction of gut taste receptors may lead to digestive disorders, and then result in obesity, type 2 diabetes and gastrointestinal diseases. At present, researchers have confirmed that the brain-gut axis may play indispensable roles in these diseases via the secretion of brain-gut peptides, but the mechanism is still not clear. In this review, we summarize the current observation of knowledge in gut taste systems in order to shed light on revealing their important nutritional functions and promoting clinical implications.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
69
|
Muzurović EM, Volčanšek Š, Tomšić KZ, Janež A, Mikhailidis DP, Rizzo M, Mantzoros CS. Glucagon-Like Peptide-1 Receptor Agonists and Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity/Metabolic Syndrome, Prediabetes/Diabetes and Non-Alcoholic Fatty Liver Disease-Current Evidence. J Cardiovasc Pharmacol Ther 2022; 27:10742484221146371. [PMID: 36546652 DOI: 10.1177/10742484221146371] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obesity pandemic is accompanied by increased risk of developing metabolic syndrome (MetS) and related conditions: non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and cardiovascular (CV) disease (CVD). Lifestyle, as well as an imbalance of energy intake/expenditure, genetic predisposition, and epigenetics could lead to a dysmetabolic milieu, which is the cornerstone for the development of cardiometabolic complications. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs promote positive effects on most components of the "cardiometabolic continuum" and consequently help reduce the need for polypharmacy. In this review, we highlight the main pathophysiological mechanisms and risk factors (RFs), that could be controlled by GLP-1 and dual GIP/GLP-1 RAs independently or through synergism or differences in their mode of action. We also address the evidence on the use of GLP-1 and dual GIP/GLP-1 RAs in the treatment of obesity, MetS and its related conditions (prediabetes, T2DM and NAFLD/NASH). In conclusion, GLP-1 RAs have already been established for the treatment of T2DM, obesity and cardioprotection in T2DM patients, while dual GIP/GLP-1 RAs appear to have the potential to possibly surpass them for the same indications. However, their use in the prevention of T2DM and the treatment of complex cardiometabolic metabolic diseases, such as NAFLD/NASH or other metabolic disorders, would benefit from more evidence and a thorough clinical patient-centered approach. There is a need to identify those patients in whom the metabolic component predominates, and whether the benefits outweigh any potential harm.
Collapse
Affiliation(s)
- Emir M Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.,Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Karin Zibar Tomšić
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom.,Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
70
|
van Ruiten CC, Veltman DJ, Nieuwdorp M, IJzerman RG. Brain Activation in Response to Low-Calorie Food Pictures: An Explorative Analysis of a Randomized Trial With Dapagliflozin and Exenatide. Front Endocrinol (Lausanne) 2022; 13:863592. [PMID: 35600575 PMCID: PMC9114766 DOI: 10.3389/fendo.2022.863592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Sodium-glucose cotransporter-2 inhibitors (SGLT2i) induce less weight loss than expected. This may be explained by SGLT2i-induced alterations in central reward and satiety circuits, contributing to increased appetite and food intake. This hyperphagia may be specific to high-calorie foods. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are associated with lower preferences for high-calorie foods, and with decreased activation in areas regulating satiety and reward in response to high-calorie food pictures, which may reflect this lower preference for energy-dense foods. To optimize treatment, we need a better understanding of how intake is controlled, and how [(un)healthy] food choices are made. The aim of the study was to investigate the effects of dapagliflozin, exenatide, and their combination on brain activation in response to low-calorie food pictures. METHODS We performed an exploratory analysis of a larger, 16-week, double-blind, randomized, placebo-controlled trial. Sixty-eight subjects with obesity and type 2 diabetes were randomized to dapagliflozin, exenatide, dapagliflozin plus exenatide, or double placebo. Using functional MRI, the effects of treatments on brain responses to low-calorie food pictures were assessed after 10 days and 16 weeks. RESULTS Dapagliflozin versus placebo decreased activity in response to low-calorie food pictures, in the caudate nucleus, insula, and amygdala after 10 days, and in the insula after 16 weeks. Exenatide versus placebo increased activation in the putamen in response to low-calorie food pictures after 10 days, but not after 16 weeks. Dapagliflozin plus exenatide versus placebo had no effect on brain responses, but after 10 days dapagliflozin plus exenatide versus dapagliflozin increased activity in the insula and amygdala in response to low-calorie food pictures. CONCLUSION Dapagliflozin decreased activation in response to low-calorie food pictures, which may reflect a specific decreased preference for low-calorie foods, in combination with the previously found increased activation in response to high-calorie foods, which may reflect a specific preference for high-calorie foods, and may hamper SGLT2i-induced weight loss. Exenatide treatment increased activation in response to low-calorie foods. Combination treatment may lead to more favorable brain responses to low-calorie food cues, as we observed that the dapagliflozin-induced decreased response to low-calorie food pictures had disappeared.
Collapse
Affiliation(s)
- Charlotte C. van Ruiten
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Vrije University Medical Center (VUmc), Amsterdam, Netherlands
- *Correspondence: Charlotte C. van Ruiten,
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam University Medical Center, Vrije University Medical Center (VUmc), Amsterdam, Netherlands
| | - Max Nieuwdorp
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Vrije University Medical Center (VUmc), Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center (AMC), Amsterdam, Netherlands
| | - Richard G. IJzerman
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Vrije University Medical Center (VUmc), Amsterdam, Netherlands
| |
Collapse
|
71
|
Wu W, Zhou Q, Yuan P, Qiao D, Deng S, Cheng H, Ren Y. A Novel Multiphase Modified Ketogenic Diet: An Effective and Safe Tool for Weight Loss in Chinese Obese Patients. Diabetes Metab Syndr Obes 2022; 15:2521-2534. [PMID: 35999869 PMCID: PMC9393022 DOI: 10.2147/dmso.s365192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of the present study was to investigate the effect and safety of a multiphase modified ketogenic diet (MMKD) compared to beinaglutide treatment or lifestyle modification (LM) alone on weight loss in obese patients in China. PATIENTS AND METHODS The present study was conducted in adults with obesity who did not have diabetes with two phases as follows: a 4-week run-in phase to guide diet and exercise, followed by a 12-week intervention phase aiming to lose weight. All participants performed aerobic and resistance exercise, and they were free to select any one of three weight-loss strategies as follows: LM group, 12 weeks of hypocaloric balanced diet (HBD); MMKD group, two cycles of a multiphase diet with each cycle comprised of 2 weeks of ketogenic diet (KD), 2 weeks of transition diet and 2 weeks of HBD; and beinaglutide group, 12 weeks of HBD plus daily injection of beinaglutide (0.4 mg per day). Body weight, body composition and metabolic variables were measured before and after the 12 weeks of treatment. RESULTS All intervention strategies had significant weight loss, and the MMKD led to greater weight loss than LM (difference, -3.7 kg; 95% confidence interval [CI], -6.1 to -1.4; P = 0.001) but not beinaglutide (difference, -1.5 kg; 95% CI, -4.3 to 1.3; P = 0.587). Waist circumference (WC), fat mass, body fat percentage (BFP) and visceral fat area (VFA) were also significantly decreased, and the MMKD had a greater effect on these parameters than LM or beinaglutide. In addition, significant reductions in blood pressure and homoeostatic model assessment of insulin resistance (HOMA-IR) were observed in all three groups, but the MMKD resulted in the most significant improvement in insulin resistance. Almost no adverse events, except for two cases of dizziness, were observed in the MMKD group, which was significantly fewer events than the other two groups. CONCLUSION These findings demonstrated that the MMKD is an effective and safe treatment for weight loss, thus providing an additional option for obese Chinese patients.
Collapse
Affiliation(s)
- Wenjun Wu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Correspondence: Wenjun Wu, Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi, People’s Republic of China, 214023, Tel +86 510 85351181, Fax +86 510 85737592, Email
| | - Qunyan Zhou
- Department of Clinical Nutrition, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Qunyan Zhou, Department of Clinical Nutrition, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi, People’s Republic of China, 214023, Tel +86 510 85350757, Fax +86 510 85737592, Email
| | - Peng Yuan
- Department of Rehabilitation Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Dan Qiao
- Department of Clinical Nutrition, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Shukun Deng
- Department of Rehabilitation Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Haiyan Cheng
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Ye Ren
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| |
Collapse
|
72
|
Abstract
Obesity is a chronic, relapsing, and multifactorial disease, with a rising prevalence and an associated high economic burden. Achieving successful and sustained weight loss outcomes with current interventions is challenging. This is due, at least in part, to the disease's heterogenous pathophysiology that is yet to be completely understood. Technological advances and greater capabilities for the extraction and storage of information have facilitated the application of precision medicine. Several precision medicine initiatives have been proposed to improve obesity outcomes. Most of these initiatives are based on -omics technologies. Although the data generated from these technologies have led to developing hypotheses that may explain the underpinnings of obesity, their applicability to the clinical practice is yet to be determined. There are other initiatives that have identified quantitative or qualitative physiologic traits that can be targeted and that could have a more immediate clinical impact. This review aims to provide a perspective of current initiatives for precision medicine for obesity.
Collapse
|
73
|
Jensterle M, DeVries JH, Battelino T, Battelino S, Yildiz B, Janez A. Glucagon-like peptide-1, a matter of taste? Rev Endocr Metab Disord 2021; 22:763-775. [PMID: 33123893 DOI: 10.1007/s11154-020-09609-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
Abstract
Understanding of gustatory coding helps to predict, and perhaps even modulate the ingestive decision circuitry, especially when eating behaviour becomes dysfunctional. Preclinical research demonstrated that glucagon like peptide 1 (GLP-1) is locally synthesized in taste bud cells in the tongue and that GLP-1 receptor exists on the gustatory nerves in close proximity to GLP-1 containing taste bud cells. In humans, the tongue has not yet been addressed as clinically relevant target for GLP-1 based therapies. The primary aim of the current review was to elaborate on the role of GLP- 1 in mammalian gustatory system, in particular in the perception of sweet. Secondly, we aimed to explore what modulates gustatory coding and whether the GLP-1 based therapies might be involved in regulation of taste perception. We performed a series of PubMed, Medline and Embase databases systemic searches. The Population-Intervention-Comparison-Outcome (PICO) framework was used to identify interventional studies. Based on the available data, GLP-1 is specifically involved in the perception of sweet. Aging, diabetes and obesity are characterized by diminished taste and sweet perception. Calorie restriction and bariatric surgery are associated with a diminished appreciation of sweet food. GLP-1 receptor agonists (RAs) modulate food preference, yet its modulatory potential in gustatory coding is currently unknown. Future studies should explore whether GLP-1 RAs modulate taste perception to the extent that changes of food preference and consumption ensue.
Collapse
Affiliation(s)
- Mojca Jensterle
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta, 7, 1000, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - J Hans DeVries
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bulent Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Hacettepe, 06100, Ankara, Turkey
| | - Andrej Janez
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta, 7, 1000, Ljubljana, Slovenia.
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, Zaloška cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
74
|
Quast DR, Nauck MA, Schenker N, Menge BA, Kapitza C, Meier JJ. Macronutrient intake, appetite, food preferences and exocrine pancreas function after treatment with short- and long-acting glucagon-like peptide-1 receptor agonists in type 2 diabetes. Diabetes Obes Metab 2021; 23:2344-2353. [PMID: 34189834 DOI: 10.1111/dom.14477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 12/20/2022]
Abstract
AIM To clarify the distinct effects of a long-acting (liraglutide) and a short-acting (lixisenatide) glucagon-like peptide-1 receptor agonist (GLP-1 RA) on macronutrient intake, gastrointestinal side effects and pancreas function. MATERIALS AND METHODS Fifty participants were randomized to either lixisenatide or liraglutide for a treatment period of 10 weeks. Appetite, satiety, macronutrient intake, gastrointestinal symptoms and variables related to pancreatic function and gastric emptying were assessed at baseline and after treatment. RESULTS Both GLP-1 RAs reduced macronutrient intake similarly. Weight loss and appetite reduction were not related to the delay in gastric emptying or gastrointestinal side effects (P > .05). Lipase increased significantly with liraglutide treatment (by 18.3 ± 4.1 U/L; P = .0001), but not with lixisenatide (-1.8 ± 2.4 U/L; P = .46). Faecal elastase and serum ß-carotin levels (indicators for exocrine pancreas function) improved in both groups (P < .05). Changes in lipase activities did not correlate with gastrointestinal symptoms (P > .05 for each variable). CONCLUSIONS Both GLP-1 RAs comparably affected body weight, energy and macronutrient intake. Both treatments were associated with indicators of improved exocrine pancreas function. Reductions in appetite and body weight as a result of treatment with short- or long-acting GLP-1 RAs are not driven by changes in gastric emptying or gastrointestinal side effects.
Collapse
Affiliation(s)
- Daniel R Quast
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Michael A Nauck
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nina Schenker
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Björn A Menge
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | - Juris J Meier
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Internal Medicine, Gastroenterology and Diabetes, Augusta Clinic Bochum, Bochum, Germany
| |
Collapse
|
75
|
Jensterle M, Ferjan S, Battelino T, Kovač J, Battelino S, Šuput D, Vovk A, Janež A. Does intervention with GLP-1 receptor agonist semaglutide modulate perception of sweet taste in women with obesity: study protocol of a randomized, single-blinded, placebo-controlled clinical trial. Trials 2021; 22:464. [PMID: 34281590 PMCID: PMC8287101 DOI: 10.1186/s13063-021-05442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Preclinical studies demonstrated that glucagon-like peptide 1 (GLP-1) is locally synthesized in taste bud cells and that GLP-1 receptor exists on the gustatory nerves in close proximity to GLP-1-containing taste bud cells. This local paracrine GLP-1 signalling seems to be specifically involved in the perception of sweets. However, the role of GLP-1 in taste perception remains largely unaddressed in clinical studies. Whether any weight-reducing effects of GLP-1 receptor agonists are mediated through the modulation of taste perception is currently unknown. Methods and analysis This is an investigator-initiated, randomized single-blind, placebo-controlled clinical trial. We will enrol 30 women with obesity and polycystic ovary syndrome (PCOS). Participants will be randomized in a 1:1 ratio to either semaglutide 1.0 mg or placebo for 16 weeks. The primary endpoints are alteration of transcriptomic profile of tongue tissue as changes in expression level from baseline to follow-up after 16 weeks of treatment, measured by RNA sequencing, and change in taste sensitivity as detected by chemical gustometry. Secondary endpoints include change in neural response to visual food cues and to sweet-tasting substances as assessed by functional MRI, change in body weight, change in fat mass and change in eating behaviour and food intake. Discussion This is the first study to investigate the role of semaglutide on taste perception, along with a neural response to visual food cues in reward processing regions. The study may identify the tongue and the taste perception as a novel target for GLP-1 receptor agonists. Ethics and disseminations The study has been approved by the Slovene National Medical Ethics Committee and will be conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. Results will be submitted for publication in an international peer-reviewed scientific journal. Trial registration ClinicalTrials.govNCT04263415. Retrospectively registered on 10 February 2020 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05442-y.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Simona Ferjan
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
| | - Jernej Kovač
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
| | - Saba Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.,Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, SI-1000, Ljubljana, Slovenia
| | - Dušan Šuput
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Andrej Vovk
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
76
|
Ard J, Fitch A, Fruh S, Herman L. Weight Loss and Maintenance Related to the Mechanism of Action of Glucagon-Like Peptide 1 Receptor Agonists. Adv Ther 2021; 38:2821-2839. [PMID: 33977495 PMCID: PMC8189979 DOI: 10.1007/s12325-021-01710-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Obesity is a chronic disease associated with many complications. Weight loss of 5-15% can improve many obesity-related complications. Despite the benefits of weight reduction, there are many challenges in losing weight and maintaining long-term weight loss. Pharmacotherapy can help people with obesity achieve and maintain their target weight loss, thereby reducing the risk of obesity-related complications. The prevalence of obesity in the USA has been increasing over the past few decades, and despite the availability of approved anti-obesity medications (AOMs), people with obesity may not be accessing or receiving treatment at levels consistent with the disease prevalence. Reasons for low levels of initiation and long-term use of AOMs may include reluctance of public health and medical organizations to recognize obesity as a disease, lack of reimbursement, provider inexperience, and misperceptions about the efficacy and safety of available treatments. This article aims to inform primary care providers about the mechanism of action of one class of AOMs, glucagon-like peptide 1 receptor agonists (GLP-1RAs), in weight loss and longer-term maintenance of weight loss, and the efficacy and safety of this treatment class. GLP-1RA therapy was initially developed to treat type 2 diabetes. Owing to their effectiveness in reducing body weight, once-daily subcutaneous administration of liraglutide 3.0 mg has been approved, and once-weekly subcutaneous administration of semaglutide 2.4 mg is being investigated in phase III trials, for obesity management. Considerations regarding adverse effects and contraindications for different drug classes are provided to help guide treatment decision-making when considering pharmacotherapy for weight management in patients with obesity.
Collapse
Affiliation(s)
- Jamy Ard
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Angela Fitch
- MGH Weight Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Division of Endocrinology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sharon Fruh
- College of Nursing, University of South Alabama, Mobile, AL, USA
| | - Lawrence Herman
- Doctor of Medical Science Program, University of Lynchburg, Lynchburg, VA, USA
| |
Collapse
|
77
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
78
|
Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab 2021; 46:101102. [PMID: 33068776 PMCID: PMC8085572 DOI: 10.1016/j.molmet.2020.101102] [Citation(s) in RCA: 780] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1 RAs) with exenatide b.i.d. first approved to treat type 2 diabetes in 2005 have been further developed to yield effective compounds/preparations that have overcome the original problem of rapid elimination (short half-life), initially necessitating short intervals between injections (twice daily for exenatide b.i.d.). SCOPE OF REVIEW To summarize current knowledge about GLP-1 receptor agonist. MAJOR CONCLUSIONS At present, GLP-1 RAs are injected twice daily (exenatide b.i.d.), once daily (lixisenatide and liraglutide), or once weekly (exenatide once weekly, dulaglutide, albiglutide, and semaglutide). A daily oral preparation of semaglutide, which has demonstrated clinical effectiveness close to the once-weekly subcutaneous preparation, was recently approved. All GLP-1 RAs share common mechanisms of action: augmentation of hyperglycemia-induced insulin secretion, suppression of glucagon secretion at hyper- or euglycemia, deceleration of gastric emptying preventing large post-meal glycemic increments, and a reduction in calorie intake and body weight. Short-acting agents (exenatide b.i.d., lixisenatide) have reduced effectiveness on overnight and fasting plasma glucose, but maintain their effect on gastric emptying during long-term treatment. Long-acting GLP-1 RAs (liraglutide, once-weekly exenatide, dulaglutide, albiglutide, and semaglutide) have more profound effects on overnight and fasting plasma glucose and HbA1c, both on a background of oral glucose-lowering agents and in combination with basal insulin. Effects on gastric emptying decrease over time (tachyphylaxis). Given a similar, if not superior, effectiveness for HbA1c reduction with additional weight reduction and no intrinsic risk of hypoglycemic episodes, GLP-1RAs are recommended as the preferred first injectable glucose-lowering therapy for type 2 diabetes, even before insulin treatment. However, GLP-1 RAs can be combined with (basal) insulin in either free- or fixed-dose preparations. More recently developed agents, in particular semaglutide, are characterized by greater efficacy with respect to lowering plasma glucose as well as body weight. Since 2016, several cardiovascular (CV) outcome studies have shown that GLP-1 RAs can effectively prevent CV events such as acute myocardial infarction or stroke and associated mortality. Therefore, guidelines particularly recommend treatment with GLP-1 RAs in patients with pre-existing atherosclerotic vascular disease (for example, previous CV events). The evidence of similar effects in lower-risk subjects is not quite as strong. Since sodium/glucose cotransporter-2 (SGLT-2) inhibitor treatment reduces CV events as well (with the effect mainly driven by a reduction in heart failure complications), the individual risk of ischemic or heart failure complications should guide the choice of treatment. GLP-1 RAs may also help prevent renal complications of type 2 diabetes. Other active research areas in the field of GLP-1 RAs are the definition of subgroups within the type 2 diabetes population who particularly benefit from treatment with GLP-1 RAs. These include pharmacogenomic approaches and the characterization of non-responders. Novel indications for GLP-1 RAs outside type 2 diabetes, such as type 1 diabetes, neurodegenerative diseases, and psoriasis, are being explored. Thus, within 15 years of their initial introduction, GLP-1 RAs have become a well-established class of glucose-lowering agents that has the potential for further development and growing impact for treating type 2 diabetes and potentially other diseases.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
79
|
Gastric Sensory and Motor Functions and Energy Intake in Health and Obesity-Therapeutic Implications. Nutrients 2021; 13:nu13041158. [PMID: 33915747 PMCID: PMC8065811 DOI: 10.3390/nu13041158] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023] Open
Abstract
Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.
Collapse
|
80
|
Acosta A, Camilleri M, Abu Dayyeh B, Calderon G, Gonzalez D, McRae A, Rossini W, Singh S, Burton D, Clark MM. Selection of Antiobesity Medications Based on Phenotypes Enhances Weight Loss: A Pragmatic Trial in an Obesity Clinic. Obesity (Silver Spring) 2021; 29:662-671. [PMID: 33759389 PMCID: PMC8168710 DOI: 10.1002/oby.23120] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/03/2020] [Accepted: 12/17/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Little is known about the predictors of response to obesity interventions. METHODS In 450 participants with obesity, body composition, resting energy expenditure, satiety, satiation, eating behavior, affect, and physical activity were measured by validated studies and questionnaires. These variables were used to classify obesity phenotypes. Subsequently, in a 12-month, pragmatic, real-world trial performed in a weight management center, 312 patients were randomly assigned to phenotype-guided treatment or non-phenotype-guided treatment with antiobesity medications: phentermine, phentermine/topiramate, bupropion/naltrexone, lorcaserin, and liraglutide. The primary outcome was weight loss at 12 months. RESULTS Four phenotypes of obesity were identified in 383 of 450 participants (85%): hungry brain (abnormal satiation), emotional hunger (hedonic eating), hungry gut (abnormal satiety), and slow burn (decreased metabolic rate). In 15% of participants, no phenotype was identified. Two or more phenotypes were identified in 27% of patients. In the pragmatic clinical trial, the phenotype-guided approach was associated with 1.75-fold greater weight loss after 12 months with mean weight loss of 15.9% compared with 9.0% in the non-phenotype-guided group (difference -6.9% [95% CI -9.4% to -4.5%], P < 0.001), and the proportion of patients who lost >10% at 12 months was 79% in the phenotype-guided group compared with 34% with non-phenotype-guided treatment group. CONCLUSIONS Biological and behavioral phenotypes elucidate human obesity heterogeneity and can be targeted pharmacologically to enhance weight loss.
Collapse
Affiliation(s)
- Andres Acosta
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Michael Camilleri
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Barham Abu Dayyeh
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Gerardo Calderon
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Daniel Gonzalez
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Alison McRae
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - William Rossini
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Sneha Singh
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Duane Burton
- Precision Medicine for Obesity ProgramDivision of Gastroenterology and HepatologyDepartment of MedicineMayo ClinicRochesterMinnesotaUSA
| | - Matthew M. Clark
- Department of Psychology and PsychiatryMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
81
|
Decarie-Spain L, Kanoski SE. Ghrelin and Glucagon-Like Peptide-1: A Gut-Brain Axis Battle for Food Reward. Nutrients 2021; 13:977. [PMID: 33803053 PMCID: PMC8002922 DOI: 10.3390/nu13030977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
Eating behaviors are influenced by the reinforcing properties of foods that can favor decisions driven by reward incentives over metabolic needs. These food reward-motivated behaviors are modulated by gut-derived peptides such as ghrelin and glucagon-like peptide-1 (GLP-1) that are well-established to promote or reduce energy intake, respectively. In this review we highlight the antagonizing actions of ghrelin and GLP-1 on various behavioral constructs related to food reward/reinforcement, including reactivity to food cues, conditioned meal anticipation, effort-based food-motivated behaviors, and flavor-nutrient preference and aversion learning. We integrate physiological and behavioral neuroscience studies conducted in both rodents and human to illustrate translational findings of interest for the treatment of obesity or metabolic impairments. Collectively, the literature discussed herein highlights a model where ghrelin and GLP-1 regulate food reward-motivated behaviors via both competing and independent neurobiological and behavioral mechanisms.
Collapse
Affiliation(s)
- Lea Decarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Scott E. Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
82
|
Ricardo-Silgado ML, McRae A, Acosta A. Role of Enteroendocrine Hormones in Appetite and Glycemia. ACTA ACUST UNITED AC 2021; 23. [PMID: 34179564 DOI: 10.1016/j.obmed.2021.100332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enteroendocrine cells (EECs) are specialized cells that are widely distributed throughout the gastrointestinal tract. EECs sense luminal content and release hormones, such as: ghrelin, cholecystokinin, glucagon like peptide 1, peptide YY, insulin like peptide 5, and oxyntomodulin. These hormones can enter the circulation to act on distant targets or act locally on neighboring cells and neuronal pathways to modulate food digestion, food intake, energy balance and body weight. Obesity, insulin resistance and diabetes are associated with alterations in the levels of enteroendocrine hormones. Evidence also suggests that modified regulation and release of gut hormones are the result of compensatory mechanisms in states of excess adipose tissue and hyperglycemia. This review collects the evidence available detailing pathophysiological alterations in enteroendocrine hormones and their association with appetite, obesity and glycemic control.
Collapse
Affiliation(s)
- Maria Laura Ricardo-Silgado
- Precision Medicine for Obesity Program, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Alison McRae
- Precision Medicine for Obesity Program, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Andres Acosta
- Precision Medicine for Obesity Program, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
83
|
Zhao X, Wang M, Wen Z, Lu Z, Cui L, Fu C, Xue H, Liu Y, Zhang Y. GLP-1 Receptor Agonists: Beyond Their Pancreatic Effects. Front Endocrinol (Lausanne) 2021; 12:721135. [PMID: 34497589 PMCID: PMC8419463 DOI: 10.3389/fendo.2021.721135] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) is an incretin secretory molecule. GLP-1 receptor agonists (GLP-1RAs) are widely used in the treatment of type 2 diabetes (T2DM) due to their attributes such as body weight loss, protection of islet β cells, promotion of islet β cell proliferation and minimal side effects. Studies have found that GLP-1R is widely distributed on pancreatic and other tissues and has multiple biological effects, such as reducing neuroinflammation, promoting nerve growth, improving heart function, suppressing appetite, delaying gastric emptying, regulating blood lipid metabolism and reducing fat deposition. Moreover, GLP-1RAs have neuroprotective, anti-infectious, cardiovascular protective, and metabolic regulatory effects, exhibiting good application prospects. Growing attention has been paid to the relationship between GLP-1RAs and tumorigenesis, development and prognosis in patient with T2DM. Here, we reviewed the therapeutic effects and possible mechanisms of action of GLP-1RAs in the nervous, cardiovascular, and endocrine systems and their correlation with metabolism, tumours and other diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Minghe Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
84
|
Yoshino S, Iwasaki Y, Matsumoto S, Satoh T, Ozawa A, Yamada E, Kakizaki S, Trejo JAO, Uchiyama Y, Yamada M, Mori M. Administration of small-molecule guanabenz acetate attenuates fatty liver and hyperglycemia associated with obesity. Sci Rep 2020; 10:13671. [PMID: 32792584 PMCID: PMC7426972 DOI: 10.1038/s41598-020-70689-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic triglycerides (TG) and hyperglycemia arising due to persistent insulin resistance, and is profoundly linked to obesity. However, there is currently no established treatment for NAFLD in obese human subjects. We previously isolated Helz2, the expression of which was upregulated in human and mouse NAFLD, and its deletion activated the hepatic expression of functional leptin receptor long form (Leprb) and suppressed NAFLD development and body weight (BW) gain in obese mice. A high-throughput assay of small-molecule drugs revealed that guanabenz acetate (Ga), originally used to treat hypertension, possesses a high affinity constant against HELZ2, and its administration activates LEPRB expression in HepG2 cells in vitro. The chronic oral administration of Ga shows the selective leptin sensitization in the liver via upregulation of hepatic Leprb expression, which affects expression of genes involved in lipogenesis and fatty acid β-oxidation and diminishes hepatocyte hypertrophy with droplets enriched in TG in high-fat diet-induced obese mice. This activity significantly improves insulin resistance to decrease hyperglycemia and hepatocyte and adipocyte weights, resulting in BW reduction without reducing food intake. Regarding drug repositioning, Ga has the potential to effectively treat NAFLD and hyperglycemia in obese patients.
Collapse
Affiliation(s)
- Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Shunichi Matsumoto
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Atsushi Ozawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Eijiro Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Satoru Kakizaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
- Metabolic and Obese Research Institute, Maebashi, 371-0048, Japan.
| |
Collapse
|