51
|
Ruck T, Barman S, Schulte-Mecklenbeck A, Pfeuffer S, Steffen F, Nelke C, Schroeter CB, Willison A, Heming M, Müntefering T, Melzer N, Krämer J, Lindner M, Riepenhausen M, Gross CC, Klotz L, Bittner S, Muraro PA, Schneider-Hohendorf T, Schwab N, Meyer zu Hörste G, Goebels N, Meuth SG, Wiendl H. OUP accepted manuscript. Brain 2022; 145:1711-1725. [PMID: 35661859 PMCID: PMC9166548 DOI: 10.1093/brain/awac064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022] Open
Abstract
Alemtuzumab is a monoclonal antibody that causes rapid depletion of CD52-expressing immune cells. It has proven to be highly efficacious in active relapsing–remitting multiple sclerosis; however, the high risk of secondary autoimmune disorders has greatly complicated its use. Thus, deeper insight into the pathophysiology of secondary autoimmunity and potential biomarkers is urgently needed. The most critical time points in the decision-making process for alemtuzumab therapy are before or at Month 12, where the ability to identify secondary autoimmunity risk would be instrumental. Therefore, we investigated components of blood and CSF of up to 106 multiple sclerosis patients before and after alemtuzumab treatment focusing on those critical time points. Consistent with previous reports, deep flow cytometric immune-cell profiling (n = 30) demonstrated major effects on adaptive rather than innate immunity, which favoured regulatory immune cell subsets within the repopulation. The longitudinally studied CSF compartment (n = 18) mainly mirrored the immunological effects observed in the periphery. Alemtuzumab-induced changes including increased numbers of naïve CD4+ T cells and B cells as well as a clonal renewal of CD4+ T- and B-cell repertoires were partly reminiscent of haematopoietic stem cell transplantation; in contrast, thymopoiesis was reduced and clonal renewal of T-cell repertoires after alemtuzumab was incomplete. Stratification for secondary autoimmunity did not show clear immununological cellular or proteomic traits or signatures associated with secondary autoimmunity. However, a restricted T-cell repertoire with hyperexpanded T-cell clones at baseline, which persisted and demonstrated further expansion at Month 12 by homeostatic proliferation, identified patients developing secondary autoimmune disorders (n = 7 without secondary autoimmunity versus n = 5 with secondary autoimmunity). Those processes were followed by an expansion of memory B-cell clones irrespective of persistence, which we detected shortly after the diagnosis of secondary autoimmune disease. In conclusion, our data demonstrate that (i) peripheral immunological alterations following alemtuzumab are mirrored by longitudinal changes in the CSF; (ii) incomplete T-cell repertoire renewal and reduced thymopoiesis contribute to a proautoimmune state after alemtuzumab; (iii) proteomics and surface immunological phenotyping do not identify patients at risk for secondary autoimmune disorders; (iv) homeostatic proliferation with disparate dynamics of clonal T- and B-cell expansions are associated with secondary autoimmunity; and (v) hyperexpanded T-cell clones at baseline and Month 12 may be used as a biomarker for the risk of alemtuzumab-induced autoimmunity.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence to: PD Dr. med. Tobias Ruck Department of Neurology with Institute of Translational Neurology University Hospital Muenster Albert-Schweitzer-Campus 1 D-48149 Muenster, Germany E-mail:
| | - Sumanta Barman
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Christopher Nelke
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alice Willison
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Thomas Müntefering
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Maren Lindner
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Marianne Riepenhausen
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Catharina C. Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Paolo A. Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
- Correspondence may also be addressed to: Univ.-Prof. Prof. h.c. Dr. med. Heinz Wiendl E-mail:
| |
Collapse
|
52
|
Brill L, Rechtman A, Zveik O, Haham N, Levin N, Shifrin A, Rozenberg A, Vaknin-Dembinsky A. Effect of cladribine on COVID-19 serology responses following two doses of the BNT162b2 mRNA vaccine in patients with multiple sclerosis. Mult Scler Relat Disord 2022; 57:103343. [PMID: 35158452 PMCID: PMC8539216 DOI: 10.1016/j.msard.2021.103343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND multiple sclerosis (MS) patients are treated with immunomodulatory treatments that can influence their ability to develop a protective antibody response to the SARS-CoV-2 vaccine. Vaccine efficacy is important for treatment decision and for patients' reassurance. The main objective is to assess antibody response to SARS-CoV-2 vaccine in MS patients treated with cladribine. METHODS Serology response was tested in 97 participants, 67 MS patients and 30 healthy controls (HCs), using two independent methods, 2-3 weeks following the second dose of the BNT162b2 vaccine. RESULTS HCs (n = 30) and MS patients treated with cladribine (n = 32) had 100% positive serology response against the SARS-CoV-2 spike protein following the second vaccine dose (mean S1/S2-IgG and RBD-IgG:284.5 ± 104.9, 13,041±9411 AU/mL and 226.3 ± 121.4, 10,554±11,405 AU/mL respectively). Comparable findings were observed for untreated MS patients, and interferon beta-1a-treated MS patients (mean S1/S2-IgG: 282.1 ± 100.1, 276.9 ± 94.31 AU/mL respectively). No correlation was found between lymphocyte counts, treatment duration, or time between cladribine dose and vaccination, and serology response or antibody titers. CONCLUSION AND RELEVANCE Cladribine treated MS patients are able to produce antibodies to the SARS-CoV-2 mRNA vaccine. In the era of the COVID-19 pandemic, it is reassuring and important for both patients and physicians and will allow to develop consensus guidelines.
Collapse
Affiliation(s)
- Livnat Brill
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Jerusalem, Israel
| | - Ariel Rechtman
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Jerusalem, Israel
| | - Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Jerusalem, Israel
| | - Nitzan Haham
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Jerusalem, Israel
| | - Netta Levin
- Functional Imaging Unit, Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alla Shifrin
- Department of Neurology, Rambam Health Care Campus and Technion Faculty of Medicine, Haifa, Israel
| | - Ayal Rozenberg
- Department of Neurology, Rambam Health Care Campus and Technion Faculty of Medicine, Haifa, Israel
| | - Adi Vaknin-Dembinsky
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Jerusalem, Israel.
| |
Collapse
|
53
|
Dobreanu M, Manu DR, Mănescu IB, Gabor MR, Huţanu A, Bărcuţean L, Bălaşa R. Treatment With Cladribine Selects IFNγ+IL17+ T Cells in RRMS Patients - An In Vitro Study. Front Immunol 2022; 12:743010. [PMID: 34970256 PMCID: PMC8712887 DOI: 10.3389/fimmu.2021.743010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Background Multiple sclerosis (MS) is an incurable autoimmune disease mediated by a heterogeneous T cell population (CD3+CD161+CXCR3−CCR6+IFNγ−IL17+, CD3+CXCR3+CCR6+IFNγ+IL17+, and CD3+CXCR3+IFNγ+IL17− phenotypes) that infiltrates the central nervous system, eliciting local inflammation, demyelination and neurodegeneration. Cladribine is a lymphocyte-depleting deoxyadenosine analogue recently introduced for MS therapy as a Disease Modifying Drug (DMD). Our aim was to establish a method for the early identification and prediction of cladribine responsiveness among MS patients. Methods An experimental model was designed to study the cytotoxic and immunomodulatory effect of cladribine. T cell subsets of naïve relapsing-remitting MS (RRMS) patients were analyzed ex vivo and in vitro comparatively to healthy controls (HC). Surviving cells were stimulated with rh-interleukin-2 for up to 14days. Cell proliferation and immunophenotype changes were analyzed after maximal (phorbol myristate acetate/ionomycin/monensin) and physiological T-cell receptor (CD3/CD28) activation, using multiparametric flow cytometry and xMAP technology. Results Ex vivo CD161+Th17 cells were increased in RRMS patients. Ex vivo to in vitro phenotype shifts included: decreased CD3+CCR6+ and CD3+CD161+ in all subjects and increased CD3+CXCR3+ in RRMS patients only; Th17.1 showed increased proliferation vs Th17 in all subjects; CD3+IL17+ and CD3+IFNγ+IL17+ continued to proliferate till day 14, CD3+IFNγ+ only till day 7. Regarding cladribine exposure: RRMS CD3+ cells were more resistant compared to HC; treated CD3+ cells proliferated continuously for up to 14 days, while untreated cells only up to 7 days; both HC/RRMS CD3+CXCR3+ populations increased from baseline till day 14; in RRMS patients vs HC, IL17 secretion from cladribine-treated cells increased significantly, in line with the observed proliferation of CD3+IL17+ and CD3+IFNγ+IL17+ cells; in both HC/RRMS, cladribine led to a significant increase in CD3+IFNγ+ cells at day 7 only, having no further effect at day14. IFNγ and IL17 secreted in culture media decreased significantly from ex vivo to in vitro. Conclusions CD3+ subtypes showed different responsiveness due to selectivity of cladribine action, in most patients leading to in vitro survival/proliferation of lymphocyte subsets known as pathogenic in MS. This in vitro experimental model is a promising tool for the prediction of individual responsiveness of MS patients to cladribine and other DMDs.
Collapse
Affiliation(s)
- Minodora Dobreanu
- Department of Immunology, Centre for Advanced Medical and Pharmaceutical Research, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania.,Clinical Laboratory, County Emergency Clinical Hospital, Târgu Mureș, Romania.,Department of Laboratory Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| | - Doina Ramona Manu
- Department of Immunology, Centre for Advanced Medical and Pharmaceutical Research, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| | - Ion Bogdan Mănescu
- Clinical Laboratory, County Emergency Clinical Hospital, Târgu Mureș, Romania.,Department of Laboratory Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| | - Manuela Rozalia Gabor
- Department of Management and Economy, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| | - Adina Huţanu
- Clinical Laboratory, County Emergency Clinical Hospital, Târgu Mureș, Romania.,Department of Laboratory Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| | - Laura Bărcuţean
- Neurology 1 Clinic, County Emergency Clinical Hospital, Târgu Mureș, Romania.,Department of Neurology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| | - Rodica Bălaşa
- Neurology 1 Clinic, County Emergency Clinical Hospital, Târgu Mureș, Romania.,Department of Neurology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| |
Collapse
|
54
|
Garbo R, Cutuli D, Lorenzut S, Gigli GL, Bagatto D, Valente M. Opportunities and Obstacles Associated With Sequential Immune Reconstitution Therapy for Multiple Sclerosis: A Case Report. Front Neurol 2021; 12:664596. [PMID: 34956035 PMCID: PMC8692884 DOI: 10.3389/fneur.2021.664596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Cladribine is an effective disease-modifying treatment for relapsing-remitting multiple sclerosis that acts as an immune reconstitution therapy and is administered in a pulsed manner. Despite its efficacy, severe disease reactivation early after treatment represents a serious clinical problem, and clear evidence to guide the management of such a situation is lacking. Here, we describe the case of a patient experiencing considerable disease activity during the 1st year after the initiation of cladribine treatment. The patient was switched to alemtuzumab and, therefore, received double immune reconstitution therapy. Data regarding this approach are lacking, and real-world observations may be of interest. Despite achieving good control of disease activity, we observed several serious infectious complications. Our results suggest that sequential immune reconstitution therapies may be effective; however, at the price of higher susceptibility to infections.
Collapse
Affiliation(s)
- Riccardo Garbo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Daniela Cutuli
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Simone Lorenzut
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.,Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Daniele Bagatto
- Neuroradiology Unit, Department of Diagnostic Imaging, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.,Department of Medical Area (DAME), University of Udine, Udine, Italy
| |
Collapse
|
55
|
Immunomodulatory Effects Associated with Cladribine Treatment. Cells 2021; 10:cells10123488. [PMID: 34943995 PMCID: PMC8700070 DOI: 10.3390/cells10123488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Cladribine is a synthetic deoxyadenosine analogue with demonstrated efficacy in patients with relapsing-remitting multiple sclerosis (MS). The main mechanism of action described for cladribine is the induction of a cytotoxic effect on lymphocytes, leading to a long-term depletion of peripheral T and B cells. Besides lymphocyte toxicity, the mode of action may include immunomodulatory mechanisms affecting other cells of the immune system. In order to induce its beneficial effects, cladribine is phosphorylated inside the cell by deoxycytidine kinase (DCK) to its active form. However, the mechanism of action of cladribine may also include immunomodulatory pathways independent of DCK activation. This in vitro study was designed to explore the impact of cladribine on peripheral blood mononuclear cells (PBMC) subsets, and to assess whether the immunomodulatory mechanisms induced by cladribine depend on the activation of the molecule. To this end, we obtained PBMCs from healthy donors and MS patients and performed proliferation, apoptosis and activation assays with clinically relevant concentrations of cladribine in DCK-dependent and -independent conditions. We also evaluated the effect of cladribine on myeloid lineage-derived cells, monocytes and dendritic cells (DCs). Cladribine decreased proliferation and increased apoptosis of lymphocyte subsets after prodrug activation via DCK. In contrast, cladribine induced a decrease in immune cell activation through both DCK-dependent and -independent pathways (not requiring prodrug activation). Regarding monocytes and DCs, cladribine induced cytotoxicity and impaired the activation of classical monocytes, but had no effect on DC maturation. Taken together, these data indicate that cladribine, in addition to its cytotoxic function, can mediate immunomodulation in different immune cell populations, by regulating their proliferation, maturation and activation.
Collapse
|
56
|
Spiezia AL, Cerbone V, Molinari EA, Capasso N, Lanzillo R, Carotenuto A, Petracca M, Novarella F, Covelli B, Scalia G, Brescia Morra V, Moccia M. Changes in lymphocytes, neutrophils and immunoglobulins in year-1 cladribine treatment in multiple sclerosis. Mult Scler Relat Disord 2021; 57:103431. [PMID: 34871857 DOI: 10.1016/j.msard.2021.103431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Antonio Luca Spiezia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | | | | | - Nicola Capasso
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Antonio Carotenuto
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Maria Petracca
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Federica Novarella
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Bianca Covelli
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Giulia Scalia
- Centre for Advanced Biotechnology (CEINGE), Naples, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Marcello Moccia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
57
|
Allen-Philbey K, De Trane S, Mao Z, Álvarez-González C, Mathews J, MacDougall A, Stennett A, Zhou X, Yildiz O, Adams A, Bianchi L, Blain C, Chapman C, Chung K, Constantinescu CS, Dalton C, Farrell RA, Fisniku L, Ford H, Gran B, Hobart J, Khaleeli Z, Mattoscio M, Pavitt S, Pearson O, Peruzzotti-Jametti L, Scalfari A, Sharrack B, Silber E, Tallantyre EC, Webb S, Turner BP, Marta M, Gnanapavan S, Juliusson G, Giovannoni G, Baker D, Schmierer K. Subcutaneous cladribine to treat multiple sclerosis: experience in 208 patients. Ther Adv Neurol Disord 2021; 14:17562864211057661. [PMID: 35173808 PMCID: PMC8842147 DOI: 10.1177/17562864211057661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 01/13/2023] Open
Abstract
Objective: To report on safety and effectiveness of subcutaneous cladribine (Litak®) in multiple sclerosis (MS) patients. Methods: Litak® was offered to MS-patients irrespective of disease course. Litak® 10 mg was administered for 3–4 days during week 1. Based on lymphocyte count at week 4, patients received another 0–3 doses at week 5. A second course was administered 11 months later. Follow-up included adverse events, relapses, expanded disability status scale (EDSS), 9-hole-peg and Timed-25-foot-walking tests, no-evidence-of-disease-activity (NEDA), no-evidence-of-progression-or-active-disease (NEPAD), MRI, cerebrospinal fluid (CSF) neurofilament light chain (NfL), and lymphocyte counts. Results: In all, 208 patients received at least one course of treatment. Age at baseline was 44 (17–72) years and EDSS 0–8.5. Cladribine was generally well tolerated. One myocardial infarction, one breast cancer, and three severe skin reactions occurred without long-term sequelae. Two patients died (one pneumonia, one encephalitis). Lymphopenia grade 3 occurred in 5% and grade 4 in 0.5%. In 94 out of 116 pwMS with baseline and follow-up (BaFU) data after two treatment courses, EDSS remained stable or improved. At 18 months, 64% of patients with relapsing MS and BaFU data ( n = 39) had NEDA. At 19 months, 62% of patients with progressive MS and BaFU data ( n = 13) had NEPAD. Of n = 13 patients whose CSF-NfL at baseline was elevated, 77% were normalised within 12 months. Conclusions: Litak® was well tolerated. Effectiveness in relapsing MS appeared similar to cladribine tablets and was encouraging in progressive MS. Our data suggest cladribine may be safe and effective in MS-patients irrespective of their disease stage.
Collapse
Affiliation(s)
- Kimberley Allen-Philbey
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Stefania De Trane
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Zhifeng Mao
- Kingmed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Medical School, Xiangnan University, Chenzhou, China
| | - Cesar Álvarez-González
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Joela Mathews
- Pharmacy Department, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Amy MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Andrea Stennett
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Xia Zhou
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Ozlem Yildiz
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ashok Adams
- Neuroradiology Department, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Lucia Bianchi
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Camilla Blain
- St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Christine Chapman
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Karen Chung
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Cris S Constantinescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Catherine Dalton
- St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Rachel A Farrell
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Neuroinflammation, National Hospital for Neurology and Neurosurgery, London, UK
| | - Leonora Fisniku
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK; Brighton and Sussex Medical School, Brighton, UK
| | - Helen Ford
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jeremy Hobart
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Zhaleh Khaleeli
- Department of Neuroinflammation, National Hospital for Neurology and Neurosurgery, London, UK
| | - Miriam Mattoscio
- Queen’s Hospital, Barking Havering and Redbridge Hospital NHS Trust, Romford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sue Pavitt
- Dental Translational and Clinical Research Unit, School of Dentistry, University of Leeds, Leeds, UK
| | - Owen Pearson
- Department of Neurology, Swansea Bay University Health Board, Port Talbot, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine Charing Cross Hospital, Imperial College London, London, UK
| | - Basil Sharrack
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Neuroscience and NIHR Neurosciences Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Eli Silber
- Department of Neurology, King’s College Hospital, London, UK
| | - Emma C Tallantyre
- Department of Neurology, University Hospital of Wales, Cardiff, UK
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Stewart Webb
- Institute of Neuroscience, Department of Neurology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Benjamin P Turner
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Monica Marta
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gunnar Juliusson
- Department of Hematology, Skåne University Hospital, Lund, Sweden
- Stem Cell Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Gavin Giovannoni
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - David Baker
- Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Klaus Schmierer
- Neuroscience, Clinical Board Medicine, The Royal London Hospital, Barts Health NHS Trust, London, UK Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
58
|
Factors contributing to CSF NfL reduction over time in those starting treatment for multiple sclerosis: An observational study. Mult Scler Relat Disord 2021; 57:103409. [PMID: 34871856 DOI: 10.1016/j.msard.2021.103409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In multiple sclerosis (MS) neurofilament light chain (NfL) is a marker of neuronal damage secondary to inflammation and neurodegeneration. NfL levels drop after commencement of disease-modifying treatment, especially the highly active ones. However, the factors that influence this drop are unknown. OBJECTIVE To examine the patient and treatment-related factors that influence CSF NfL before and after starting treatment. METHODS Eligible patients across two centres with two CSF NfL measurements, clinical and MRI data were included as part of an observational cohort study. RESULTS Data were available in 61 patients, of which 40 were untreated at the first CSF sampling (T1) and treated at the second (T2; mean T1-T2: 19 months). CSF NfL reduction correlated with age (beta = 1.24 95%CI(1.07,1.43); R2 = 0.17; p = 0.005), Expanded Disability Status Scale (EDSS) (beta = 1.12 95%CI(1.00,1.25); R2 = 0.21; p = 0.05) and the type of MS (beta = 0.63 95%CI(0.43, 0.92); R2 = 0.12; p = 0.018; reference=relapsing MS). The treatment effect on a baseline NfL of 702 pg/mL was 451 pg/ml 95%CI(374,509) in a 30-year-old versus 228 pg/ml 95%CI(63,350) in a 60-year-old. There was no association in CSF NfL reduction with BMI, disease duration or sex. In cladribine- and alemtuzumab-treated patients, the CSF NfL T2/T1 ratio did not correlate with lymphocyte depletion rate at 23 weeks. CONCLUSIONS In this observational study, we found that factors reflecting early disease stage, including a younger age, lower disability and relapsing MS were associated with treatment response in CSF NfL. Other factors were not found to be related, including lymphopaenia in highly-active treatments.
Collapse
|
59
|
Lymphocyte Counts and Multiple Sclerosis Therapeutics: Between Mechanisms of Action and Treatment-Limiting Side Effects. Cells 2021; 10:cells10113177. [PMID: 34831400 PMCID: PMC8625745 DOI: 10.3390/cells10113177] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Although the detailed pathogenesis of multiple sclerosis (MS) is not completely understood, a broad range of disease-modifying therapies (DMTs) are available. A common side effect of nearly every MS therapeutic agent is lymphopenia, which can be both beneficial and, in some cases, treatment-limiting. A sound knowledge of the underlying mechanism of action of the selected agent is required in order to understand treatment-associated changes in white blood cell counts, as well as monitoring consequences. This review is a comprehensive summary of the currently available DMTs with regard to their effects on lymphocyte count. In the first part, we describe important general information about the role of lymphocytes in the course of MS and the essentials of lymphopenic states. In the second part, we introduce the different DMTs according to their underlying mechanism of action, summarizing recommendations for lymphocyte monitoring and definitions of lymphocyte thresholds for different therapeutic regimens.
Collapse
|
60
|
Maltby VE, Lea RA, Monif M, Fabis-Pedrini MJ, Buzzard K, Kalincik T, Kermode AG, Taylor B, Hodgkinson S, McCombe P, Butzkueven H, Barnett M, Lechner-Scott J. Efficacy of Cladribine Tablets as a Treatment for People With Multiple Sclerosis: Protocol for the CLOBAS Study (Cladribine, a Multicenter, Long-term Efficacy and Biomarker Australian Study). JMIR Res Protoc 2021; 10:e24969. [PMID: 34665152 PMCID: PMC8564661 DOI: 10.2196/24969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 01/26/2023] Open
Abstract
Background Cladribine tablets (marketed as Mavenclad) are a new oral therapy, which has recently been listed on the pharmaceutical benefits scheme in Australia for the treatment of relapsing multiple sclerosis (MS). The current dosing schedule is for 2 courses given a year apart, which has been shown to be effective for treatment of MS for up to 4 years in 75% of patients (based on annualized relapse rate). However, the reinitiation of therapy after year 4 has not been studied. Objective This study aims to evaluate the safety and efficacy of cladribine tablets over a 6-year period, according to no evidence of disease activity 3. Methods This will be a multicenter, 6-year, phase IV, low interventional, observational study that incorporates clinical, hematological, biochemical, epigenetic, radiological and cognitive biomarkers of disease. Participants considered for treatment with cladribine as part of their routine clinical care will be consented to take part in the study. They will be monitored at regular intervals during the initial course of medication administration in years 1 and 2. After year 3, patients will have the option of redosing, if clinically indicated, or to switch to another disease-modifying therapy. Throughout the duration of the study, we will assess blood-based biomarkers including lymphocyte subsets, serum neurofilament light chain, DNA methylation, and RNA analysis as well as magnetic resonance imaging findings (brain volume and/or lesion load) and cognitive performance. Results This study has been approved by the Hunter New England Local Health District Human Research Ethics Committee. Recruitment began in March of 2019 and was completed by June 2021. Conclusions This will be the first long-term efficacy trial of cladribine, which offers reinitiation of therapy in the 3rd year, based on disease activity, after the initial 2 courses. We expect that this study will indicate whether any of the assessed biomarkers can be used to predict treatment efficacy or the need for future reinitiation of cladribine in people with MS. Trial Registration This study is registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12619000257167) with Universal Trial Number (U1111-1228-2165). International Registered Report Identifier (IRRID) DERR1-10.2196/24969
Collapse
Affiliation(s)
- Vicki E Maltby
- Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia.,School for Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Rodney A Lea
- School for Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, Australia
| | - Mastura Monif
- Department of Neurosciences, Eastern Health Clinical School, Monash University, Box Hill Hospital, Melbourne, Australia.,Department of Neurology, Alfred Health, Melbourne, Australia.,Department of Neurology, Melbourne Multiple Sclerosis Centre, Melbourne Health, Melbourne, Australia
| | - Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia
| | - Katherine Buzzard
- Department of Neurosciences, Eastern Health Clinical School, Monash University, Box Hill Hospital, Melbourne, Australia.,Department of Neurology, Melbourne Multiple Sclerosis Centre, Melbourne Health, Melbourne, Australia
| | - Tomas Kalincik
- Department of Neurology, Melbourne Multiple Sclerosis Centre, Melbourne Health, Melbourne, Australia.,Clinical Outcomes Research (CORe) Unit, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, Australia
| | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Suzanne Hodgkinson
- Department of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, Liverpool Hospital, Sydney, Australia.,Immune Tolerance Laboratory, Ingham Institute, Sydney, Australia
| | - Pamela McCombe
- Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Helmut Butzkueven
- Department of Neurology, Alfred Health, Melbourne, Australia.,Clinical Outcomes Research (CORe) Unit, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, Australia.,Sydney Neuroimaging Analysis Centre, Sydney, Australia
| | - Jeannette Lechner-Scott
- Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia.,School for Medicine and Public Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
61
|
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, Munafo A. Review of Transporter Substrate, Inhibitor, and Inducer Characteristics of Cladribine. Clin Pharmacokinet 2021; 60:1509-1535. [PMID: 34435310 PMCID: PMC8613159 DOI: 10.1007/s40262-021-01065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Cladribine is a nucleoside analog that is phosphorylated in its target cells (B- and T-lymphocytes) to its active adenosine triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®) administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years) are used to treat patients with relapsing multiple sclerosis. The ATP-binding cassette, solute carrier, and nucleoside transporter substrate, inhibitor, and inducer characteristics of cladribine are reviewed in this article. Available evidence suggests that the distribution of cladribine across biological membranes is facilitated by a number of uptake and efflux transporters. Among the key ATP-binding cassette efflux transporters, only breast cancer resistance protein has been shown to be an efficient transporter of cladribine, while P-glycoprotein does not transport cladribine well. Intestinal absorption, distribution throughout the body, and intracellular uptake of cladribine appear to be exclusively mediated by equilibrative and concentrative nucleoside transporters, specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Renal excretion of cladribine appears to be most likely driven by breast cancer resistance protein, ENT1, and P-glycoprotein. The latter may play a role despite its poor cladribine transport efficiency in view of the renal abundance of P-glycoprotein. There is no evidence that solute carrier uptake transporters such as organic anion transporting polypeptides, organic anion transporters, and organic cation transporters are involved in the transport of cladribine. Available in vitro studies examining the inhibitor characteristics of cladribine for a total of 13 major ATP-binding cassette, solute carrier, and CNT transporters indicate that in vivo inhibition of any of these transporters by cladribine is unlikely.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Heinrich-Vingerhut-Weg 3, 63571, Gelnhausen, Germany.
| | | | | | | | | | | | - Alain Munafo
- Institute of Pharmacometrics, an Affiliate of Merck KGaA, Lausanne, Switzerland
| |
Collapse
|
62
|
HUMORAL RESPONSE TO SARS-CoV-2 AND COVID-19 VACCINES IN PATIENTS WITH MULTIPLE SCLEROSIS TREATED WITH IMMUNE RECONSTITUTION THERAPIES. Mult Scler Relat Disord 2021; 54:103150. [PMID: 34298478 PMCID: PMC8280377 DOI: 10.1016/j.msard.2021.103150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
Background It has been generally accepted that people with MS (PwMS) should be vaccinated against COVID-19. The aim of our investigation was to evaluate the humoral response to natural SARS-CoV-2 infection and to two COVID-19 vaccines (BNT162b2 Pfizer-BioNTech and Beijing/Sinopharm BBIBP-CorV) in our cohort of PwMS under high efficacy disease modifying therapies (DMTs), cladribine and alemtuzumab. Methods Twenty two PwMS treated at the Clinic of Neurology, in Belgrade, who developed COVID-19 and/or were vaccinated against SARS-CoV-2, during treatment with cladribine and alemtuzumab, were included. Out of 18 patients treated with cladribine, 11 developed COVID-19, and 11 were vaccinated against SARS-CoV-2 (four with mRNA vaccine, 7 with Sinopharm). Four MS patients under alemtuzumab were vaccinated against SARS-CoV-2; three with mRNA, and one with Sinopharm vaccine. SARS-Cov-2 IgG response was measured using ELISA anti-spike protein-based serology (INEP, Belgrade, Serbia). Results All 7 patients under cladribine treatment who suffered from COVID-19, developed IgG antibodies, 2.0-5.5 months after last symptoms. All four (100%) patients under cladribine who were vaccinated with Pfizer-BioNTech vaccine, and three out of seven (42.9%) vaccinated with Sinopharm, developed antibodies. All 4 patients under alemtuzumab developed antibodies after vaccination. In all cases, seroprotection occurred, irrespective of timing of vaccination and absolute lymphocyte count. Conclusion Our findings in a small number of highly active PwMS in whom, lymphodepleting, immune reconstitution therapies, were applied in order to successfully manage MS, indicate that in a number of these patients it was possible to develop at the same time seroprotection in these patients after COVID-19 vaccination in these complex circumstances.
Collapse
|
63
|
Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat Rev Neurol 2021; 17:399-414. [PMID: 34075251 DOI: 10.1038/s41582-021-00498-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence indicates the involvement of B cells in the pathogenesis of multiple sclerosis (MS), but their precise roles are unclear. In this Review, we provide an overview of the development and physiological functions of B cells and the main mechanisms through which B cells are thought to contribute to CNS autoimmunity. In MS, abnormalities of B cell function include pro-inflammatory cytokine production, defective B cell regulatory function and the formation of tertiary lymphoid-like structures in the CNS, which are the likely source of abnormal immunoglobulin production detectable in the cerebrospinal fluid. We also consider the hypothesis that Epstein-Barr virus (EBV) is involved in the B cell overactivation that leads to inflammatory injury to the CNS in MS. We also review the immunological effects - with a focus on the effects on B cell subsets - of several successful therapeutic approaches in MS, including agents that selectively deplete B cells (rituximab, ocrelizumab and ofatumumab), agents that less specifically deplete lymphocytes (alemtuzumab and cladribine) and autologous haematopoietic stem cell transplantation, in which the immune system is unselectively ablated and reconstituted. We consider the insights that these effects on B cell populations provide and their potential to further our understanding and targeting of B cells in MS.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Miriam Mattoscio
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.,Department of Neurology, University of Verona, Verona, Italy
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
64
|
Schweitzer F, Laurent S, Fink GR, Barnett MH, Hartung HP, Warnke C. Effects of disease-modifying therapy on peripheral leukocytes in patients with multiple sclerosis. J Neurol 2021; 268:2379-2389. [PMID: 32036423 PMCID: PMC8217029 DOI: 10.1007/s00415-019-09690-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
Modern disease-modifying therapies (DMTs) in multiple sclerosis (MS) have variable modes of action and selectively suppress or modulate the immune system. In this review, we summarize the predicted and intended as well as unwanted adverse effects on leukocytes in peripheral blood as a result of treatment with DMTs for MS. We link changes in laboratory tests to the possible therapeutic risks that include secondary autoimmunity, infections, and impaired response to vaccinations. Profound knowledge of the intended effects on leukocyte counts, in particular lymphocytes, explained by the mode of action, and adverse effects which may require additional laboratory and clinical vigilance or even drug discontinuation, is needed when prescribing DMTs to treat patients with MS.
Collapse
Affiliation(s)
- F Schweitzer
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - S Laurent
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - G R Fink
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Michael H Barnett
- Department of Neurology, Royal Prince Alfred Hospital, and Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - H P Hartung
- Department of Neurology, Medical Faculty, and Center for Neurology and Neuropsychiatry, LVR Klinikum, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - C Warnke
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| |
Collapse
|
65
|
Soldan SS, Su C, Lamontagne RJ, Grams N, Lu F, Zhang Y, Gesualdi JD, Frase DM, Tolvinski LE, Martin K, Messick TE, Fingerut JT, Koltsova E, Kossenkov A, Lieberman PM. Epigenetic Plasticity Enables CNS-Trafficking of EBV-infected B Lymphocytes. PLoS Pathog 2021; 17:e1009618. [PMID: 34106998 PMCID: PMC8216538 DOI: 10.1371/journal.ppat.1009618] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/21/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Subpopulations of B-lymphocytes traffic to different sites and organs to provide diverse and tissue-specific functions. Here, we provide evidence that epigenetic differences confer a neuroinvasive phenotype. An EBV+ B cell lymphoma cell line (M14) with low frequency trafficking to the CNS was neuroadapted to generate a highly neuroinvasive B-cell population (MUN14). MUN14 B cells efficiently infiltrated the CNS within one week and produced neurological pathologies. We compared the gene expression profiles of viral and cellular genes using RNA-Seq and identified one viral (EBNA1) and several cellular gene candidates, including secreted phosphoprotein 1/osteopontin (SPP1/OPN), neuron navigator 3 (NAV3), CXCR4, and germinal center-associated signaling and motility protein (GCSAM) that were selectively upregulated in MUN14. ATAC-Seq and ChIP-qPCR revealed that these gene expression changes correlated with epigenetic changes at gene regulatory elements. The neuroinvasive phenotype could be attenuated with a neutralizing antibody to OPN, confirming the functional role of this protein in trafficking EBV+ B cells to the CNS. These studies indicate that B-cell trafficking to the CNS can be acquired by epigenetic adaptations and provide a new model to study B-cell neuroinvasion associated CNS lymphoma and autoimmune disease of the CNS, including multiple sclerosis (MS).
Collapse
Affiliation(s)
- Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Chenhe Su
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Nicholas Grams
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Yue Zhang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - James D. Gesualdi
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Drew M. Frase
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lois E. Tolvinski
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kayla Martin
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Troy E. Messick
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Ekaterina Koltsova
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Andrew Kossenkov
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
66
|
The development and impact of cladribine on lymphoid and myeloid cells in multiple sclerosis. Mult Scler Relat Disord 2021; 52:102962. [PMID: 33901971 DOI: 10.1016/j.msard.2021.102962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022]
Abstract
Cladribine is an approved selective immune reconstitution therapy for relapsing-remitting MS (RRMS). It was first developed and used to treat various forms of cancer, particularly leukemia via parenteral administration. The oral tablet version of cladribine was later developed to treat RRMS, an autoimmune disorder of the central nervous system (CNS) with periods of relapse and remission. Cladribine is found to selectively deplete adaptive immune cell types, and its role on innate immune cells is largely unknown. Among the lymphocyte populations and subtypes, the magnitude and kinetics of depletion by cladribine vary substantially. The current consensus on the selective cytotoxic effect of cladribine is that it is dependent on the deoxycytidine kinase (DCK) to 5'nucleotidase (5-NT) ratio of the immune cell type. Nonetheless, there are some discrepancies that cannot be fully elucidated by the DCK:5-NT ratio paradigm. This review aims to delineate the development and pharmacological properties of cladribine, and elucidate its influence on lymphoid and myeloid cells in MS.
Collapse
|
67
|
Sellner J, Rommer PS. Multiple Sclerosis and SARS-CoV-2 Vaccination: Considerations for Immune-Depleting Therapies. Vaccines (Basel) 2021; 9:vaccines9020099. [PMID: 33525459 PMCID: PMC7911298 DOI: 10.3390/vaccines9020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Several concerns have been raised about the use of immunodepleting agents including alemtuzumab, cladribine and CD20-depleting antibodies in people with multiple sclerosis (pwMS) during the coronavirus disease (COVID) 2019 pandemic. As the end of the pandemic is not yet in sight, vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) may be an elegant strategy to overcome the potential hazards associated with initiating and continuing treatment with immune-depleting agents. In this review, we summarize the immunological effects of immune-depleting therapy and underlying considerations for the hitherto existing recommendations that suggest a restricted use of immune-deleting therapies during the pandemic. Moreover, we critically discuss open questions regarding vaccination in general and against SARS-CoV-2 in pwMS.
Collapse
Affiliation(s)
- Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-2572-9004-12850; Fax: +43-2572-9004-49281
| | - Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
68
|
Eliseeva DD, Vasiliev AV, Abramova AA, Kochergin IA, Zakharova MN. [Monoclonal antibody therapies for rapidly progressive and highly active multiple sclerosis in the era of the COVID-19 pandemic]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:31-36. [PMID: 34387443 DOI: 10.17116/jnevro202112107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the COVID-19 pandemic continues, reducing the risk of infection for immunocompromised patients remains an important issue. Patients with aggressive multiple sclerosis (MS) require immunosuppressive therapy in order to control the overactive autoimmune response. Preliminary international and national trials demonstrate that older age, higher disability status and progressive MS are generally associated with a more severe clinical course of COVID-19. However, uncertainty remains about the effect of disease-modifying therapies on the COVID-19 clinical presentation. In this article, we pay special attention to monoclonal antibodies used for immune reconstitution therapy, which results in significant changes to the T-cell and/or B-cell repertoire. Based on the published data from registries in different countries, we attempted to estimate the benefits and risks of these therapies in a complicated epidemiological setting.
Collapse
Affiliation(s)
| | - A V Vasiliev
- «Neuroclinic» (Yusupov Hospital), Moscow, Russia
| | | | | | | |
Collapse
|
69
|
Immune phenotyping study revealing caveats regarding a switch from fingolimod to cladribine. Mult Scler Relat Disord 2020; 48:102727. [PMID: 33418308 DOI: 10.1016/j.msard.2020.102727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent data support a key role of B cells in the pathogenesis of multiple sclerosis. Due to the pronounced effect of cladribine on memory B cells, we initiated an immune phenotyping study, which included monitoring of memory B cells of patients newly assigned to this treatment option. A patient with ongoing disease activity in the first year of cladribine after a long-standing fingolimod treatment caught our attention. OBJECTIVE To report about differences in the immune phenotype of the case compared to patients without disease activity and to discuss possible causes for the deviations as caveats regarding treatment sequelae. METHODS Clinical data and immune phenotyping data collected at baseline (before treatment) and after three, six and ten/twelve months after cladribine initiation were compared between our case and six patients with a stable disease course (controls). RESULTS Both, the case and controls showed similar reductions of memory B cells in response to cladribine. The case however, showed an accelerated repopulation dynamic of naïve B cells with an almost 3-fold hyperrepopulation compared to baseline levels, and lower pre-treatment levels of CD4+ and CD8+ T cells and memory B cells compared to controls. CONCLUSION We propose a prolonged pre-treatment with fingolimod as possible cause for the lack of response to cladribine. Autoreactive cells sequestrated within lymph nodes may have evaded cladribine depletion on top of a delay of recirculating regulatory T cells. In addition, we want to raise awareness of the importance of monitoring T and B cells for bridging the current lack of evidence regarding sequencing therapies in the real life setting.
Collapse
|
70
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Medicinal Chemistry of Multiple Sclerosis: Focus on Cladribine. Mini Rev Med Chem 2020; 20:269-285. [PMID: 31644403 DOI: 10.2174/1389557519666191015201755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the recent years, many novel Disease-Modifying Drugs (DMD) have been introduced to the market in the treatment of multiple sclerosis. OBJECTIVES To provide the reader with an up to date, compact review on the pharmacokinetic properties, mechanism of action, and clinical attributes of one of the most recently approved drugs in the therapy of multiple sclerosis, cladribine. CONCLUSION Cladribine tablets proved to be a highly efficient treatment choice for Relapsing- Remitting Multiple Sclerosis (RRMS), especially for patients with high disease activity. It is the first DMD for MS with a complex mechanism of action, by inhibiting the adenosine-deaminase enzyme it increases the intracellular levels of deoxyadenosine triphosphate, which with relative selectivity depletes both T- and B-cells lines simultaneously. However long term follow-up safety and effectiveness data are still missing, and clear treatment protocols are lacking beyond the first two treatment years cladribine should prove to be a valuable addition to the therapeutic palette of RRMS, and potentially for Clinically Isolated Syndrome (CIS) as well.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
71
|
Laroni A, Schiavetti I, Sormani MP, Uccelli A. COVID-19 in patients with multiple sclerosis undergoing disease-modifying treatments. Mult Scler 2020; 27:2126-2136. [PMID: 33205695 DOI: 10.1177/1352458520971817] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CoronaVirus Disease 19 (COVID-19) pandemic is a threat of particular concern for people affected by chronic immune-mediated diseases, such as multiple sclerosis (MS), who are often treated with immunomodulatory and immunosuppressive drugs, which may increase the risk of infections in general. At the beginning of the COVID-19 pandemic, empirical guidelines on how to manage treatments for immune-mediated diseases, including MS, were released. Subsequently, the first clinical pictures and data sets have been published, describing the outcomes of COVID-19 in patients with MS treated with immunomodulatory and immunosuppressive drugs. Here we will review available information on how infections by human coronaviruses affect the immune system in untreated subjects and in patients affected by MS treated with drugs which modulate the immune system.
Collapse
Affiliation(s)
- Alice Laroni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy/IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genova, Italy
| | - Maria Pia Sormani
- IRCCS Ospedale Policlinico San Martino, Genova, Italy/Department of Health Sciences, Section of Biostatistics, University of Genova, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy/IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
72
|
Long-term safety data from the cladribine tablets clinical development program in multiple sclerosis. Mult Scler Relat Disord 2020; 46:102572. [DOI: 10.1016/j.msard.2020.102572] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023]
|
73
|
Zrzavy T, Wimmer I, Rommer PS, Berger T. Immunology of COVID-19 and disease-modifying therapies: The good, the bad and the unknown. Eur J Neurol 2020; 28:3503-3516. [PMID: 33090599 PMCID: PMC7675490 DOI: 10.1111/ene.14578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
Objective The outbreak of the SARS‐CoV‐2 pandemic, caused by a previously unknown infectious agent, posed unprecedented challenges to healthcare systems and unmasked their vulnerability and limitations worldwide. Patients with long‐term immunomodulatory/suppressive therapies, as well as their physicians, were and are concerned about balancing the risk of infection and effects of disease‐modifying therapy. Over the last few months, knowledge regarding SARS‐CoV‐2 has been growing tremendously, and the first experiences of infections in patients with multiple sclerosis (MS) have been reported. Methods This review summarizes the currently still limited knowledge about SARS‐CoV‐2 immunology and the commonly agreed modes of action of approved drugs in immune‐mediated diseases of the central nervous system (MS and neuromyelitis optica spectrum disorder). Specifically, we discuss whether immunosuppressive/immunomodulatory drugs may increase the risk of SARS‐CoV‐2 infection and, conversely, may decrease the severity of a COVID‐19 disease course. Results At present, it can be recommended in general that none of those therapies with a definite indication needs to be stopped per se. A possibly increased risk of infection for most medications is accompanied by the possibility to reduce the severity of COVID‐19. Conclusions Despite the knowledge gain over the last few months, current evidence remains limited, and, thus, further clinical vigilance and systematic documentation is essential.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
74
|
Cellerino M, Bonavita S, Ferrero M, Inglese M, Boffa G. Severe disease activity in MS patients treated with cladribine after fingolimod withdrawal. J Neurol Sci 2020; 418:117156. [PMID: 33010653 DOI: 10.1016/j.jns.2020.117156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
75
|
Martin Paez Y, Bennett JL, Subramanian PS, Pelak VS. Considerations for the Treatment of Inflammatory Neuro-Ophthalmologic Disorders During the COVID-19 Pandemic. J Neuroophthalmol 2020; 40:305-314. [PMID: 32804456 PMCID: PMC7418184 DOI: 10.1097/wno.0000000000001016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The initiation and continuation of immune-based therapies to treat and prevent complications of inflammatory neuro-ophthalmologic disorders during the 2019 novel coronavirus (COVID-19) pandemic is the subject of considerable debate. In each case, a treatment decision must be reached based on best clinical practices for the disorder, patient comorbidities, the current state of knowledge about the pathogenesis and infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the utilization of hospital and community resources. Unfortunately, the evidence needed to standardize the decision-making process for each neuro-ophthalmologic disorder is currently absent and is likely to require months or years to develop based on the accrual of robust international data sets. In this article, we review the current understanding of SARS-CoV-2 and COVID-19 complications to provide a framework for approaching the treatment of inflammatory neuro-ophthalmic disorders during the COVID-19 viral pandemic.
Collapse
Affiliation(s)
- Yosbelkys Martin Paez
- Departments of Ophthalmology (YMP, JLB, PSS, VSP), Neurology (YMP, JLB, PSS, VSP), and Neurosurgery (PSS), University of Colorado School of Medicine, Aurora, Colorado; and Programs in Neuroscience and Immunology (JLB), University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | |
Collapse
|
76
|
Korsukewitz C, Reddel SW, Bar-Or A, Wiendl H. Neurological immunotherapy in the era of COVID-19 - looking for consensus in the literature. Nat Rev Neurol 2020; 16:493-505. [PMID: 32641860 PMCID: PMC7341707 DOI: 10.1038/s41582-020-0385-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is concerning for patients with neuroimmunological diseases who are receiving immunotherapy. Uncertainty remains about whether immunotherapies increase the risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or increase the risk of severe disease and death upon infection. National and international societies have developed guidelines and statements, but consensus does not exist in several areas. In this Review, we attempt to clarify where consensus exists and where uncertainty remains to inform management approaches based on the first principles of neuroimmunology. We identified key questions that have been addressed in the literature and collated the recommendations to generate a consensus calculation in a Delphi-like approach to summarize the information. We summarize the international recommendations, discuss them in light of the first available data from patients with COVID-19 receiving immunotherapy and provide an overview of management approaches in the COVID-19 era. We stress the principles of medicine in general and neuroimmunology in particular because, although the risk of viral infection has become more relevant, most of the considerations apply to the general management of neurological immunotherapy. We also give special consideration to immunosuppressive treatment and cell-depleting therapies that might increase susceptibility to SARS-CoV-2 infection but reduce the risk of severe COVID-19.
Collapse
Affiliation(s)
- Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany
| | - Stephen W Reddel
- Department of Neurology, Concord Hospital and The Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany.
| |
Collapse
|
77
|
Baker D, Amor S, Kang AS, Schmierer K, Giovannoni G. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Mult Scler Relat Disord 2020; 43:102174. [PMID: 32464584 PMCID: PMC7214323 DOI: 10.1016/j.msard.2020.102174] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND SARS-CoV-2 viral infection causes COVID-19 that can result in severe acute respiratory distress syndrome (ARDS), which can cause significant mortality, leading to concern that immunosuppressive treatments for multiple sclerosis and other disorders have significant risks for both infection and ARDS. OBJECTIVE To examine the biology that potentially underpins immunity to the SARS-Cov-2 virus and the immunity-induced pathology related to COVID-19 and determine how this impinges on the use of current disease modifying treatments in multiple sclerosis. OBSERVATIONS Although information about the mechanisms of immunity are scant, it appears that monocyte/macrophages and then CD8 T cells are important in eliminating the SARS-CoV-2 virus. This may be facilitated via anti-viral antibody responses that may prevent re-infection. However, viral escape and infection of leucocytes to promote lymphopenia, apparent CD8 T cell exhaustion coupled with a cytokine storm and vascular pathology appears to contribute to the damage in ARDS. IMPLICATIONS In contrast to ablative haematopoietic stem cell therapy, most multiple-sclerosis-related disease modifying therapies do not particularly target the innate immune system and few have any major long-term impact on CD8 T cells to limit protection against COVID-19. In addition, few block the formation of immature B cells within lymphoid tissue that will provide antibody-mediated protection from (re)infection. However, adjustments to dosing schedules may help de-risk the chance of infection further and reduce the concerns of people with MS being treated during the COVID-19 pandemic.
Collapse
Key Words
- ace2, angiotensin converting enzyme two
- ards, acute respiratory distress syndrome
- asc, antibody secreting cells
- cns, central nervous system
- dmt, disease modifying therapies
- (hsct), haematopoietic stem cell therapy
- irt, immune reconstitution therapies
- ms, multiple sclerosis
- rbd, receptor binding domain
- rna, ribonucleic acid
- sars, severe acute respiratory syndrome
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom.
| | - Sandra Amor
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Pathology Department, VUmc, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Angray S Kang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
78
|
ApÓstolos-Pereira SL, Silva GD, Disserol CCD, Feo LB, Matos ADMB, Schoeps VA, Gomes ABAGR, Boaventura M, Mendes MF, Callegaro D. Management of central nervous system demyelinating diseases during the coronavirus disease 2019 pandemic: a practical approach. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:430-439. [PMID: 32609290 DOI: 10.1590/0004-282x20200056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) pandemic poses a potential threat to patients with autoimmune disorders, including multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Such patients are usually treated with immunomodulatory or immunosuppressive agents, which may tamper with the organism's normal response to infections. Currently, no consensus has been reached on how to manage MS and NMOSD patients during the pandemic. OBJECTIVE To discuss strategies to manage those patients. METHODS We focus on how to 1) reduce COVID-19 infection risk, such as social distancing, telemedicine, and wider interval between laboratory testing/imaging; 2) manage relapses, such as avoiding treatment of mild relapse and using oral steroids; 3) manage disease-modifying therapies, such as preference for drugs associated with lower infection risk (interferons, glatiramer, teriflunomide, and natalizumab) and extended-interval dosing of natalizumab, when safe; 4) individualize the chosen MS induction-therapy (anti-CD20 monoclonal antibodies, alemtuzumab, and cladribine); 5) manage NMOSD preventive therapies, including initial therapy selection and current treatment maintenance; 6) manage MS/NMOSD patients infected with COVID-19. CONCLUSIONS In the future, real-world case series of MS/NMOSD patients infected with COVID-19 will help us define the best management strategies. For the time being, we rely on expert experience and guidance.
Collapse
Affiliation(s)
| | - Guilherme Diogo Silva
- School of Medicine, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Lucas Bueno Feo
- School of Medicine, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Mateus Boaventura
- School of Medicine, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Fernanda Mendes
- School of Medicine, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dagoberto Callegaro
- School of Medicine, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
79
|
Ricardo A, Carnero Contentti E, Anabel SB, Adrian LP, Orlando G, Fernando H, Víctor R, Fernando G, Ignacio RJ. Decision-making on management of ms and nmosd patients during the COVID-19 pandemic: A latin american survey. Mult Scler Relat Disord 2020; 44:102310. [PMID: 32590314 PMCID: PMC7837246 DOI: 10.1016/j.msard.2020.102310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
Abstract
In this COVID-19 context, there is an urgent necessity of sharing information to enable evidence-based decision making on the clinical management. In LATAM, 60% of the experts had the possibility of monitoring their patients by telemedicine. Most neurologists postpone magnetic resonance and laboratory blood tests delay is associated with the type of MS or NMOSD treatment. Platform therapies, dimethyl-fumarate and natalizumab are considered safe options to initiate in naive patients.
Background The emergence of COVID-19 and its vertiginous spreading speed represents a unique challenge to neurologists managing multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD). The need for data on the impact of the virus on these patients grows rapidly. There is an urgent necessity of sharing information to enable evidence-based decision making on the clinical management. There are no data on what physicians are doing on clinical practice in Latin American countries. Aim to investigate current management opinion of Latin American MS and/or NMOSD expert neurologists based on their experience and recommendations. Methods we developed a voluntary web-based survey based on hypothetical situations that these patients may encounter, while taking into account the potential risk of developing severe COVID-19 infection. Results 60% of the experts had the possibility of monitoring their patients by telemedicine. Most neurologists postpone magnetic resonance. Laboratory blood tests delay is associated with the type of treatment. Platform therapies, dimethyl-fumarate and natalizumab are considered safe options to initiate in naive patients. Conclusion decision-making about MS and NMOSD patients has become even more complex in order to adapt to the COVID-19 pandemic. Risks and benefits should be taken into consideration throughout the patient follow-up.
Collapse
Affiliation(s)
- Alonso Ricardo
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Urquiza número 609, CABA, C1221 ADC, Argentina; División Neurología, Sanatorio Güemes, CABA.
| | | | - Silva Berenice Anabel
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Urquiza número 609, CABA, C1221 ADC, Argentina
| | - López Pablo Adrian
- Neuroimmunology Unit, Department of Neuroscience, Hospital Alemán, Buenos Aires, Argentina
| | - Garcea Orlando
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Urquiza número 609, CABA, C1221 ADC, Argentina
| | - Hamuy Fernando
- Centro Nacional de Esclerosis Múltiple Hospital IMT, Paraguay-Departamento de Neurología de Diagnóstico Codas Thompson, Paraguay
| | - Rivera Víctor
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Gracia Fernando
- Clínica de Esclerosis Múltiple, Servicio de Neurología, Hospital Santo Tomas, Panamá, Facultad de Ciencias de la Salud, Universidad Interamericana de Panamá
| | | |
Collapse
|
80
|
Moccia M, Lanzillo R, Petruzzo M, Nozzolillo A, De Angelis M, Carotenuto A, Palladino R, Brescia Morra V. Single-Center 8-Years Clinical Follow-Up of Cladribine-Treated Patients From Phase 2 and 3 Trials. Front Neurol 2020; 11:489. [PMID: 32625161 PMCID: PMC7311570 DOI: 10.3389/fneur.2020.00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Cladribine is approved for the treatment of highly-active relapsing multiple sclerosis (MS), where it is also effective on disability progression. In the present single-center study, we aim to report on the 8-years clinical follow-up of 27 patients included in phase 2 and 3 clinical trials for cladribine. Methods: We included patients exposed to cladribine (n = 13) or placebo (n = 14) in ONWARD, CLARITY, and ORACLE-MS trials, and followed-up at the same center after trial termination. Outcomes of long-term disease progression were recorded. Results: During 8-year follow-up, patients treated with cladribine presented with reduced risk of EDSS progression (HR = 0.148; 95%CI = 0.031, 0.709; p = 0.017), of reaching EDSS 6.0 (HR = 0.115; 95%CI = 0.015, 0.872; p = 0.036), and of SP conversion (HR = 0.010; 95%CI = 0.001, 0.329; p = 0.010), when compared with placebo. Conclusions: Our exploratory study provides additional evidence that cladribine may be useful to prevent or, at least, mitigate the risk of disability progression after 8 years.
Collapse
Affiliation(s)
- Marcello Moccia
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Roberta Lanzillo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Martina Petruzzo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Agostino Nozzolillo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Marcello De Angelis
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Antonio Carotenuto
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| | - Raffaele Palladino
- Department of Primary Care and Public Health, Imperial College, London, United Kingdom.,Department of Public Health, Federico II University, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neuroscience, Reproductive Science and Odontostomatology, Multiple Sclerosis Clinical Care and Research Center, Federico II University, Naples, Italy
| |
Collapse
|
81
|
Repopulation of T, B, and NK cells following alemtuzumab treatment in relapsing-remitting multiple sclerosis. J Neuroinflammation 2020; 17:189. [PMID: 32539719 PMCID: PMC7296935 DOI: 10.1186/s12974-020-01847-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To characterize long-term repopulation of peripheral immune cells following alemtuzumab-induced lymphopenia in relapsing-remitting MS (RRMS), with a focus on regulatory cell types, and to explore associations with clinical outcome measures. METHODS The project was designed as a multicenter add-on longitudinal mechanistic study for RRMS patients enrolled in CARE-MS II, CARE-MS II extension at the University of Southern California and Stanford University, and an investigator-initiated study conducted at the Universities of British Columbia and Chicago. Methods involved collection of blood at baseline, prior to alemtuzumab administration, and at months 5, 11, 17, 23, 36, and 48 post-treatment. T cell, B cell, and natural killer (NK) cell subsets, chemokine receptor expression in T cells, in vitro cytokine secretion patterns, and regulatory T cell (Treg) function were assessed. Clinical outcomes, including expanded disability status score (EDSS), relapses, conventional magnetic resonance imaging (MRI) measures, and incidents of secondary autoimmunity were tracked. RESULTS Variable shifts in lymphocyte populations occurred over time in favor of CD4+ T cells, B cells, and NK cells with surface phenotypes characteristic of regulatory subsets, accompanied by reduced ratios of effector to regulatory cell types. Evidence of increased Treg competence was observed after each treatment course. CD4+ and CD8+ T cells that express CXCR3 and CCR5 and CD8+ T cells that express CDR3 and CCR4 were also enriched after treatment, indicating heightened trafficking potential in activated T cells. Patterns of repopulation were not associated with measures of clinical efficacy or secondary autoimmunity, but exploratory analyses using a random generalized estimating equation (GEE) Poisson model provide preliminary evidence of associations between pro-inflammatory cell types and increased risk for gadolinium (Gd+) enhancing lesions, while regulatory subsets were associated with reduced risk. In addition, the risk for T2 lesions correlated with increases in CD3+CD8+CXCR3+ cells. CONCLUSIONS Lymphocyte repopulation after alemtuzumab treatment favors regulatory subsets in the T cell, B cell, and NK cell compartments. Clinical efficacy may reflect the sum of interactions among them, leading to control of potentially pathogenic effector cell types. Several immune measures were identified as possible biomarkers of lesion activity. Future studies are necessary to more precisely define regulatory and effector subsets and their contributions to clinical efficacy and risk for secondary autoimmunity in alemtuzumab-treated patients, and to reveal new insights into mechanisms of immunopathogenesis in MS. TRIAL REGISTRATION Parent trials for this study are registered with ClinicalTrials.gov: CARE-MS II: NCT00548405, CARE-MS II extension: NCT00930553 and ISS: NCT01307332.
Collapse
|
82
|
Maniscalco GT, Annunziata M, Ranieri A, Alfieri G, Renna R, Iorio WD, Guarcello G, Cerillo I, Improta G, Florio C. Remission of early persistent cladribine-induced neutropenia after filgrastim therapy in a patient with Relapsing - Remitting Multiple Sclerosis. Mult Scler Relat Disord 2020; 43:102151. [PMID: 32417665 DOI: 10.1016/j.msard.2020.102151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cladribine tablets were recently approved for the treatment of Relapsing-Remitting Multiple Sclerosis (RRMS), reducing B cells and T cells, followed by reconstitution of the adaptive immune system, with transient and mild effects on the innate one. Cladribine is also the standard first-line and subsequent treatment for Hairy-Cell Leukemia (HCL), frequently complicated by neutropenic fever. Recombinant human Granulocyte Colony-Stimulating Factor (G-CSF; Filgrastim) has been proved to reduce neutropenia by increasing neutrophil count. CASE REPORT To the best of our knowledge, we report the first case of early and persistent high grade non febrile neutropenia after oral cladribine therapy in a 49-year-old RR-MS patient, successfully treated with Filgrastim. CONCLUSIONS This report suggests that in selected cases, cladribine requires early monitoring of blood sample as it may be responsible for early neutropenia, requiring specific treatment.
Collapse
Affiliation(s)
- Giorgia T Maniscalco
- Multiple Sclerosis Center "A. Cardarelli "Hospital, Naples, Italy; Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy.
| | | | - Angelo Ranieri
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Gennaro Alfieri
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Rosaria Renna
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Walter Di Iorio
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | | | - Ilaria Cerillo
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ciro Florio
- Multiple Sclerosis Center "A. Cardarelli "Hospital, Naples, Italy; Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| |
Collapse
|
83
|
Mateo-Casas M, Reyes S, O'Toole EA, De Trane S, Yildiz O, Allen-Philbey K, Mathews J, Baker D, Giovannoni G, Schmierer K. Severe skin reactions associated with cladribine in people with multiple sclerosis. Mult Scler Relat Disord 2020; 43:102140. [PMID: 32454296 DOI: 10.1016/j.msard.2020.102140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To report three cases of severe skin reactions in patients treated with cladribine for multiple sclerosis. METHODS Case study. RESULTS Patients developed severe rash 3-192 days after receiving cladribine. All were effectively treated with steroids and antihistamines. Additional doses of cladribine were administered after pretreatment with steroids and anti-histamines. One patient developed mild recurrence following re-exposure, which resolved within three days, whilst another patient tolerated re-exposure without further adverse reaction. CONCLUSION Severe skin reactions, well described in patients receiving cladribine for treatment of haematological conditions, may occur in patients treated with this compound for multiple sclerosis. Neurologists need to be aware of this rare, but significant adverse reaction. Re-exposure may be safe with standard pre-treatment against allergic reactions.
Collapse
Affiliation(s)
- M Mateo-Casas
- The Blizard Institute (Neuroscience, Surgery & Trauma), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; Department of Neurology, Hospital General Universitario de Castellón, Castellón de la Plana, Spain
| | - S Reyes
- The Blizard Institute (Neuroscience, Surgery & Trauma), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - E A O'Toole
- The Blizard Institute (Cell Biology & Cutaneous Research), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - S De Trane
- The Blizard Institute (Neuroscience, Surgery & Trauma), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - O Yildiz
- The Blizard Institute (Neuroscience, Surgery & Trauma), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - K Allen-Philbey
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - J Mathews
- Pathology and Pharmacy, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - D Baker
- The Blizard Institute (Neuroscience, Surgery & Trauma), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - G Giovannoni
- The Blizard Institute (Neuroscience, Surgery & Trauma), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - K Schmierer
- The Blizard Institute (Neuroscience, Surgery & Trauma), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK.
| |
Collapse
|
84
|
Boyko AN, Khachanova NV, Melnikov MV, Sivertseva SA, Evdoshenko EP, Spirin NN, Vasilyev AV, Rozenson OL. [New directions of immunocorrection in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:103-109. [PMID: 32307419 DOI: 10.17116/jnevro2020120021103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is a central nervous system disease with autoimmune and neurodegenerative mechanisms of development. This disease can lead to severe disability and neurological defects. Although its etiology and pathogenesis remain unclear, research data show that multiple sclerosis is a multifactorial disease, the development of which depends on environmental factors, as well as a genetic predisposition. The impact of these factors lead to the death of neural cells, accompanied by demyelination of nerves and neuronal dysfunction. Therapy of multiple sclerosis is based on the use of anti-inflammatory and immunomodulating substances, however, there are certain disadvantages associated with the constant use of these drugs and a possible change in dosage over time. This review discusses the pathogenesis of multiple sclerosis and the role of various subpopulations of immune cells in the development of diseases, as well as existing approaches to therapy. It is noted that immunoreconstitution therapy has advantages over immunomodulation and immunosuppression maintenance therapy for some patients. Thus, short courses of therapy provide more adequate treatment for patients and lower risks of adverse events associated with chronic immunosuppression. The review also discusses the data of clinical studies on the immunoreconstitution therapy drugs, such as alemtuzumab, ocrelizumab and cladribine. It is noted that nowadays the exact mechanisms underlying this type of therapy remain unclear. In this regard, further studies are needed to explain the therapeutic effects. It is assumed that patients with a high risk of multiple sclerosis progression are the optimal group of patients for the early use of selective immunoreconstitution therapy. Thus, immunoreconstitution therapy may be the treatment of choice for many patients with highle active multiple sclerosis.
Collapse
Affiliation(s)
- A N Boyko
- Pirogov National Research Medical University, Moscow, Russia
| | - N V Khachanova
- Pirogov National Research Medical University, Moscow, Russia
| | - M V Melnikov
- Pirogov National Research Medical University, Moscow, Russia
| | - S A Sivertseva
- Tyumen Regional Center for Multiple Sclerosis, Tyumen, Russia
| | - E P Evdoshenko
- Pavlov First State Medical University of St. Petersburg, St. Peterburg, Russia
| | - N N Spirin
- Yaroslavl' State Medical University, Yaroslavl, Russia
| | | | | |
Collapse
|
85
|
Cellerino M, Ivaldi F, Pardini M, Rotta G, Vila G, Bäcker-Koduah P, Berge T, Laroni A, Lapucci C, Novi G, Boffa G, Sbragia E, Palmeri S, Asseyer S, Høgestøl E, Campi C, Piana M, Inglese M, Paul F, Harbo HF, Villoslada P, Kerlero de Rosbo N, Uccelli A. Impact of treatment on cellular immunophenotype in MS: A cross-sectional study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e693. [PMID: 32139439 PMCID: PMC7136062 DOI: 10.1212/nxi.0000000000000693] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Objective To establish cytometry profiles associated with disease stages and immunotherapy in MS. Methods Demographic/clinical data and peripheral blood samples were collected from 227 patients with MS and 82 sex- and age-matched healthy controls (HCs) enrolled in a cross-sectional study at 4 European MS centers (Spain, Italy, Germany, and Norway). Flow cytometry of isolated peripheral blood mononuclear cells was performed in each center using specifically prepared antibody-cocktail Lyotubes; data analysis was centralized at the Genoa center. Differences in immune cell subsets were assessed between groups of untreated patients with relapsing-remitting or progressive MS (RRMS or PMS) and HCs and between groups of patients with RRMS taking 6 commonly used disease-modifying drugs. Results In untreated patients with MS, significantly higher frequencies of Th17 cells in the RRMS population compared with HC and lower frequencies of B-memory/B-regulatory cells as well as higher percentages of B-mature cells in patients with PMS compared with HCs emerged. Overall, the greatest deviation in immunophenotype in MS was observed by treatment rather than disease course, with the strongest impact found in fingolimod-treated patients. Fingolimod induced a decrease in total CD4+ T cells and in B-mature and B-memory cells and increases in CD4+ and CD8+ T-regulatory and B-regulatory cells. Conclusions Our highly standardized, multisite cytomics data provide further understanding of treatment impact on MS immunophenotype and could pave the way toward monitoring immune cells to help clinical management of MS individuals.
Collapse
Affiliation(s)
- Maria Cellerino
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Federico Ivaldi
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Matteo Pardini
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Gianluca Rotta
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Gemma Vila
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Priscilla Bäcker-Koduah
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Tone Berge
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Alice Laroni
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Caterina Lapucci
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Giovanni Novi
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Giacomo Boffa
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Elvira Sbragia
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Serena Palmeri
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Susanna Asseyer
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Einar Høgestøl
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Cristina Campi
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Michele Piana
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Matilde Inglese
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Friedemann Paul
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Hanne F Harbo
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Pablo Villoslada
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Nicole Kerlero de Rosbo
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy
| | - Antonio Uccelli
- From the Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (M.C., F.I., M.P., A.L., C.L., G.N., G.B., E.S., S.P., M.I., N.K.d.R.) and Center of Excellence for Biomedical Research (A.U.), University of Genoa, Italy; BD Biosciences Italy (G.R.), Milan; Institut d'Investigacions Biomediques August Pi Sunyer (G.V., P.V.), Barcelona, Spain; Charité Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine (P.B.-K., S.A., F.P.), Germany; Department of Research, Innovation and Education (T.B.), Neuroscience Research Unit, Oslo University Hospital; Department of Mechanical Electronics and Chemical Engineering (T.B.), Oslo Metropolitan University, Norway; University of Oslo (E.H., H.F.H.) and Oslo University Hospital (H.F.H.), Norway; Department of Mathematics and Padova Neuroscience Center (C.C.), University of Padua, Italy; Department of Mathematics (M.P.), University of Genoa, Italy; and IRCCS Ospedale Policlinico San Martino (A.L., M.P., M.I., A.U.), Genoa, Italy.
| |
Collapse
|
86
|
Immunological consequences of "immune reconstitution therapy" in multiple sclerosis: A systematic review. Autoimmun Rev 2020; 19:102492. [PMID: 32062028 DOI: 10.1016/j.autrev.2020.102492] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Immune reconstitution therapy (IRT) is an emerging concept for the treatment of multiple sclerosis (MS) that is given intermittently and can induce long-term remission of MS that is sustained in treatment-free periods. A systematic literature review was performed to identify and summarize current knowledge regarding the short- and long-term immunological consequences of different IRTs and CD20 depleting therapies on the cellular level in patients with MS. A total of 586 articles published between January 2010 and September 2019 were identified and screened; 44 studies met inclusion criteria for the review. All the treatments considered appeared to produce both qualitative and quantitative changes in the immune cell populations of patients with MS that resulted in a more anti-inflammatory immune profile. Autologous hematopoietic stem cell transplantation produced the longest-lasting and greatest effects on a wide range of immune cells. Many patients achieved prolonged depletion of the adaptive immune system when alemtuzumab and cladribine tablets were administered as short courses of therapy; however, a proportion of patients required retreatment to maintain these effects. Alemtuzumab may produce greater depletion of both CD4+ and CD8+ T cells than cladribine tablets, although both treatments similarly deplete B cells. Recovery of B cells before T cell recovery and hyperpopulation of B cells after alemtuzumab may contribute to secondary autoimmunity. Cladribine tablets had a greater effect on B cells than T cells, and no hyperpopulation of B cells was observed after treatment with cladribine tablets. Ocrelizumab and rituximab require regular repeated treatment every 6 months to maintain depletion of B and T cells. Effects of the drug treatments on the innate immune system were minor compared with those on the adaptive immune system. Additional characterization of the cellular changes occurring during IRT and CD20 depletion may lead to further improvement in the understanding of the pathogenesis of MS and the future development of therapies with even longer lasting effects. Although the treatments considered in this review improve quality of life and outcomes for patients with MS, a cure for this debilitating disease is not yet in sight.
Collapse
|
87
|
Zanghì A, D'Amico E, Patti F. Immunosuppression in relapsing remitting multiple sclerosis: moving towards personalized treatment. Expert Rev Neurother 2020; 20:771-782. [PMID: 31971026 DOI: 10.1080/14737175.2020.1721282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Therapeutic armamentarium in Multiple Sclerosis (MS) has radically changed in the last few decades due to the development of disease modifying treatments (DMTs) with highly selective mechanisms of action. AREAS COVERED In this review, the authors will focus on the current role of immunosuppressive DMTs in the management of the relapsing-remitting form of MS (RRMS), moving from the rationale of its use and looking at the possibility to design an idealistic scenario of a personalized approach for each single patient. EXPERT OPINION Questions remain open about whether initial high-efficacy immunosuppressive DMTs improve long-term outcomes, whether prolonged exposure to these agents increases adverse events and what the strongest early surrogate markers are for predicting long-term treatment responses to high-efficacy drugs. In this way, the immunosuppressive DMTs, are used to hit the immune system early and hard with the idealistic goal of striking the autoimmune activities before the neurological damage becomes irreversible.
Collapse
Affiliation(s)
- Aurora Zanghì
- Department "G.F. Ingrassia", MS Center, University of Catania , Catania, Italy
| | - Emanuele D'Amico
- Department "G.F. Ingrassia", MS Center, University of Catania , Catania, Italy
| | - Francesco Patti
- Department "G.F. Ingrassia", MS Center, University of Catania , Catania, Italy
| |
Collapse
|
88
|
Förster M, Küry P, Aktas O, Warnke C, Havla J, Hohlfeld R, Mares J, Hartung HP, Kremer D. Managing Risks with Immune Therapies in Multiple Sclerosis. Drug Saf 2020; 42:633-647. [PMID: 30607830 DOI: 10.1007/s40264-018-0782-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the introduction of the interferons in the 1990s, a multitude of different immunomodulatory and immunosuppressant disease-modifying therapies for multiple sclerosis (MS) have been developed. They have all shown positive effects on clinical endpoints such as relapse rate and disease progression and are a heterogeneous group of therapeutics comprising recombinant pegylated and non-pegylated interferon-β variants, peptide combinations, monoclonal antibodies, and small molecules. However, they have relevant side effect profiles, which necessitate thorough monitoring and straightforward patient education. In individual cases, side effects can be severe and potentially life-threatening, which is why knowledge about (neurological and non-neurological) adverse drug reactions is essential for prescribing neurologists as well as general practitioners. This paper aims to provide an overview of currently available MS therapies, their modes of action and safety profiles, and the necessary therapy monitoring.
Collapse
Affiliation(s)
- Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Clemens Warnke
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-Universität München, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-Universität München, Munich, Germany.,The Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jan Mares
- Department of Neurology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
89
|
Möhn N, Skripuletz T, Sühs KW, Menck S, Voß E, Stangel M. Therapy with cladribine is efficient and safe in patients previously treated with natalizumab. Ther Adv Neurol Disord 2019; 12:1756286419887596. [PMID: 31832100 PMCID: PMC6887806 DOI: 10.1177/1756286419887596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
Background: The humanized anti-α4 integrin monoclonal antibody natalizumab has proven to be very effective in patients with highly active relapsing-remitting multiple sclerosis (MS), but harbors the risk of progressive multifocal leukoencephalopathy (PML). Recently, new therapeutic options have become available for patients with high risk of developing PML while on natalizumab treatment. One of these new therapeutics is the oral synthetic purine analogue cladribine. In order to determine whether therapy with cladribine is effective and safe in patients with MS who previously had been treated with natalizumab, we analyzed clinical, radiological, and laboratory data of 17 patients whose disease modifying treatment (DMT) was switched from natalizumab to cladribine. Methods: A total of 17 patients with prior natalizumab treatment were switched to a DMT with cladribine because of a John Cunningham virus (JCV) antibody index above 1.5 (N = 13), ongoing disease activity (N = 6), magnetic resonance imaging (MRI) disease activity (N = 4), or patients preference (N = 2). A chart review and follow up of those patients was performed. In addition to MRI and laboratory data, clinical data regarding MS relapses and disease progression or possible adverse events were analyzed. Results: The median duration of cladribine treatment between February 2018 and April 2019 amounted to 9.7 months (range: 1.5–15 months). None of our 17 patients presented with a clinical relapse. Only two patients showed a new T2 lesion on brain MRI, but without any signs of PML. As expected, reduction of lymphocyte count was frequent in cladribine-treated patients, but only four patients exhibited lymphopenia grade 2 (500–800/µl). Conclusions: In our cohort the switch from natalizumab to cladribine treatment was effective and safe. So far, no serious adverse events other than lymphopenia have been observed, especially no cases of PML.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | - Sylvia Menck
- Neurocenter Barsinghausen, Barsinghausen, Germany
| | - Elke Voß
- Neurocenter Barsinghausen, Barsinghausen, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
90
|
Immune reconstitution therapies: concepts for durable remission in multiple sclerosis. Nat Rev Neurol 2019; 16:56-62. [PMID: 31649335 DOI: 10.1038/s41582-019-0268-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
New so-called immune reconstitution therapies (IRTs) have the potential to induce long-term or even permanent drug-free remission in people with multiple sclerosis (MS). These therapies deplete components of the immune system with the aim of allowing the immune system to renew itself. Haematopoietic stem cell transplantation, the oral formulation cladribine and the monoclonal antibodies alemtuzumab, rituximab and ocrelizumab are frequently categorized as IRTs. However, the evidence that IRTs indeed renew adaptive immune cell repertoires and rebuild a healthy immune system in people with MS is variable. Instead, IRTs might foster the expansion of those cells that survive immunosuppression, and this expansion could be associated with acquisition of new functional phenotypes. Understanding immunological changes induced by IRTs and how they correlate with clinical outcomes will be instrumental in guiding the optimal use of immune reconstitution as a durable therapeutic strategy. This Perspectives article critically discusses the efficacy and potential mechanisms of IRTs in the context of immune system renewal and durable disease remission in MS.
Collapse
|
91
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
92
|
Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O. Immunological Aspects of Approved MS Therapeutics. Front Immunol 2019; 10:1564. [PMID: 31354720 PMCID: PMC6637731 DOI: 10.3389/fimmu.2019.01564] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological immune-mediated disease leading to disability in young adults. The outcome of the disease is unpredictable, and over time, neurological disabilities accumulate. Interferon beta-1b was the first drug to be approved in the 1990s for relapsing-remitting MS to modulate the course of the disease. Over the past two decades, the treatment landscape has changed tremendously. Currently, more than a dozen drugs representing 1 substances with different mechanisms of action have been approved (interferon beta preparations, glatiramer acetate, fingolimod, siponimod, mitoxantrone, teriflunomide, dimethyl fumarate, cladribine, alemtuzumab, ocrelizumab, and natalizumab). Ocrelizumab was the first medication to be approved for primary progressive MS. The objective of this review is to present the modes of action of these drugs and their effects on the immunopathogenesis of MS. Each agent's clinical development and potential side effects are discussed.
Collapse
Affiliation(s)
- Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ron Milo
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - May H. Han
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Sammita Satyanarayan
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
| | - Larissa Hauer
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Sarah Laurent
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Yinan Zhang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, Dallas, TX, United States
| |
Collapse
|
93
|
Baker D, Pryce G, Amor S, Giovannoni G, Schmierer K. Learning from other autoimmunities to understand targeting of B cells to control multiple sclerosis. Brain 2019; 141:2834-2847. [PMID: 30212896 DOI: 10.1093/brain/awy239] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
Although many suspected autoimmune diseases are thought to be T cell-mediated, the response to therapy indicates that depletion of B cells consistently inhibits disease activity. In multiple sclerosis, it appears that disease suppression is associated with the long-term reduction of memory B cells, which serves as a biomarker for disease activity in many other CD20+ B cell depletion-sensitive, autoimmune diseases. Following B cell depletion, the rapid repopulation by transitional (immature) and naïve (mature) B cells from the bone marrow masks the marked depletion and slow repopulation of lymphoid tissue-derived, memory B cells. This can provide long-term protection from a short treatment cycle. It seems that memory B cells, possibly via T cell stimulation, drive relapsing disease. However, their sequestration in ectopic follicles and the chronic activity of B cells and plasma cells in the central nervous system may drive progressive neurodegeneration directly via antigen-specific mechanisms or indirectly via glial-dependent mechanisms. While unproven, Epstein-Barr virus may be an aetiological trigger of multiple sclerosis. This infects mature B cells, drives the production of memory B cells and possibly provides co-stimulatory signals promoting T cell-independent activation that breaks immune tolerance to generate autoreactivity. Thus, a memory B cell centric mechanism can integrate: potential aetiology, genetics, pathology and response to therapy in multiple sclerosis and other autoimmune conditions with ectopic B cell activation that are responsive to memory B cell-depleting strategies.
Collapse
Affiliation(s)
- David Baker
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth Pryce
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sandra Amor
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Pathology Department, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gavin Giovannoni
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Klaus Schmierer
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
94
|
Stuve O, Soelberg Soerensen P, Leist T, Giovannoni G, Hyvert Y, Damian D, Dangond F, Boschert U. Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: an extended analysis of surface markers. Ther Adv Neurol Disord 2019; 12:1756286419854986. [PMID: 31244898 PMCID: PMC6582297 DOI: 10.1177/1756286419854986] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cladribine tablets 3.5 mg/kg cumulative over 2 years (CT3.5) had significant clinical/imaging effects in patients with clinically isolated syndrome (CIS; ORACLE-MS) or relapsing-remitting MS (RRMS; CLARITY and CLARITY Extension). This analysis compared the effect of cladribine tablets on the dynamics of immune cell reduction and reconstitution in ORACLE-MS, CLARITY, and CLARITY Extension during the first year of treatment (i.e. the first course of CT1.75) in patients randomized to CT3.5. Methods Lymphocyte subtypes were analyzed using multiparameter flow cytometry. Changes in cell counts and relative proportions of lymphocytes were evaluated at weeks 5, 13, 24, and 48. Results Across studies, consistent and comparable selective kinetics of immune cell populations occurred following the first treatment year with CT. A rapid reduction in CD16+/CD56+ cells (week 5 nadir), a more marked reduction in CD19+ B cells (week 13 nadir), and a less-pronounced effect on CD4+ (week 13 nadir) and CD8+ T cells (week 24 nadir) was shown. There was little effect on neutrophils or monocytes. Lymphocyte recovery began after treatment with CT3.5. Regarding relative proportions of naïve and memory T-cell subtypes in ORACLE-MS, the proportion of naïve-like naturally occurring T-regulatory cells (nTregs) decreased, and the proportion of memory-like nTregs increased, relative to total CD4+ T cells. Conclusions CT3.5 has comparable effects on the immune systems of patients with CIS or RRMS. The pronounced reduction and recovery dynamics of CD19+ B cells and relative changes in the proportion of some immune cell subtypes may underlie the clinical effects of CT3.5.
Collapse
Affiliation(s)
- Olaf Stuve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, TX 75390-8813, USA
| | - Per Soelberg Soerensen
- Danish MS Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Leist
- Division of Clinical Neuroimmunology, Jefferson University, Comprehensive MS Center, Philadelphia, PA, USA
| | - Gavin Giovannoni
- Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | |
Collapse
|
95
|
Zanghì A, D’Amico E. New treatment targets in multiple sclerosis therapy. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1627870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A. Zanghì
- Department “G.F. Ingrassia”, MS center University of Catania, Catania, Italy
| | - E. D’Amico
- Department “G.F. Ingrassia”, MS center University of Catania, Catania, Italy
| |
Collapse
|
96
|
Sorensen PS, Sellebjerg F. Pulsed immune reconstitution therapy in multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419836913. [PMID: 30944586 PMCID: PMC6440030 DOI: 10.1177/1756286419836913] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/02/2019] [Indexed: 12/02/2022] Open
Abstract
Whereas drugs used for maintenance/escalation therapy do not maintain their beneficial effect after cessation of therapy, some new highly effective therapies can show prolonged treatment effects after a short treatment course. Such therapies have been named pulsed immune reconstitution therapies or pulsed immunosuppressive therapies, and typical representatives are alemtuzumab and cladribine. Autologous haematopoietic stem cell transplantation could be considered as the strongest immune reconstitution therapy. Both alemtuzumab and cladribine induce depletion of lymphocytes, and a common mechanism of action is preferential depletion of class-switched and unswitched memory B-cells. Whereas CD-19+ B-lymphocytes repopulate within 6 months, CD4+ T-cells repopulate at a slower rate, taking 1–2 years to reach the lower level of normal. In general, the depletion of lymphocytes is more profound and the repletion of T-cells is slower after alemtuzumab than after cladribine treatment. Both drugs have a strong effect on relapses and magnetic resonance imaging (MRI) activity, and reduce disability worsening. The therapeutic effect is maintained beyond the period of active treatment in a large proportion of patients, which is best documented for alemtuzumab. Adverse effects include reactivation of latent infections such as tuberculosis and risk of herpes zoster. The main disadvantage in alemtuzumab-treated patients is the risk of secondary immune-mediated disorders. Pulsed immune reconstitution therapy is an option as initial therapy in relapsing-remitting multiple sclerosis patients with high disease activity and in patients on treatment with another disease-modifying therapy with significant relapse and/or MRI activity.
Collapse
Affiliation(s)
- Per Soelberg Sorensen
- Department of Neurology 2082, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, 9, Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
97
|
Laureys G, De Bleecker JL. Cladribine in myasthenia gravis: A case urging for prudence. Muscle Nerve 2019; 59:E38. [PMID: 30758837 DOI: 10.1002/mus.26446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Guy Laureys
- Department of Neurology, UZ Gent, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Jan L De Bleecker
- Department of Neurology, UZ Gent, Corneel Heymanslaan 10, 9000, Gent, Belgium
| |
Collapse
|
98
|
Baker D, Pryce G, Herrod SS, Schmierer K. Potential mechanisms of action related to the efficacy and safety of cladribine. Mult Scler Relat Disord 2019; 30:176-186. [PMID: 30785074 DOI: 10.1016/j.msard.2019.02.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
Oral cladribine is a novel treatment for relapsing multiple sclerosis (MS). This appears to be a semi-selective immune-reconstitution therapy that induces long-term therapy from short treatment cycles. It has a relatively good safety profile that currently does not require extensive monitoring associated with some continuous immunosuppressive and relatively non-selective immune reconstitution therapies. The efficacy and safety of cladribine relates to its particular physicochemical properties, the function of the lymphocyte subsets that are selectively targeted by the drug and the repopulation kinetics of these subsets. As such, there is marked and long-term depletion of memory B cell subsets, which probably relates to the therapeutic efficacy. This is also coupled with a more limited, but likewise long-term, depletion of CD4 T subsets. There is limited depletion of cells of the innate immune system and modest effects on CD8 and probably plasma cells, which provide immediate and durable protection from infection. Targeting of CD4 T regulatory cells, CD8 T suppressor cells and regulatory B cell subsets appears more limited as these populations recover rapidly and so repopulating pathogenic cells re-emerge into a regulatory environment. This appears to lead to re-establishment of immune-tolerance that produces long-term control of MS. Although this hypothesis contains a number of unknown details, it is based on knowledge about the biology of cladribine, basic immunology and the effects of other high-efficacy B and T cell depleting agents that exhibit stereotyped repopulation behaviours. These concepts are relatively simple to interrogate, and can be modified as new knowledge about the durability of disease control and safety with cladribine emerges.
Collapse
Affiliation(s)
- David Baker
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom.
| | - Gareth Pryce
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Samuel S Herrod
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Klaus Schmierer
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
99
|
Comi G, Cook S, Giovannoni G, Rieckmann P, Sørensen PS, Vermersch P, Galazka A, Nolting A, Hicking C, Dangond F. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult Scler Relat Disord 2019; 29:168-174. [PMID: 30885375 DOI: 10.1016/j.msard.2019.01.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immune reconstitution therapies (IRT) for patients with multiple sclerosis are used for short, intermittent treatment periods to induce immune resetting and allow subsequent treatment-free periods. Cladribine tablets are postulated to be an IRT that causes selective and transient reductions in CD19+ B cells and T cells, followed by reconstitution of adaptive immune function. OBJECTIVE To characterize long-term lymphocyte count changes in pooled data from the 2-year CLARITY and subsequent 2-year CLARITY Extension studies, and the PREMIERE registry (Long-term CLARITY cohort). METHODS Data from patients randomized to placebo (n = 435) or cladribine tablets 10 mg (MAVENCLAD®; 3.5 mg/kg cumulative dose over 2 years, referred to as cladribine tablets 3.5 mg/kg; n = 685) in CLARITY or CLARITY Extension, including time spent in the PREMIERE registry were pooled to provide long-term follow-up data. The study investigated absolute lymphocyte counts (ALC) up to 312 weeks and B and T cell subsets up to 240 weeks after the first dose, in patients receiving placebo or cladribine tablets 3.5 mg/kg administered as two short (4 or 5 days) weekly treatments at the start of months 1 and 2 in each treatment year, followed by no further active treatment. RESULTS Treatment with cladribine tablets 3.5 mg/kg resulted in selective reductions in B and T lymphocytes. Lymphocyte recovery began soon after treatment in each of years 1 and 2. Median ALC recovered to the normal range and CD19+ B cells recovered to threshold values by week 84, approximately 30 weeks after the last dose of cladribine tablets in year 2. Median CD4+ T cell counts recovered to threshold values by week 96 (approximately 43 weeks after the last dose of cladribine tablets in year 2). Median CD8+ cell counts never dropped below the threshold value. CONCLUSION These results show the dynamics of lymphocyte count changes following treatment with cladribine tablets 3.5 mg/kg. The immune cell repopulation results provide further evidence that cladribine tablets may represent a form of IRT.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurology and Institute of Experimental Neurology, Università Vita-Salute San Raffaele, Ospedale San Raffaele, Milan, Italy
| | - Stuart Cook
- Rutgers, The State University of New Jersey, New Jersey Medical School, Department of Neurology & Neurosciences, Medical Science Building, 185 South Orange Avenue, MSB, H506, Newark, NJ 07101-1709, United States.
| | - Gavin Giovannoni
- Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Peter Rieckmann
- Department of Neurology, Medical Park Loipl and University of Erlangen, Erlangen, Germany
| | - Per Soelberg Sørensen
- Danish MS Center, Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, CHU Lille, LIRIC-INSERM U995, FHU Imminent, Lille, France
| | | | | | | | - Fernando Dangond
- EMD Serono Research & Development Institute Inc., Billerica, MA, United States
| |
Collapse
|
100
|
Ellrichmann G, Bolz J, Peschke M, Duscha A, Hellwig K, Lee DH, Linker RA, Gold R, Haghikia A. Peripheral CD19 + B-cell counts and infusion intervals as a surrogate for long-term B-cell depleting therapy in multiple sclerosis and neuromyelitis optica/neuromyelitis optica spectrum disorders. J Neurol 2019; 266:57-67. [PMID: 30377816 PMCID: PMC6342886 DOI: 10.1007/s00415-018-9092-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 10/30/2022]
Abstract
BACKGROUND With ocrelizumab another drug is available for the treatment of multiple sclerosis (MS). Little is known on the long-term use of ocrelizumab on immune cell subsets, and no surrogate markers are available. Rituximab (RTX) has been in off-label use for the treatment of MS, neuromyelitis optica (NMO) and neuromyelitis optica spectrum disorder (NMOSD) for > 10 years. OBJECTIVE We evaluated the long-term depletion and repopulation rate of peripheral CD19+ B-cells as a potential surrogate for the clinical outcome, and whether it may serve for dosage and time-to-infusion decision making. METHODS We evaluated the CD19+ and CD4+/8+ T-cell counts in n = 153 patients treated with RTX (132 MS, 21 NMO/NMOSD). The dosages ranged from 250 to 2000 mg RTX. Depletion/repopulation rates of CD19+ B-cells as well as long-term total lymphocyte cell counts, were assessed and corroborated with EDSS, ARR (annualized relapse rate), MRI, and time to reinfusion. RESULTS CD19+ B-cells' repopulation rate significantly varied depending on the dosage applied leading to individualized application intervals (mean 9.73 ± 0.528 months). Low/absent CD19+ B-cell counts were associated with reduced ARR, EDSS, and GD+-MRI-lesions. Long-term B-cell-depleting therapy led to a transiently skewed CD4+/8+ T-cell ratio due to reduced CD4+ T-cells and absolute lymphocyte counts, which recovered after the second cycle. CONCLUSION Our data suggest that CD19+ B-cell repopulation latency may serve as surrogate marker for individualized treatment strategies in MS and NMO/NMOSD, which proved clinically equally effective in our cohort as evaluated by previous studies.
Collapse
Affiliation(s)
- Gisa Ellrichmann
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Jan Bolz
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Maren Peschke
- Department of Neurology, Friedrich-Alexander-University Erlangen, 91054, Erlangen, Germany
| | - Alexander Duscha
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - De-Hyung Lee
- Department of Neurology, Friedrich-Alexander-University Erlangen, 91054, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen, 91054, Erlangen, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
| | - Aiden Haghikia
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| |
Collapse
|