51
|
Lee KS, Clennell B, Steward TGJ, Gialeli A, Cordero-Llana O, Whitcomb DJ. Focused Ultrasound Stimulation as a Neuromodulatory Tool for Parkinson's Disease: A Scoping Review. Brain Sci 2022; 12:289. [PMID: 35204052 PMCID: PMC8869888 DOI: 10.3390/brainsci12020289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Non-invasive focused ultrasound stimulation (FUS) is a non-ionising neuromodulatory technique that employs acoustic energy to acutely and reversibly modulate brain activity of deep-brain structures. It is currently being investigated as a potential novel treatment for Parkinson's disease (PD). This scoping review was carried out to map available evidence pertaining to the provision of FUS as a PD neuromodulatory tool. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews, a search was applied to Ovid MEDLINE, Embase, Web of Science and Cochrane Central Register of Controlled Trials on 13 January 2022, with no limits applied. In total, 11 studies were included: 8 were from China and 1 each from Belgium, South Korea and Taiwan. All 11 studies were preclinical (6 in vivo, 2 in vitro, 2 mix of in vivo and in vitro and 1 in silico). The preclinical evidence indicates that FUS is safe and has beneficial neuromodulatory effects on motor behaviour in PD. FUS appears to have a therapeutic role in influencing the disease processes of PD, and therefore holds great promise as an attractive and powerful neuromodulatory tool for PD. Though these initial studies are encouraging, further study to understand the underlying cellular and molecular mechanisms is required before FUS can be routinely used in PD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Benjamin Clennell
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Tom G. J. Steward
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Andriana Gialeli
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Oscar Cordero-Llana
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Daniel J. Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
52
|
Gyoda T, Nojima I, Lin SC, Koganemaru S, Mima T, Tanabe S, Huang YZ. Strengthening the GABAergic system through neurofeedback training suppresses implicit motor learning. Neuroscience 2022; 488:112-121. [PMID: 35149145 DOI: 10.1016/j.neuroscience.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Gamma-aminobutyric acid (GABA) activity within the primary motor cortex (M1) is essential for motor learning in cortical plasticity, and a recent study has suggested that real-time neurofeedback training (NFT) can self-regulate GABA activity. Therefore, this study aimed to investigate the effect of GABA activity strengthening via NFT on subsequent motor learning. Thirty-six healthy participants were randomly assigned to either an NFT group or control group, which received sham feedback. GABA activity was assessed for short intracortical inhibition (SICI) within the right M1 using paired-pulse transcranial magnetic stimulation. During the NFT intervention period, the participants tried to modulate the size of a circle, which was altered according to the degree of SICI in the NFT group. However, the size was altered independently of the degree of SICI in the control group. We measured the reaction time before, after (online learning), and 24 h after (offline learning) the finger-tapping task. Results showed the strengthening of GABA activity induced by the NFT intervention, and the suppression of the online but not the offline learning. These findings suggest that prior GABA activity modulation may affect online motor learning.
Collapse
Affiliation(s)
- Tomoya Gyoda
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ippei Nojima
- Division of Physical Therapy, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan.
| | - Su-Chuan Lin
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Satoko Koganemaru
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Ying-Zu Huang
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| |
Collapse
|
53
|
Parkinson's disease: Alterations of motor plasticity and motor learning. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:135-151. [PMID: 35034730 DOI: 10.1016/b978-0-12-819410-2.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews the alterations in motor learning and motor cortical plasticity in Parkinson's disease (PD), the most common movement disorder. Impairments in motor learning, which is a hallmark of basal ganglia disorders, influence the performance of motor learning-related behavioral tasks and have clinical implications for the management of disturbance in gait and posture, and for rehabilitative management of PD. Although plasticity is classically induced and assessed in sliced preparation in animal models, in this review we have concentrated on the results from non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) in patients with PD, in addition to a few animal electrophysiologic studies. The chapter summarizes the results from different cortical and subcortical plasticity investigations. Plasticity induction protocols reveal deficient plasticity in PD and these plasticity measures are modulated by medications and deep brain stimulation. There is considerable variability in these measures that are related to inter-individual variations, different disease characteristics and methodological considerations. Nevertheless, these pathophysiologic studies expand our knowledge of cortical excitability, plasticity and the effects of different treatments in PD. These tools of modulating plasticity and motor learning improve our understanding of PD pathophysiology and help to develop new treatments for this disabling condition.
Collapse
|
54
|
Li XN, Hao DP, Qu MJ, Zhang M, Ma AB, Pan XD, Ma AJ. Development and Validation of a Plasma FAM19A5 and MRI-Based Radiomics Model for Prediction of Parkinson's Disease and Parkinson's Disease With Depression. Front Neurosci 2022; 15:795539. [PMID: 34975391 PMCID: PMC8718551 DOI: 10.3389/fnins.2021.795539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Prediction and early diagnosis of Parkinson’s disease (PD) and Parkinson’s disease with depression (PDD) are essential for the clinical management of PD. Objectives: The present study aimed to develop a plasma Family with sequence similarity 19, member A5 (FAM19A5) and MRI-based radiomics nomogram to predict PD and PDD. Methods: The study involved 176 PD patients and 181 healthy controls (HC). Sandwich enzyme-linked immunosorbent assay (ELISA) was used to measure FAM19A5 concentration in the plasma samples collected from all participants. For enrolled subjects, MRI data were collected from 164 individuals (82 in the PD group and 82 in the HC group). The bilateral amygdala, head of the caudate nucleus, putamen, and substantia nigra, and red nucleus were manually labeled on the MR images. Radiomics features of the labeled regions were extracted. Further, machine learning methods were applied to shrink the feature size and build a predictive radiomics signature. The resulting radiomics signature was combined with plasma FAM19A5 concentration and other risk factors to establish logistic regression models for the prediction of PD and PDD. Results: The plasma FAM19A5 levels (2.456 ± 0.517) were recorded to be significantly higher in the PD group as compared to the HC group (2.23 ± 0.457) (P < 0.001). Importantly, the plasma FAM19A5 levels were also significantly higher in the PDD subgroup (2.577 ± 0.408) as compared to the non-depressive subgroup (2.406 ± 0.549) (P = 0.045 < 0.05). The model based on the combination of plasma FAM19A5 and radiomics signature showed excellent predictive validity for PD and PDD, with AUCs of 0.913 (95% CI: 0.861–0.955) and 0.937 (95% CI: 0.845–0.970), respectively. Conclusion: Altogether, the present study reported the development of nomograms incorporating radiomics signature, plasma FAM19A5, and clinical risk factors, which might serve as potential tools for early prediction of PD and PDD in clinical settings.
Collapse
Affiliation(s)
- Xue-Ning Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Da-Peng Hao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei-Jie Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Bang Ma
- Shanghai Xunshi Technology Co., Ltd., Shanghai, China
| | - Xu-Dong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Cerebrovascular, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ai-Jun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Cerebrovascular, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
55
|
Cosentino G, Todisco M, Blandini F. Noninvasive neuromodulation in Parkinson's disease: Neuroplasticity implication and therapeutic perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:185-198. [PMID: 35034733 DOI: 10.1016/b978-0-12-819410-2.00010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noninvasive brain stimulation techniques can be used to study in vivo the changes of cortical activity and plasticity in subjects with Parkinson's disease (PD). Also, an increasing number of studies have suggested a potential therapeutic effect of these techniques. High-frequency repetitive transcranial magnetic stimulation (rTMS) and anodal transcranial direct current stimulation (tDCS) represent the most used stimulation paradigms to treat motor and nonmotor symptoms of PD. Both techniques can enhance cortical activity, compensating for its reduction related to subcortical dysfunction in PD. However, the use of suboptimal stimulation parameters can lead to therapeutic failure. Clinical studies are warranted to clarify in PD the additional effects of these stimulation techniques on pharmacologic and neurorehabilitation treatments.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Fabio Blandini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
56
|
Prosvetov A, Tsygankov B, Guekht A, Kuznetsov E, Less U, Tumurov D, Popov G, Tsygankov D, Rangus S. Transcranial magnetic stimulation in the treatment of depressive disorder in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:79-85. [DOI: 10.17116/jnevro202212209179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
57
|
Lv Q, Pan Y, Chen X, Wei J, Wang W, Zhang H, Wan J, Li S, Zhuang Y, Yang B, Ma D, Ren D, Zhao Z. Depression in multiple system atrophy: Views on pathological, clinical and imaging aspects. Front Psychiatry 2022; 13:980371. [PMID: 36159911 PMCID: PMC9492977 DOI: 10.3389/fpsyt.2022.980371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
Multiple system atrophy (MSA) is a common atypical parkinsonism, characterized by a varying combination of autonomic, cerebellar, and pyramidal systems. It has been noticed that the patients with MSA can be accompanied by some neuropsychiatric disorders, in particular depression. However, there is limited understanding of MSA-related depression. To bridge existing gaps, we summarized research progress on this topic and provided a new perspective regarding pathological, clinical, and imaging aspects. Firstly, we synthesized corresponding studies in order to investigate the relationship between depression and MSA from a pathological perspective. And then, from a clinical perspective, we focused on the prevalence of depression in MS patients and the comparison with other populations. Furthermore, the associations between depression and some clinical characteristics, such as life quality and gender, have been reported. The available neuroimaging studies were too sparse to draw conclusions about the radiological aspect of depression in MSA patients but we still described them in the presence of paper. Finally, we discussed some limitations and shortcomings existing in the included studies, which call for more high-quality basic research and clinical research in this field.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jingpei Wei
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hua Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jifeng Wan
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Shiqiang Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhuang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Baolin Yang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dayong Ma
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dawei Ren
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zijun Zhao
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
58
|
Pateraki G, Anargyros K, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Ziogka P, Sgantzos M, Folia V, Peristeri E, Dardiotis E. Therapeutic application of rTMS in neurodegenerative and movement disorders: A review. J Electromyogr Kinesiol 2021; 62:102622. [PMID: 34890834 DOI: 10.1016/j.jelekin.2021.102622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive form of brain stimulation that makes use of the magnetic field generated when an electric current passes through a magnetic coil placed over the scalp. It can be applied as a single stimulus at a time, in pairs of stimuli, or repetitively in trains of stimuli (repetitive TMS, rTMS). RTMS can induce changes in brain activity, whose after-effects reflect the processes of long-term potentiation and long-term depression, as certain protocols, namely those using low frequencies (≤1 Hz) seem to suppress cortical excitability, while those using high frequencies (>1 Hz) seem to enhance it. It is a technique with very few and mostly mild side-effects, whose effects can persist for long time periods, and as such, it has been studied as a potential treatment option in a multitude of neurodegenerative diseases, including those affecting movement. Although rTMS has received approval as a treatment strategy of only a few aspects in movement disorders in the latest guidelines, its further use seems to also be promising in their context. In this review, we gathered the available literature on the therapeutic application of rTMS in movement disorders, namely Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Dystonia, Tic disorders and Essential Tremor.
Collapse
Affiliation(s)
- Georgia Pateraki
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Anargyros
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Pinelopi Ziogka
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Markos Sgantzos
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasiliki Folia
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
59
|
Vlachos I, Kugiumtzis D, Tsalikakis DG, Kimiskidis VK. TMS-induced brain connectivity modulation in Genetic Generalized Epilepsy. Clin Neurophysiol 2021; 133:83-93. [PMID: 34814019 DOI: 10.1016/j.clinph.2021.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In epilepsy patients, Transcranial Magnetic Stimulation (TMS) may result in the induction and modulation of epileptiform discharges (EDs). We hereby investigate the modulatory effects of TMS on brain connectivity in Genetic Generalized Epilepsy (GGE) and explore their potential as a diagnostic biomarker in GGE. METHODS Patients with GGE (n=18) and healthy controls (n=11) were investigated with a paired-pulse TMS-EEG protocol. The brain network was studied at local and at global levels using Coherence as an EEG connectivity measure. Comparison of patients vs controls was performed in a time-resolved manner by analyzing comparatively pre- vs post-TMS brain networks. RESULTS There was statistically significant TMS-induced modulation of connectivity at specific frequency bands within groups and difference in TMS-induced modulation between the two groups. The most significant difference between patients and controls related to connectivity modulation in the γ band at 1-3 sec post-TMS (p=0.004). CONCLUSIONS TMS modulates the healthy and epileptic brain connectivity in different ways. Our results indicate that TMS-EEG connectivity analysis can be a basis for a diagnostic biomarker of GGE. SIGNIFICANCE The analysis identifies specific time periods and frequency bands of interest of TMS-induced connectivity modulation and elucidates the effect of TMS on the healthy and epileptic brain connectivity.
Collapse
Affiliation(s)
- Ioannis Vlachos
- 1(st) Department of Clinical Neurology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Dimitris Kugiumtzis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Dimitris G Tsalikakis
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani 50100, Greece.
| | - Vasilios K Kimiskidis
- 1(st) Department of Clinical Neurology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
60
|
Poonja S, Miyasaki J, Fu X, Camicioli R, Sang T, Yuan Y, Ba F. The Trajectory of Motor Deterioration to Death in Parkinson's Disease. Front Neurol 2021; 12:670567. [PMID: 34484095 PMCID: PMC8416311 DOI: 10.3389/fneur.2021.670567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Motor progression varies even among those with a single diagnosis such as Parkinson's disease (PD) and little is known about the trajectory of motor signs prior to death. Understanding deterioration patterns may help clinicians counsel patients and proactively plan interdisciplinary care, including palliative care. The objective of this study was to examine and describe Unified Parkinson's Disease Rating Scale motor score (UPDRS-III) trajectories at the end of life in PD. Methods: A retrospective chart review was performed for deceased PD patients who attended the Parkinson and Movement Disorders Program at the University of Alberta for at least 5 years between 1999 and 2018. UPDRS-III scores were recorded for all visits. Trajectory patterns were visualized with Loess curves stratified by sex and age at diagnosis. Piecewise linear models were used to individually model the UPDRS-III scores, and the trajectories obtained were clustered based on their features. Results: Among the 202 charts reviewed, 84 meeting inclusion criteria were analyzed. The UPDRS-III increased over time regardless of sex and age. Distinct trajectory variations present in PD (e.g., Consistent Deterioration, Stability-Deterioration, Improvement-Deterioration, Deterioration-Improvement-Deterioration) were identified. Twenty-five percent of the patients were classified as Undetermined/Irregular trajectories. In addition, regardless of trajectory type, many patients experienced a steep increase in UPDRS-III approaching death. Those with disease diagnosis after age 65 years had a shorter survival time, compared to PD patients with a younger age of onset. Conclusion: Our study identified dominant types of motor trajectory in PD that can help clinicians understand their patients' course of illness. This information can help counsel patients regarding the variability in motor deterioration and should alert physicians to recognize a terminal decline. Age of disease onset was correlated with survival time.
Collapse
Affiliation(s)
- Sabrina Poonja
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Janis Miyasaki
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Xilai Fu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Richard Camicioli
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tina Sang
- Department of Science, University of Alberta, Edmonton, AB, Canada
| | - Yan Yuan
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
61
|
Sun J, Gao X, Hua Q, Du R, Liu P, Liu T, Yang J, Qiu B, Ji GJ, Hu P, Wang K. Brain functional specialization and cooperation in Parkinson's disease. Brain Imaging Behav 2021; 16:565-573. [PMID: 34427879 DOI: 10.1007/s11682-021-00526-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Cerebral specialization and inter-hemispheric cooperation are two of the most prominent functional architectures of the human brain. Their dysfunctions may be related to pathophysiological changes in patients with Parkinson's disease (PD), who are characterized by unbalanced onset and progression of motor symptoms. This study aimed to characterize the two intrinsic architectures of hemispheric functions in PD using resting-state functional magnetic resonance imaging. Seventy idiopathic PD patients and 70 age-, sex-, and education-matched healthy subjects were recruited. All participants underwent magnetic resonance image scanning and clinical evaluations. The cerebral specialization (Autonomy index, AI) and inter-hemispheric cooperation (Connectivity between Functionally Homotopic voxels, CFH) were calculated and compared between groups. Compared with healthy controls, PD patients showed stronger AI in the left angular gyrus. Specifically, this difference in specialization resulted from increased functional connectivity (FC) of the ipsilateral areas (e.g., the left prefrontal area), and decreased FC in the contralateral area (e.g., the right supramarginal gyrus). Imaging-cognitive correlation analysis indicated that these connectivity were positively related to the score of Montreal Cognitive Assessment in PD patients. CFH between the bilateral sensorimotor regions was significantly decreased in PD patients compared with controls. No significant correlation between CFH and cognitive scores was found in PD patients. This study illustrated a strong leftward specialization but weak inter-hemispheric coordination in PD patients. It provided new insights to further clarify the pathological mechanism of PD.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Xiaoran Gao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Qiang Hua
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Rongrong Du
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Pingping Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| |
Collapse
|
62
|
Lintel H, Corpuz T, Paracha SUR, Grossberg GT. Mood Disorders and Anxiety in Parkinson's Disease: Current Concepts. J Geriatr Psychiatry Neurol 2021; 34:280-288. [PMID: 34219518 DOI: 10.1177/08919887211018267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mood disorders and anxiety significantly impact the prognosis and disease course of Parkinson's disease. Non-motor symptoms of Parkinson's disease such as apathy, anhedonia, and fatigue overlap with diagnostic criteria for anxiety and depression, thus making accurate diagnosis of mood disorders in Parkinson's disease patients difficult. Furthermore, treatment options for mood disorders can produce motor complications leading to poor adherence and impaired quality of life in Parkinson's disease patients. This review aims to clarify the current state of diagnostic and treatment options pertaining to anxiety and mood disorders in Parkinson's disease. It explores both the pharmacologic and non-pharmacologic treatment modalities for various mood disorders in comorbid Parkinson's disease with a brief discussion of the future outlook of the field given the current state of the literature.
Collapse
Affiliation(s)
- Hendrik Lintel
- 7547Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Timothy Corpuz
- 7547Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Saif-Ur-Rahman Paracha
- Department of Psychiatry and Behavioral Neuroscience, 7547Saint Louis University School of Medicine, MO, USA
| | - George T Grossberg
- Samuel W. Fordyce Professor and Director of Geriatric Psychiatry, 7547Saint Louis University School of Medicine, MO, USA
| |
Collapse
|
63
|
Yang R, Boldrey J, Jiles D, Schneider I, Que L. On chip detection of glial cell-derived neurotrophic factor secreted from dopaminergic cells under magnetic stimulation. Biosens Bioelectron 2021; 182:113179. [PMID: 33774433 DOI: 10.1016/j.bios.2021.113179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
Glial cell-derived neurotrophic factor (GDNF) is a small protein potently promoting the survival of dopaminergic and motor neurons. GDNF can be secreted from different types of cells including the dopaminergic neural cell line, N27. N27 cells, a rat dopaminergic neural cell line, is regarded as a suitable in vitro model for Parkinson's disease (PD) research. For PD treatment, transcranial magnetic stimulation (TMS), a noninvasive therapeutic method, showed beneficial clinical effects, but the mechanism for its benefit is not understood. Because GDNF is a potent neurotrophic factor, it is of great value to evaluate if GDNF secretion from N27 cells can be affected by magnetic stimulation (MS). However, the current methods for detecting GDNF are time-consuming and expensive. In this paper we outline the detection of GDNF secretion from N27 cells by ultrasensitive nanopore thin film sensors (nanosensor) for the first time. As low as 2 pg/mL GDNF can be readily detected by the nanosensor. Furthermore, we show that MS can promote GDNF secretion from N27 cells. Specifically, the GDNF concentration in N27 cell-conditioned media under MS treatment shows statistically significant increase up to 2-fold after 5 days in vitro in comparison with the control. This nanosensor along with the in vitro PD model N27 cells provides a low-cost, easy-to-use, sensitive approach for studying potential cell biological mechanisms of the clinical benefits of MS on PD.
Collapse
Affiliation(s)
- Renyuan Yang
- Department of Electrical and Computer Engineering, Iowa State University, United States
| | - Joseph Boldrey
- Department of Electrical and Computer Engineering, Iowa State University, United States
| | - David Jiles
- Department of Electrical and Computer Engineering, Iowa State University, United States
| | - Ian Schneider
- Department of Chemical and Biological Engineering, Iowa State University, United States; Department of Genetics, Development and Cell Biology, Iowa State University, United States
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, United States.
| |
Collapse
|
64
|
Dhingra A, Janjua AU, Hack L, Waserstein G, Palanci J, Hermida AP. Exploring Nonmotor Neuropsychiatric Manifestations of Parkinson Disease in a Comprehensive Care Setting. J Geriatr Psychiatry Neurol 2021; 34:181-195. [PMID: 32242493 DOI: 10.1177/0891988720915525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson disease (PD) is a debilitating neurological condition that includes both motor symptoms and nonmotor symptoms (NMS). Psychiatric complaints comprise NMS and are collectively referred to as neuropsychiatric manifestations. Common findings include atypical depressive symptoms, anxiety, psychosis, impulse control disorder, deterioration of cognition, and sleep disturbances. Quality of life (QoL) of patients suffering from NMS is greatly impacted and many times can be more debilitating than motor symptoms of PD. We expand on knowledge gained from treatment models within a comprehensive care model that incorporates multidisciplinary specialists working alongside psychiatrists to treat PD. Insight into background, clinical presentations, and treatment options for patients suffering from neuropsychiatric manifestations of PD are discussed. Identifying symptoms early can help improve QoL, provide early symptom relief, and can assist tailoring treatment plans that limit neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Amitha Dhingra
- Department of Psychiatry and Behavioral Sciences, 12239Emory University School of Medicine, Atlanta, GA, USA
| | - A Umair Janjua
- Department of Psychiatry and Behavioral Sciences, 12239Emory University School of Medicine, Atlanta, GA, USA
| | - Laura Hack
- Department of Psychiatry and Behavioral Sciences, 12239Emory University School of Medicine, Atlanta, GA, USA
| | - Gabriella Waserstein
- Department of Psychiatry and Behavioral Sciences, 12239Emory University School of Medicine, Atlanta, GA, USA
| | - Justin Palanci
- Department of Psychiatry and Behavioral Sciences, 12239Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana P Hermida
- Department of Psychiatry and Behavioral Sciences, 12239Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
65
|
Neuromodulation-Based Stem Cell Therapy in Brain Repair: Recent Advances and Future Perspectives. Neurosci Bull 2021; 37:735-745. [PMID: 33871821 DOI: 10.1007/s12264-021-00667-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell transplantation holds a promising future for central nervous system repair. Current challenges, however, include spatially and temporally defined cell differentiation and maturation, plus the integration of transplanted neural cells into host circuits. Here we discuss the potential advantages of neuromodulation-based stem cell therapy, which can improve the viability and proliferation of stem cells, guide migration to the repair site, orchestrate the differentiation process, and promote the integration of neural circuitry for functional rehabilitation. All these advantages of neuromodulation make it one potentially valuable tool for further improving the efficiency of stem cell transplantation.
Collapse
|
66
|
Ji G, Liu T, Li Y, Liu P, Sun J, Chen X, Tian Y, Chen X, Dahmani L, Liu H, Wang K, Hu P. Structural correlates underlying accelerated magnetic stimulation in Parkinson's disease. Hum Brain Mapp 2021; 42:1670-1681. [PMID: 33314545 PMCID: PMC7978118 DOI: 10.1002/hbm.25319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique with great potential in the treatment of Parkinson's disease (PD). This study aimed to investigate the clinical efficacy of accelerated rTMS and to understand the underlying neural mechanism. In a double-blinded way, a total of 42 patients with PD were randomized to receive real (n = 22) or sham (n = 20) continuous theta-burst stimulation (cTBS) on the left supplementary motor area (SMA) for 14 consecutive days. Patients treated with real cTBS, but not with sham cTBS, showed a significant improvement in Part III of the Unified PD Rating Scale (p < .0001). This improvement was observed as early as 1 week after the start of cTBS treatment, and maintained 8 weeks after the end of the treatment. These findings indicated that the treatment response was swift with a long-lasting effect. Imaging analyses showed that volume of the left globus pallidus (GP) increased after cTBS treatment. Furthermore, the volume change of GP was mildly correlated with symptom improvement and associated with the baseline fractional anisotropy of SMA-GP tracts. Together, these findings implicated that the accelerated cTBS could effectively alleviate motor symptoms of PD, maybe by modulating the motor circuitry involving the SMA-GP pathway.
Collapse
Affiliation(s)
- Gong‐Jun Ji
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Tingting Liu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Ying Li
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Pingping Liu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Jinmei Sun
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Xingui Chen
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Yanghua Tian
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Xianwen Chen
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Louisa Dahmani
- Department of NeuroscienceMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hesheng Liu
- Department of NeuroscienceMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kai Wang
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| | - Panpan Hu
- Department of NeurologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental HealthHefeiChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiChina
| |
Collapse
|
67
|
Nehra A, Sharma PS, Narain A, Kumar A, Bajpai S, Rajan R, Kumar N, Goyal V, Srivastava AK. The Role of Repetitive Transcranial Magnetic Stimulation for Enhancing the Quality of Life in Parkinson's Disease: A Systematic Review. Ann Indian Acad Neurol 2021; 23:755-759. [PMID: 33688123 PMCID: PMC7900726 DOI: 10.4103/aian.aian_70_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder which greatly affects patients' quality of life. Despite an exponential increase in PD cases, not much attention has been paid to enhancing their quality of life (QoL). Thus, this systematic review aims to summarize the available literature for the role of repetitive transcranial magnetic stimulation (rTMS) intervention to improve QoL of PD patients. Methods: Literature review was carried out using PubMed, Embase, Web of Science and Scopus databases. The key search words were, “rTMS AND Parkinson AND QoL”, “rTMS AND Parkinson AND Quality of Life”. Cochrane Collaboration software Revman 5.3 was used to assess the quality of studies. Results: Over 707 studies were identified out of which 5 studies were included which consisted of 160 subjects, 89 male and 71 female, with mean age of 65.04 years. PD type varied from idiopathic PD, rigid, akinetic, tremor dominant to mixed type. The overall risk of bias across the studies was low and unclear with high risk of bias in incomplete outcome data domain in one study. Conclusions: The efficacy of rTMS as an adjunct intervention to enhance QoL of PD patients is uncertain due to dire lack of research in this area. The findings of the present review would help researchers conduct a well-defined, randomized, controlled trial by overcoming the present limitations associated with rTMS intervention to improve QoL of PD patients.
Collapse
Affiliation(s)
- Ashima Nehra
- Division of Neuropsychology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Priya S Sharma
- Division of Neuropsychology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Avneesh Narain
- Division of Neuropsychology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amit Kumar
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Swati Bajpai
- Department of Geriatric Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Roopa Rajan
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Nand Kumar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vinay Goyal
- Department of Neurology, Medanta, Gurgaon, Haryana, India
| | - Achal K Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
68
|
Wei W, Yi X, Ruan J, Duan X, Luo H. The efficacy of repetitive transcranial magnetic stimulation on emotional processing in apathetic patients with Parkinson's disease: A Placebo-controlled ERP study. J Affect Disord 2021; 282:776-785. [PMID: 33601718 DOI: 10.1016/j.jad.2020.12.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/21/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Few studies have examined the effect of rTMS on impaired emotional processing in apathetic Parkinson's disease (PD) patients, which impelled us to use a combination of repetitive transcranial magnetic stimulation (rTMS) with event-related potentials (ERPs) to gain insight into the underlying mechanisms. METHODS Apathetic and non-apathetic patients diagnosed with PD performed a facial emotion categorization task, and ERP data were collected before and after HF-rTMS or sham stimulation over the right dorsolateral prefrontal cortex (DLPFC). We observed the behavioural results and early components of P100 and N170. RESULTS After rTMS, accuracy (ACC) was higher for negative expressions, and reaction times (RTs) were shorter for all expressions in both apathetic and non-apathetic patients. P100 amplitudes significantly increased except for negative expressions in the right hemisphere, and hemisphere lateralization was reversed in apathetic patients. P100 amplitudes increased for all expressions bilaterally in non-apathetic patients. N170 amplitudes in apathetic patients increased, and hemisphere lateralization was normalized. Neither the apathetic sham group nor the non-apathetic cohort of patients showed changes in P100 or N170 lateralization. LIMITATIONS The effects of rTMS on PD patients relative to normal subjects should be compared and observed over a long period of time. CONCLUSIONS HF-rTMS over the right DLPFC is beneficial for emotional processing in both apathetic and non-apathetic PD patients but shows different sensitivities. The effect of rTMS on emotional processing impairments in apathetic PD patients is profound. Treatment with rTMS may be an important, novel nonpharmaceutical approach for apathy in PD patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang 618000, Sichuan, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaodong Duan
- Department of Rehabilitation Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
69
|
Marson F, Lasaponara S, Cavallo M. A Scoping Review of Neuromodulation Techniques in Neurodegenerative Diseases: A Useful Tool for Clinical Practice? MEDICINA (KAUNAS, LITHUANIA) 2021; 57:215. [PMID: 33673455 PMCID: PMC7997187 DOI: 10.3390/medicina57030215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Background and Objectives: Neurodegenerative diseases that typically affect the elderly such as Alzheimer's disease, Parkinson's disease and frontotemporal dementia are typically characterised by significant cognitive impairment that worsens significantly over time. To date, viable pharmacological options for the cognitive symptoms in these clinical conditions are lacking. In recent years, various studies have employed neuromodulation techniques to try and contrast patients' decay. Materials and Methods: We conducted an in-depth literature review of the state-of-the-art of the contribution of these techniques across these neurodegenerative diseases. Results: The present review reports that neuromodulation techniques targeting cognitive impairment do not allow to draw yet any definitive conclusion about their clinical efficacy although preliminary evidence is very encouraging. Conclusions: Further and more robust studies should evaluate the potentialities and limitations of the application of these promising therapeutic tools to neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Marson
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, 06081 Assisi, Italy;
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefano Lasaponara
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- Department of Human Sciences, LUMSA University, 00193 Rome, Italy
| | - Marco Cavallo
- Faculty of Psychology, eCampus University, 22060 Novedrate, Italy
- Clinical Psychology Service, Saint George Foundation, 12030 Cavallermaggiore, Italy
| |
Collapse
|
70
|
Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson's disease. Mol Med 2021; 27:17. [PMID: 33632120 PMCID: PMC7905684 DOI: 10.1186/s10020-021-00279-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the second more common neurodegenerative disease with increasing incidence worldwide associated to the population ageing. Despite increasing awareness and significant research advancements, treatment options comprise dopamine repleting, symptomatic therapies that have significantly increased quality of life and life expectancy, but no therapies that halt or reverse disease progression, which remain a great, unmet goal in PD research. Large biomarker development programs are undertaken to identify disease signatures that will improve patient selection and outcome measures in clinical trials. In this review, we summarize PD-related mechanisms that can serve as targets of therapeutic interventions aiming to slow or modify disease progression, as well as previous and ongoing clinical trials in each field, and discuss future perspectives.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden
| | - Paraskevi-Evita Papathoma
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Danderyd Hospital Stockholm, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden.
| |
Collapse
|
71
|
Spagnolo F, Fichera M, Chieffo R, Dalla Costa G, Pisa M, Volonté MA, Falautano M, Zangen A, Comi G, Leocani L. Bilateral Repetitive Transcranial Magnetic Stimulation With the H-Coil in Parkinson's Disease: A Randomized, Sham-Controlled Study. Front Neurol 2021; 11:584713. [PMID: 33679570 PMCID: PMC7930321 DOI: 10.3389/fneur.2020.584713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Pilot open-label application of high-frequency repetitive transcranial magnetic stimulation (rTMS) with H-coil in Parkinson's Disease (PD) have shown promising results. Objective: To evaluate safety and efficacy of high-frequency rTMS with H-coil in PD in a double-blind, placebo-controlled, randomized study. Methods: Sixty patients with PD were randomized into 3 groups: M1-PFC (real stimulation on primary motor-M1 and pre-frontal cortices-PFC), M1 (real rTMS on M1, sham on PFC), Sham (apparent stimulation). Primary outcome was baseline-normalized percent improvement in UPDRS part III OFF-therapy at the end of treatment (12 rTMS sessions, 4 weeks). Secondary outcomes were improvement in UPDRS part III sub-scores, timed tests, and neuropsychological tests. Statistical analysis compared improvement following real and sham stimulation at the end of the protocol using either a t-test or a Mann-Whitney test. Results: All patients tolerated the treatment and concluded the study. One patient from M1-PFC group was excluded from the analysis due to newly discovered uncontrolled diabetes mellitus. No serious adverse effect was recorded. At the end of treatment, patients receiving real rTMS (M1-PFC and M1 combined) showed significantly greater improvement compared to sham in UPDRS part III total score (p = 0.007), tremor subscore (p = 0.011), and lateralized sub-scores (p = 0.042 for the more affected side; p = 0.012 for the less affected side). No significant differences have been oserved in safety and efficacy outcomes between the two real rTMS groups. Notably, mild, not-distressing and transient dyskinesias occurred in 3 patients after real rTMS in OFF state. Conclusions: The present findings suggest that high-frequency rTMS with H-coil is a safe and potentially effective procedure and prompt larger studies for validation as add-on treatment in PD.
Collapse
Affiliation(s)
- Francesca Spagnolo
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Scientific Institute Hospital San Raffaele, Milan, Italy.,San Raffaele Vita-Salute University, Milan, Italy
| | - Mario Fichera
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Scientific Institute Hospital San Raffaele, Milan, Italy.,San Raffaele Vita-Salute University, Milan, Italy
| | - Raffaella Chieffo
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Scientific Institute Hospital San Raffaele, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Scientific Institute Hospital San Raffaele, Milan, Italy.,San Raffaele Vita-Salute University, Milan, Italy
| | - Marco Pisa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Scientific Institute Hospital San Raffaele, Milan, Italy.,San Raffaele Vita-Salute University, Milan, Italy
| | | | - Monica Falautano
- Neuropsychology and Clinical Psychology Service, Hospital San Raffaele, Milan, Italy
| | - Abraham Zangen
- Neuroscience Laboratory, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Giancarlo Comi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Scientific Institute Hospital San Raffaele, Milan, Italy.,San Raffaele Vita-Salute University, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology - INSPE, Scientific Institute Hospital San Raffaele, Milan, Italy.,San Raffaele Vita-Salute University, Milan, Italy
| |
Collapse
|
72
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
73
|
da Silva Machado CB, da Silva LM, Gonçalves AF, de Andrade PR, Mendes CKTT, de Assis TJCF, Godeiro Júnior CDO, Andrade SM. Multisite non-invasive brain stimulation in Parkinson's disease: A scoping review. NeuroRehabilitation 2021; 49:515-531. [PMID: 34776426 PMCID: PMC8764602 DOI: 10.3233/nre-210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by cardinal motor symptoms in addition to cognitive impairment. New insights concerning multisite non-invasive brain stimulation effects have been gained, which can now be used to develop innovative treatment approaches. OBJECTIVE Map the researchs involving multisite non-invasive brain stimulation in PD, synthesize the available evidence and discuss future directions. METHODS The databases PubMed, PsycINFO, CINAHL, LILACS and The Cochrane Library were searched from inception until April 2020, without restrictions on the date of publication or the language in which it was published. The reviewers worked in pairs and sequentially evaluated the titles, abstracts and then the full text of all publications identified as potentially relevant. RESULTS Twelve articles met the inclusion criteria. The target brain regions included mainly the combination of a motor and a frontal area, such as stimulation of the primary motor córtex associated with the dorsolateral prefrontal cortex. Most of the trials showed that this modality was only more effective for the motor component, or for the cognitive and/or non-motor, separately. CONCLUSIONS Despite the results being encouraging for the use of the multisite aproach, the indication for PD management should be carried out with caution and deserves scientific deepening.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clécio de Oliveira Godeiro Júnior
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, La Tronche, Grenoble, France
- Division of Neurology, Hospital Universitario Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
74
|
Bhoopatiraju S, Grossberg G. Emerging Perspectives in the Diagnosis and Management of Depression and Psychosis in Parkinson's Disease. Neurology 2021. [DOI: 10.17925/usn.2021.17.2.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
75
|
Abstract
Introduction: Hallucinations in Parkinson's disease are common, can complicate medication management and significantly impact upon the quality of life of patients and their carers.Areas covered: This review aims to examine current evidence for the management of hallucinations in Parkinson's disease.Expert opinion: Treatment of hallucinations in Parkinson's disease should be both individualized and multifaceted. Screening, education, medication review and the avoidance of common triggers are important. For well-formed visual hallucinations, acetylcholinesterase inhibitors are recommended first-line. Refractory or severe symptoms may require the cautious use of atypical antipsychotics. Antidepressants may be beneficial in the appropriate setting. Unfortunately, current therapies for hallucinations offer only limited benefits and future research efforts are desperately required to improve the management of these challenging symptoms.
Collapse
Affiliation(s)
- Alice Powell
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, the University of Sydney, Camperdown, Australia.,Department of Geriatric Medicine, Prince of Wales Hospital, Randwick, Australia
| | - Elie Matar
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, the University of Sydney, Camperdown, Australia
| | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, the University of Sydney, Camperdown, Australia
| |
Collapse
|
76
|
Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation. Neurobiol Dis 2020; 147:105159. [PMID: 33152506 DOI: 10.1016/j.nbd.2020.105159] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Movement abnormalities of Parkinson's disease (PD) arise from disordered neural activity in multiple interconnected brain structures. The planning and execution of movement requires recruitment of a heterogeneous collection of pyramidal projection neurons in the primary motor cortex (M1). The neural representations of movement in M1 single-cell and field potential recordings are directly and indirectly influenced by the midbrain dopaminergic neurons that degenerate in PD. This review examines M1 functional alterations in PD as uncovered by electrophysiological recordings and neurostimulation studies in patients and experimental animal models. Dysfunction of the parkinsonian M1 depends on the severity and/or duration of dopamine-depletion and the species examined, and is expressed as alterations in movement-related firing dynamics; functional reorganisation of local circuits; and changes in field potential beta oscillations. Neurostimulation methods that modulate M1 activity directly (e.g., transcranial magnetic stimulation) or indirectly (subthalamic nucleus deep brain stimulation) improve motor function in PD patients, showing that targeted neuromodulation of M1 is a realistic therapy. We argue that the therapeutic profile of M1 neurostimulation is likely to be greatly enhanced with alternative technologies that permit cell-type specific control and incorporate feedback from electrophysiological biomarkers measured locally.
Collapse
|
77
|
Khatri DK, Choudhary M, Sood A, Singh SB. Anxiety: An ignored aspect of Parkinson’s disease lacking attention. Biomed Pharmacother 2020; 131:110776. [DOI: 10.1016/j.biopha.2020.110776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
|
78
|
Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods 2020; 347:108957. [PMID: 33017643 DOI: 10.1016/j.jneumeth.2020.108957] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is becoming a major public-health issue in an aging population. Available approaches to treat advanced PD still have limitations; new therapies are needed. The non-invasive brain stimulation (NIBS) may offer a complementary approach to treat advanced PD by personalized stimulation. Although NIBS is not as effective as the gold-standard levodopa, recent randomized controlled trials show promising outcomes in the treatment of PD symptoms. Nevertheless, only a few NIBS-stimulation paradigms have shown to improve PD's symptoms. Current clinical recommendations based on the level of evidence are reported in Table 1 through Table 3. Furthermore, novel technological advances hold promise and may soon enable the non-invasive stimulation of deeper brain structures for longer periods.
Collapse
Affiliation(s)
- Julian Madrid
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
79
|
Aftanas LI, Brack IV, Kulikova KI, Filimonova EA, Dzemidovich SS, Piradov MA, Suponeva NA, Poidasheva AG. [Clinical and neurophysiological effects of dual-target high-frequency rTMS over the primary motor and prefrontal cortex in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:29-36. [PMID: 32621465 DOI: 10.17116/jnevro202012005129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate therapeutic effects of navigational dual-target high-frequency rTMS over the primary motor (M1, bilateral) and the left dorsolateral prefrontal cortex (DLPFC) on clinical dynamics of Parkinson's disease (PD) symptoms in a parallel placebo-controlled study. MATERIAL AND METHODS The study included 46 patients randomized into equal therapeutic and placebo rTMS groups. Navigational therapeutic and placebo10 Hz rTMS was applied over the M1 and DLPFC areas (20 daily sessions, for 3 weeks). Assessment of the dynamics of clinical symptoms was performed using the MDS UPDRS scale (Parts I-IV) before the first session, immediately after 20 sessions, and 4-6 weeks after the rTMS course. Non-motor and mental symptoms were assessed using the Hamilton Depression Rating Scale (HDRS-17), Beck depression inventory (BDI-II), Depression, Anxiety and Stress (DASS-21) scales and the Mini Mental State Examination (MMSE). RESULTS Significant therapeutic effects of rTMS compared to placebo were established: a greater decrease in overall score on the MDS-UPDRS scale (parts I-IV), a decrease in the severity of non-motor (part I) and motor symptoms (part III, with a large therapeutic effect for the symptoms of rigidity, bradykinesia and postural instability), as well as the severity of motor complications of dopamine replacement therapy (part IV). The effects of rTMS on motor symptoms persisted 4 weeks after the end of the stimulation course. It is also important to note significant positive dynamics in both rTMS and placebo groups in the form of comparable reduction in the severity of everyday motor symptoms (MDS-UPDRS part II), improvement of the total scores on MMSE, HDRS, BDI-II, DASS-21. CONCLUSIONS The dual-target high-frequency rTMS over the primary motor cortex (bilateral) and the left dorsolateral prefrontal cortex has positive therapeutic effects on the motor and affective symptoms of Parkinson's disease, which are significantly stronger than that of the placebo stimulation.
Collapse
Affiliation(s)
- L I Aftanas
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Department of Neurosciences, Novosibirsk, Russia
| | - I V Brack
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - K I Kulikova
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - E A Filimonova
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - S S Dzemidovich
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - M A Piradov
- Research Center of Neurology, Moscow, Russia
| | | | | |
Collapse
|
80
|
Li S, Jiao R, Zhou X, Chen S. Motor recovery and antidepressant effects of repetitive transcranial magnetic stimulation on Parkinson disease: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020; 99:e19642. [PMID: 32358345 PMCID: PMC7440210 DOI: 10.1097/md.0000000000019642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/29/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Clinical symptoms of Parkinson disease (PD) included both motor and nonmotor symptoms. Previous studies indicated inconsistent results for the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on motor and depression in PD. The study aimed to assess the therapeutic effect of rTMS with different mode on motor and depression in PD using a meta-analysis. METHODS Articles published before July 2019 were searched based on the following databases (PubMed, Web of Science, Medline, Embase, and Google Scholar). The therapeutic effects were assessed by computing the standard mean difference (SMD) and a 95% confidence interval (CI). RESULTS The present study indicated that rTMS showed significant therapeutic effects on motor in PD (SMD 2.05, 95% CI 1.57-2.53, I = 93.0%, P < .001). Both high-frequency (HF)-rTMS and low-frequency rTMS showed therapeutic effects on motor; stimulation over primary motor cortex (M1), supplementary motor area, dorsal lateral prefrontal cortex (DLPFC) or M1+DLPFC showed therapeutic effects; stimulation during "on" and "off" states showed therapeutic effects; the study showed long-term effect of rTMS on motor in PD. In addition, the study indicated that rTMS showed significant therapeutic effects on depression in PD (SMD 0.80, 95% CI 0.31-1.29, I = 89.1%, P < .001). Stimulation over left DLPFC showed significant therapeutic effects on depression in PD; only HF-rTMS showed therapeutic effects; ages, disease durations, numbers of pulses, and session durations displayed influence on the therapeutic effects of rTMS on depression in PD; the therapeutic effects on depression was long term. However, no significant difference in therapeutic effects on depression were showed between rTMS and oral Fluoxetine (SMD 0.74, 95% CI -0.83 to 2.31, I = 92.5%, P < .001). CONCLUSION The rTMS showed significant therapeutic effects on motor in PD. HF-rTMS showed a significant positive antidepressive effect in PD only over DLPFC.
Collapse
|
81
|
Chen J, He P, Zhang Y, Gao Y, Qiu Y, Li Y, Zhang Q, Wang L, Huang Z, Zhao J, Nie K, Wang L. Non-pharmacological treatment for Parkinson disease patients with depression: a meta-analysis of repetitive transcranial magnetic stimulation and cognitive-behavioral treatment. Int J Neurosci 2020; 131:411-424. [PMID: 32253965 DOI: 10.1080/00207454.2020.1744591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Nowadays, antidepressants still are the mainstay of treatment for depression in Parkinson's disease (PD) but some recent studies report that medication might aggravate motor symptoms in PD patients. This meta-analysis aims to assess the effect of non-pharmacological treatments for depression in patients with PD.Materials and Methods: Only randomized controlled trials (RCTs) were included. The participants were PD patients with comorbid depression (dPD). The interventions had the equivalent effect of non-pharmacological treatments alone compared with control(s). Scores of depression scale were selected as the primary outcome, while scores of Unified Parkinson's Disease Rating Scale part III and the incidence of side effects were the secondary outcome. The statistics were pooled and presented as weighted mean differences (WMDs), standardized mean differences (SMDs), or risk ratios (RRs) with their 95% confidence intervals (CIs).Results: Fifteen articles were eventually included; twelve studies reported on repetitive transcranial magnetic stimulation (rTMS) and three used cognitive behavioral therapy (CBT). Other interventions failed to have qualified studies. Our data indicated that both rTMS and CBT could significantly improve depression scores in a short term (SMD = -0.621, 95% CI [-0.964, -0.278]; SMD = -1.148, 95% CI [-1.498, -0.798], respectively). In addition, rTMS could alleviate motor symptom (WMD = -2.617, 95% CI [-4.183, -1.051]) and was relatively safe (RR = 1.054, 95% CI [0.698, 1.592]).Conclusion: Our data suggest that rTMS can safely alleviate depression and motor symptoms in dPD at least for a short period. Moreover, compared with clinical monitoring, CBT can improve depressive symptoms.
Collapse
Affiliation(s)
- Jianing Chen
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Peikun He
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yihui Qiu
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - You Li
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Qingxi Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Limin Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Zhiheng Huang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jiehao Zhao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| |
Collapse
|
82
|
Lewis MM, Harkins E, Lee EY, Stetter C, Snyder B, Corson T, Du G, Kong L, Huang X. Clinical Progression of Parkinson's Disease: Insights from the NINDS Common Data Elements. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1075-1085. [PMID: 32538866 PMCID: PMC8177750 DOI: 10.3233/jpd-201932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVE To synchronize data collection, the National Institute of Neurological Disorders and Stroke (NINDS) recommended Common Data Elements (CDEs) for use in Parkinson's disease (PD) research. This study delineated the progression patterns of these CDEs in a cohort of PD patients. METHODS One hundred-twenty-five PD patients participated in the PD Biomarker Program (PDBP) at Penn State. CDEs, including MDS-Unified PD Rating Scale (UPDRS)-total, questionnaire-based non-motor (-I) and motor (-II), and rater-based motor (-III) subscales; Montreal Cognitive Assessment (MoCA); Hamilton Depression Rating Scale (HDRS); University of Pennsylvania Smell Identification Test (UPSIT); and PD Questionnaire (PDQ-39) were obtained at baseline and three annual follow-ups. Annual change was delineated for PD or subgroups [early = PDE, disease duration (DD) <1 y; middle = PDM, DD = 1-5 y; and late = PDL, DD > 5 y] using mixed effects model analyses. RESULTS UPDRS-total, -II, and PDQ-39 scores increased significantly, and UPSIT decreased, whereas UPDRS-I, -III, MoCA, and HDRS did not change, over 36 months in the overall PD cohort. In the PDE subgroup, UPDRS-II increased and UPSIT decreased significantly, whereas MoCA and UPSIT decreased significantly in the PDM subgroup. In the PDL subgroup, UPDRS-II and PDQ-39 increased significantly. Other metrics within each individual subgroup did not change. Sensitivity analyses using subjects with complete data confirmed these findings. CONCLUSION Among CDEs, UPDRS-total, -II, PDQ-39, and UPSIT all are sensitive metrics to track PD progression. Subgroup analyses revealed that these CDEs have distinct stage-dependent sensitivities, with UPSIT for DD < 5 y, PDQ-39 for DD > 5 y, UPDRS-II for early (DD < 1) or later stages (DD > 5).
Collapse
Affiliation(s)
- Mechelle M. Lewis
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Pharmacology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Elias Harkins
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Eun-Young Lee
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Christy Stetter
- Department of Public Health Sciences, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Bethany Snyder
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Tyler Corson
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Pharmacology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Radiology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Neurosurgery, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Kinesiology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| |
Collapse
|
83
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1164] [Impact Index Per Article: 232.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
84
|
Pontone GM, Dissanayaka N, Apostolova L, Brown RG, Dobkin R, Dujardin K, Friedman JH, Leentjens AFG, Lenze EJ, Marsh L, Mari L, Monchi O, Richard IH, Schrag A, Strafella AP, Vernaleo B, Weintraub D, Mari Z. Report from a multidisciplinary meeting on anxiety as a non-motor manifestation of Parkinson's disease. NPJ Parkinsons Dis 2019; 5:30. [PMID: 31840044 PMCID: PMC6906437 DOI: 10.1038/s41531-019-0102-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Anxiety is a severe problem for at least one-third of people living with Parkinson's disease (PD). Anxiety appears to have a greater adverse impact on quality of life than motor impairment. Despite its high prevalence and impact on daily life, anxiety is often undiagnosed and untreated. To better address anxiety in PD, future research must improve knowledge about the mechanism of anxiety in PD and address the lack of empirical evidence from clinical trials. In response to these challenges, the Parkinson's Foundation sponsored an expert meeting on anxiety on June 13th and 14th 2018. This paper summarizes the findings from that meeting informed by a review of the existing literature and discussions among patients, caregivers, and an international, clinician-scientist, expert panel working group. The goal is to provide recommendations to improve our understanding and treatment of anxiety in PD.
Collapse
Affiliation(s)
- Gregory M. Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nadeeka Dissanayaka
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia
- School of Psychology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane & Woman’s Hospital, Brisbane, Australia
| | - Liana Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Richard G. Brown
- Department of Psychology, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Roseanne Dobkin
- Department of Psychiatry, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ USA
| | - Kathy Dujardin
- Department of Neurology and Movement Disorders, Lille University Medical Center, Lille, France
| | - Joseph H. Friedman
- Movement Disorders Program, Butler Hospital; Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Albert F. G. Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Laura Marsh
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX USA
| | - Lynda Mari
- Person Holistic Innovation, Las Vegas, NV USA
| | - Oury Monchi
- Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Irene H. Richard
- Department of Neurology, University of Rochester Medical Center, Rochester, NY USA
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Antonio P. Strafella
- E.J. Safra Parkinson Disease Program, Toronto Western Hospital & Krembil Research Institute, UHN; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH; University of Toronto, Ontario, Canada
| | | | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Movement Disorders Program, Las Vegas, NV USA
| |
Collapse
|
85
|
Pupíková M, Rektorová I. Non-pharmacological management of cognitive impairment in Parkinson's disease. J Neural Transm (Vienna) 2019; 127:799-820. [PMID: 31823066 DOI: 10.1007/s00702-019-02113-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
We evaluated the therapeutic effects of non-pharmacological interventions (cognitive training, physical activity, and non-invasive brain stimulation) on cognitive symptoms in Parkinson's disease. A comprehensive literature search for non-pharmacological intervention randomized controlled trials was performed and effect sizes were calculated for each suitable study intervention approach and cognitive domain. Despite the heterogeneity of the study results, we report level B evidence for the probable efficacy of cognitive training in improving or maintaining attention/working memory and memory domains. Level C (possible efficacy) evidence was found for specific physical training types with respect to enhancing executive functions. Non-invasive brain stimulation techniques and combinatorial approaches show preliminary but promising results. Prediction markers evaluating distinct treatment responses should be identified that would help to choose the best candidates for specific treatment strategies and cognitive symptoms. Future directions and recommendations are discussed.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic. .,Department of Neurology, St. Anne's University Hospital and School of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
86
|
Hai-jiao W, Ge T, Li-na Z, Deng C, Da X, Shan-Shan C, Liu L. The efficacy of repetitive transcranial magnetic stimulation for Parkinson disease patients with depression. Int J Neurosci 2019; 130:19-27. [PMID: 29985089 DOI: 10.1080/00207454.2018.1495632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wang Hai-jiao
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane #, Chengdu 610041, Sichuan, China
| | - Tan Ge
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane #, Chengdu 610041, Sichuan, China
| | - Zhu Li-na
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane #, Chengdu 610041, Sichuan, China
| | - Chen Deng
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane #, Chengdu 610041, Sichuan, China
| | - Xu Da
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane #, Chengdu 610041, Sichuan, China
| | - Chu Shan-Shan
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane #, Chengdu 610041, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Lane #, Chengdu 610041, Sichuan, China
| |
Collapse
|
87
|
Berardelli I, Belvisi D, Pasquini M, Fabbrini A, Petrini F, Fabbrini G. Treatment of psychiatric disturbances in hypokinetic movement disorders. Expert Rev Neurother 2019; 19:965-981. [PMID: 31241368 DOI: 10.1080/14737175.2019.1636648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
Introduction: We reviewed studies that assessed the treatment of psychiatric disturbances in Parkinson's disease and atypical parkinsonisms. Neuropsychiatric disturbances in these conditions are frequent and have a profound impact on quality of life of patients and of their caregivers. It is therefore important to be familiar with the appropriate pharmacological and non-pharmacological interventions for treating these disorders. Areas covered: The authors searched for papers in English in Pubmed using the following keywords: Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, Lewy body dementia, depression, apathy, anxiety, fatigue, sleep disorders, obsessive compulsive disorders, psychosis, hallucinations, delusions, impulse control disorders. Expert opinion: In Parkinson's disease, depression may benefit from the optimization of dopaminergic therapy, from the use of antidepressants acting on both the serotoninergic and noradrenergic pathways and from cognitive behavioral therapy. Psychosis in Parkinson's disease may improve with the use of clozapine; the serotonin inverse agonist pimavanserin has been shown to be effective. Treatment of impulse control disorders is primarily based on the removal of dopamine agonists. No controlled studies have investigated the treatment of neuropsychiatric disorders in multiple system atrophy, progressive supranuclear palsy or corticobasal degeneration. Acethylcholinesterase inhibitors may be used to treat hallucinations in Lewy body dementia.
Collapse
Affiliation(s)
- Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome , Rome , Italy
| | | | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy
| | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy
| | - Federica Petrini
- Department of Neurosciences and Mental Health, Azienda Universitaria Policlinico Umberto I° , Rome , Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed , Pozzilli , Italy
- Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
88
|
Abstract
Depression and anxiety are common neuropsychiatric manifestations of Parkinson disease. However, they are often under-recognized because the somatic symptoms of depression often overlap with the motor symptoms of Parkinson disease and there is low self-reporting. Clinicians need to be vigilant about early detection and treatment of anxiety and depression in the patient with Parkinson disease. The development of new therapeutic strategies, including diet, exercise, and counseling along with antidepressants provide a holistic approach to management.
Collapse
Affiliation(s)
- Sudeshna Ray
- Booth Gardner Parkinson's Care Center, Evergreen Neuroscience Institute, 12039 NE 128th St, MS-77, Kirkland, WA 98034, USA
| | - Pinky Agarwal
- Booth Gardner Parkinson's Care Center, Evergreen Neuroscience Institute, 12039 NE 128th St, MS-77, Kirkland, WA 98034, USA; University of Washington, Seattle, WA, USA.
| |
Collapse
|
89
|
|
90
|
Chen KS, Chen R. Invasive and Noninvasive Brain Stimulation in Parkinson's Disease: Clinical Effects and Future Perspectives. Clin Pharmacol Ther 2019; 106:763-775. [DOI: 10.1002/cpt.1542] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/07/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Kai‐Hsiang Stanley Chen
- Krembil Research Institute University Health Network Toronto Ontario Canada
- Department of Neurology National Taiwan University Hospital Hsin‐Chu Branch Hsin‐Chu Taiwan
| | - Robert Chen
- Krembil Research Institute University Health Network Toronto Ontario Canada
- Division of Neurology Department of Medicine University of Toronto Toronto Ontario Canada
- Edmond J. Safra Program in Parkinson's Disease University Health Network Toronto Ontario Canada
| |
Collapse
|
91
|
Cui H, Ren R, Lin G, Zou Y, Jiang L, Wei Z, Li C, Wang G. Repetitive Transcranial Magnetic Stimulation Induced Hypoconnectivity Within the Default Mode Network Yields Cognitive Improvements in Amnestic Mild Cognitive Impairment: A Randomized Controlled Study. J Alzheimers Dis 2019; 69:1137-1151. [PMID: 31127779 DOI: 10.3233/jad-181296] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hailun Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rujing Ren
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guozhen Lin
- Department of Psychiatry, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zou
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengde Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Brain Function and Disease, Chinese Academy of Sciences, School of Life Sciences, University of Science & Technology of China, Hefei, Anhui, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
| | - Gang Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
92
|
The influence of one session of low frequency rTMS on pre-supplementary motor area metabolites in late stage Parkinson's disease. Clin Neurophysiol 2019; 130:1292-1298. [PMID: 31176928 DOI: 10.1016/j.clinph.2019.04.720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/29/2019] [Accepted: 04/27/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the effect of Low Frequency repetitive Transcranial Magnetic Stimulation (LF rTMS) on brain metabolites in late stage Parkinson's disease (PD) patients (disease duration at least 4 years and Hoehn and Yahr (1969) score at least 2 in OFF). Several neuroimaging data support a role for pre-Supplementary Motor Area (pre-SMA) involvement in the pathogenesis of Parkinson's disease. Proton magnetic resonance spectroscopy (1H-MRS) measures in vivo metabolites, but results in PD brain remain conflicting and little is known of the effect of LF rTMS thereupon. METHODS We investigate the neurochemical profile of the right pre-SMA in 17 late stage PD patients (11 male and 6 female, mean age of 71 years) before and after one session of sham controlled 1 Hz rTMS (1000 pulses, 16 minutes), focusing on the tNAA/tCr and tCho/tCr ratios. RESULTS The tNAA/tCr ratio was unaffected by one session of LF rTMS. We did observe a significant effect of real LF rTMS on the tCho/tCr ratio, inversely correlated with disease duration, and not related to the presence of dyskinesias. As expected, one session of LF rTMS did not affect clinical outcome. CONCLUSIONS LF rTMS at the right pre-SMA in late stage Parkinson's disease patients does not alter tNAA/tCr, but influences tCho/tCr ratio, in particular in patients with shorter disease duration. SIGNIFICANCE Pre-SMA LF rTMS seems to influence membrane turnover, more importantly in patients with shorter disease duration. Larger LF rTMS treatment studies applying multiple sessions are needed.
Collapse
|
93
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. Mov Disord 2019; 34:769-782. [PMID: 31034682 DOI: 10.1002/mds.27705] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation is a safe and painless non-invasive brain stimulation technique that has been largely used in the past 30 years to explore cortical function in healthy participants and, inter alia, the pathophysiology of movement disorders. During the years, its use has evolved from primarily research purposes to treatment of a large variety of neurological and psychiatric diseases. In this article, we illustrate the basic principles on which the therapeutic use of transcranial magnetic stimulation is based and review the clinical trials that have been performed in patients with movement disorders. METHODS A search of the PubMed database for research and review articles was performed on therapeutic applications of transcranial magnetic stimulation in movement disorders. The search included the following conditions: Parkinson's disease, dystonia, Tourette syndrome and other chronic tic disorders, Huntington's disease and choreas, and essential tremor. The results of the studies and possible mechanistic explanations for the relatively minor effects of transcranial magnetic stimulation are discussed. Possible ways to improve the methodology and achieve greater therapeutic efficacy are discussed. CONCLUSION Despite the promising and robust rationales for the use of transcranial magnetic stimulations as a treatment tool in movement disorders, the results taken as a whole are not as successful as were initially expected. There is encouraging evidence that transcranial magnetic stimulation may improve motor symptoms and depression in Parkinson's disease, but the efficacy in other movement disorders is unclear. Possible improvements in methodology are on the horizon but have yet to be implemented in large clinical studies. © 2019 International Parkinson and Movement Disorder Society © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Isernia, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| |
Collapse
|
94
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
95
|
Choi H, Seo KC, Kim TU, Lee SJ, Hyun JK. Repetitive Transcranial Magnetic Stimulation Enhances Recovery in Central Cord Syndrome Patients. Ann Rehabil Med 2019; 43:62-73. [PMID: 30852872 PMCID: PMC6409668 DOI: 10.5535/arm.2019.43.1.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Objective To investigate the effect of repetitive transcranial magnetic stimulation (rTMS) on neurological and functional recovery in patients with central cord syndrome (CCS) involving the upper extremities between the treated and non-treated sides of the treated group and whether the outcomes are comparable to that of the untreated control group. Methods Nineteen CCS patients were treated with high-frequency (20 Hz) rTMS over the motor cortex for 5 days. The stimulation side was randomly selected, and all the subjects received conventional occupational therapy during the rTMS-treatment period. Twenty CCS patients who did not receive rTMS were considered as controls. Clinical assessments, including those by the International Standard for Neurological Classification of Spinal Cord Injury, the Jebsen-Taylor Hand Function Test, and the O'Connor Finger Dexterity Test were performed initially and followed up for 1 month after rTMS treatment or 5 weeks after initial assessments. Results The motor scores for upper extremities were increased and the number of improved cases was greater for the treated side in rTMS-treated patients than for the non-treated side in rTMS-treated patients or controls. The improved cases for writing time and score measured on the Jebsen-Taylor Hand Function Test were also significantly greater in number on the rTMS-treated side compared with the non-treated side and controls. There were no adverse effects during rTMS therapy or the follow-up period. Conclusion The results of the application of high-frequency rTMS treatment to CCS patients suggest that rTMS can enhance the motor recovery and functional fine motor task performance of the upper extremities in such individuals.
Collapse
Affiliation(s)
- Hana Choi
- Department of Rehabilitation Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Kyung Cheon Seo
- Department of Rehabilitation Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Tae Uk Kim
- Department of Rehabilitation Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Seong Jae Lee
- Department of Rehabilitation Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Jung Keun Hyun
- Department of Rehabilitation Medicine, Dankook University College of Medicine, Cheonan, Korea.,Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Korea.,Wiregene Co. Ltd., Cheonan, Korea
| |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW To review recent advances in therapeutics for motor and nonmotor symptoms of Parkinson's disease. RECENT FINDINGS Neuroprotection remains a large area of investigation with preliminary safety data on alpha synuclein immunotherapy and glucagon-like peptide-1 agonists. Novel Monoamine Oxidase B and Caetchol-O-methyltransferase-inhibitors for motor fluctuations have shown benefit and are recently approved for clinical use. Long-acting amantadine has also been approved to reduce dyskinesia. Alternative delivery strategies (sublingual, inhaled) dopaminergics may prove useful for rapid reversal of Parkinson's disease motor symptoms. Advanced therapies (surgery and infusional therapies) continue to be useful in subgroups of patients for motor complications with improved safety and also benefit on some nonmotor symptoms, including neuropsychiatric issues. Specific therapeutics for cognition, swallowing, sleep, and mood disorders had moderate to limited benefits. Exercise-based therapy appears beneficial at all stages of Parkinson's disease. SUMMARY The motor symptoms of Parkinson's disease can be reasonably treated and managed. However, therapies to slow or prevent disease progression remain a focus of research. Despite increased studies, treating nonmotor symptoms remains a challenge and an ongoing priority.
Collapse
|
97
|
Huang Y, Chen JC, Chen CM, Tsai CH, Lu MK. Paired Associative Electroacupuncture and Transcranial Magnetic Stimulation in Humans. Front Hum Neurosci 2019; 13:49. [PMID: 30809140 PMCID: PMC6379477 DOI: 10.3389/fnhum.2019.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 02/03/2023] Open
Abstract
Pairing transcutaneous electric nerve stimulation (TENS) and transcranial magnetic stimulation (TMS) with specific stimulus-intervals induces associative motor plasticity at the primary motor cortex (M1). Electroacupuncture (EA) is an established medical technique in the eastern countries. This study investigates whether EA paired with TMS induces distinct M1 motor plasticity. Fifteen healthy, right-handed subjects (aged 23.6 ± 2.0 years, eight women) were studied. Two-hundred and twenty-five pairs of TMS of the left M1 preceded by right EA at acupoint “Neiguan” [Pericardium 6 (PC6), located 2 decimeters proximal from the wrist wrinkle] were respectively applied with the interstimulus interval (ISI) of individual somatosensory evoked potential (SSEP) N20 latency plus 2 ms (N20+2) and minus 5 ms (N20-5) with at least 1-week interval. The paired stimulation was delivered at a rate of 0.25 Hz. Sham TMS with a sham coil was adopted to examine the low-frequency EA influence on M1 in eleven subjects. M1 excitability was assessed by motor-evoked potential (MEP) recruitment curve with five TMS intensity levels, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cerebellar inhibition (CBI) at the abductor pollicis brevis (APB) muscle of the right hand before and after the EA-M1 paired associative stimulation (PAS). In addition, median nerve SSEPs and H-reflex were respectively measured to monitor somatosensory and spinal excitability. The MEP showed significantly facilitated after the sham EA-M1 PAS while tested with 80% of the TMS intensity producing on average 1 mV amplitude (i.e., MEP1 mV) in the resting APB muscle. It was also facilitated while tested with 90% MEP1 mV irrespective of the stimulation conditions. The SSEP showed a higher amplitude from the real EA-M1 PAS compared to that from the sham EA-M1 PAS. No significant change was found on SICI, ICF, CBI and H-reflex. Findings suggest that repetitive low frequency EA paired with real TMS did not induce spike-timing dependent motor plasticity but EA paired with sham TMS induced specific M1 excitability change. Complex sensory afferents with dispersed time locked to the sensorimotor cortical area could hamper instead of enhancing the induction of the spike-timing dependent plasticity (STDP) in M1.
Collapse
Affiliation(s)
- Yi Huang
- Graduate Institute of Biomedical Sciences, Medical College, China Medical University, Taichung, Taiwan
| | - Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Graduate Institute of Biomedical Sciences, Medical College, China Medical University, Taichung, Taiwan.,Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
98
|
Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, Weintraub D, Sampaio C. Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review. Mov Disord 2019; 34:180-198. [PMID: 30653247 PMCID: PMC6916382 DOI: 10.1002/mds.27602] [Citation(s) in RCA: 605] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To update evidence-based medicine recommendations for treating nonmotor symptoms in Parkinson's disease (PD). BACKGROUND The International Parkinson and Movement Disorder Society Evidence-Based Medicine Committee's recommendations for treatments of PD were first published in 2002, updated in 2011, and now updated again through December 31, 2016. METHODS Level I studies testing pharmacological, surgical, or nonpharmacological interventions for the treatment of nonmotor symptoms in PD were reviewed. Criteria for inclusion and quality scoring were as previously reported. The disorders covered were a range of neuropsychiatric symptoms, autonomic dysfunction, disorders of sleep and wakefulness, pain, fatigue, impaired olfaction, and ophthalmologic dysfunction. Clinical efficacy, implications for clinical practice, and safety conclusions are reported. RESULTS A total of 37 new studies qualified for review. There were no randomized controlled trials that met inclusion criteria for the treatment of anxiety disorders, rapid eye movement sleep behavior disorder, excessive sweating, impaired olfaction, or ophthalmologic dysfunction. We identified clinically useful or possibly useful interventions for the treatment of depression, apathy, impulse control and related disorders, dementia, psychosis, insomnia, daytime sleepiness, drooling, orthostatic hypotension, gastrointestinal dysfunction, urinary dysfunction, erectile dysfunction, fatigue, and pain. There were no clinically useful interventions identified to treat non-dementia-level cognitive impairment. CONCLUSIONS The evidence base for treating a range of nonmotor symptoms in PD has grown substantially in recent years. However, treatment options overall remain limited given the high prevalence and adverse impact of these disorders, so the development and testing of new treatments for nonmotor symptoms in PD remains a top priority. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience at King's College and Parkinson Foundation International Centre of Excellence at King's College Hospital, Denmark Hill, London, United Kingdom
| | - Miguel Coelho
- Serviço de Neurologia, Hospital Santa Maria Instituto de Medicina Molecular Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Susan H Fox
- Edmond J Safra Program in Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, and the University of Toronto Department of Medicine, Toronto, Ontario, Canada
| | - Regina Katzenschlager
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Danube Hospital, Vienna, Austria
| | - Santiago Perez Lloret
- Institute of Cardiology Research, University of Buenos Aires, National Research Council, Buenos Aires, Argentina
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
- Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
99
|
Zhou L, Guo Z, Xing G, Peng H, Cai M, Chen H, McClure MA, He L, Xiong L, He B, Du F, Mu Q. Antidepressant Effects of Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex of Parkinson's Disease Patients With Depression: A Meta-Analysis. Front Psychiatry 2019; 9:769. [PMID: 30761029 PMCID: PMC6362497 DOI: 10.3389/fpsyt.2018.00769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Objective: The purpose of this meta-analysis was to investigate the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex (PFC) of patients with Parkinson's disease (PD) and to determine the optimal rTMS parameters, such as the intensity, frequency and the delivered pattern of rTMS stimulation. Methods: EMBASE, PubMed, Web of Science, MEDLINE, and Cochrane data bases were researched for papers published before March 12, 2018. Studies investigating the anti-depression effects of rTMS over PFC in patients with PD were considered. The main outcomes of pre- and post-rTMS treatment as well as score changes were all extracted. The mean effect size was estimated by calculating the standardized mean difference (SMD) with 95% confidence interval (CI) by using fixed or random effect models as appropriate. Results: Nine studies containing 137 PD patients with depression were included. The pooled results showed significant pre-post anti-depressive effects of rTMS over PFC in PD patients with depression (SMD = -0.80, P < 0.00001). The subgroup analyses of stimulation intensity, frequencies, and models also revealed significant effects (Intensities: 90% RMT: SMD = -1.16, P = 0.0006; >100% RMT: SMD = -0.82, P < 0.0001. Frequencies: < 1.0 Hz: SMD = -0.83, P = 0.03; 5.0 Hz: SMD = -1.10, P < 0.0001; ≥10.0 Hz: SMD = -0.55, P = 0.02. Models: Continuous: SMD = -0.79, P < 0.0001; Discontinuous: SMD = -0.84, P = 0.02). But the results of the studies with place-controlled designs were not significant (Overall: SMD = -0.27, P = 0.54. Intensities: 90% RMT: SMD = 0.27, P = 0.68; 100% RMT: SMD = -0.32, P = 0.33. Frequencies: 5.0 Hz: SMD = -0.87, P = 0.10; ≥10.0 Hz: SMD = 0.27, P = 0.66. Models: Continuous: SMD = -0.28, P = 0.68; Discontinuous: SMD = -0.32, P = 0.33). The greater effect sizes of rTMS with 90% RMT, 5.0 Hz in discontinuous days can be observed rather than the other parameters in both kinds of analyses across study design. Conclusions: rTMS may have a significant positive pre-post anti-depressive effect over PFC on patients with depression, especially by using 5.0 Hz frequency with 90% RMT intensity in discontinuous days, which may produce better effects than other parameters. The real effect, though, was not different from that of the placebo. Future studies with larger sample sizes and high-quality studies are needed to further corroborate our results and to identify the optimal rTMS protocols.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
- School of Clinical Medicine,The Clinical Medical College of Southwest Medical University, Luzhou, China
| | - Zhiwei Guo
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Guoqiang Xing
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
- Lotus Biotech.com LLC., John Hopkins University-MCC, Rockville, MD, United States
| | - Haitao Peng
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Mengjie Cai
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Huaping Chen
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Morgan A. McClure
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Lin He
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Liangwen Xiong
- Department of Genitourinary, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bin He
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
| | - Fei Du
- Department of Psychiatry, Harvard Medical School, Belmont, CA, United States
| | - Qiwen Mu
- Department of Radiology and Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital, Nanchong, China
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
100
|
Chan S, Bota R. Personalized TMS: role of RNA genotyping. Ment Illn 2019; 11:8-15. [PMID: 32742620 PMCID: PMC7364573 DOI: 10.1108/mij-10-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Noninvasive brain stimulation (NIBS) such a transcranial magnetic stimulation, intermittent theta burst stimulation, transcranial direct current stimulation and electroconvulsive therapy have emerged as an efficacious and well-tolerated therapy for treatment-resistant psychiatric disorders. While novel NIBS techniques are an exciting addition to the current repertoire of neuropsychiatric therapies, their success is somewhat limited by the wide range of treatment responses seen among treated patients. Design/methodology/approach In this study, the authors will review the studies on relevant genetic polymorphisms and discuss the role of RNA genotyping in personalizing NIBS. Findings Genome studies have revealed several genetic polymorphisms that may contribute for the heterogeneity of treatment response to NIBS where the presence of certain single nucleotide polymorphisms (SNPs) are associated with responders versus nonresponders. Originality/value Historically, mental illnesses have been arguably some of the most challenging disorders to study and to treat because of the degree of biological variability across affected individuals, the role of genetic and epigenetic modifications, the diversity of clinical symptomatology and presentations and the interplay with environmental factors. In lieu of these challenges, there has been a push for personalized medicine in psychiatry that aims to optimize treatment response based on one's unique characteristics.
Collapse
Affiliation(s)
- Shawna Chan
- University of California Irvine, Irvine, California, USA
| | - Robert Bota
- University of California Irvine, Irvine, California, USA
| |
Collapse
|