51
|
Delventhal R, Wooder ER, Basturk M, Sattar M, Lai J, Bolton D, Muthukumar G, Ulgherait M, Shirasu-Hiza MM. Dietary restriction ameliorates TBI-induced phenotypes in Drosophila melanogaster. Sci Rep 2022; 12:9523. [PMID: 35681073 PMCID: PMC9184478 DOI: 10.1038/s41598-022-13128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions annually and is associated with long-term health decline. TBI also shares molecular and cellular hallmarks with neurodegenerative diseases (NDs), typically increasing in prevalence with age, and is a major risk factor for developing neurodegeneration later in life. While our understanding of genes and pathways that underlie neurotoxicity in specific NDs has advanced, we still lack a complete understanding of early molecular and physiological changes that drive neurodegeneration, particularly as an individual ages following a TBI. Recently Drosophila has been introduced as a model organism for studying closed-head TBI. In this paper, we deliver a TBI to flies early in adult life, and then measure molecular and physiological phenotypes at short-, mid-, and long-term timepoints following the injury. We aim to identify the timing of changes that contribute to neurodegeneration. Here we confirm prior work demonstrating a TBI-induced decline in lifespan, and present evidence of a progressive decline in locomotor function, robust acute and modest chronic neuroinflammation, and a late-onset increase in protein aggregation. We also present evidence of metabolic dysfunction, in the form of starvation sensitivity and decreased lipids, that persists beyond the immediate injury response, but does not differ long-term. An intervention of dietary restriction (DR) partially ameliorates some TBI-induced phenotypes, including lifespan and locomotor function, though it does not alter the pattern of starvation sensitivity of injured flies. In the future, molecular pathways identified as altered following TBI—particularly in the short-, or mid-term—could present potential therapeutic targets.
Collapse
Affiliation(s)
- Rebecca Delventhal
- Department of Biology, Lake Forest College, Lake Forest, IL, 60045, USA.
| | - Emily R Wooder
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maylis Basturk
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mohima Sattar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jonathan Lai
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Danielle Bolton
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Gayathri Muthukumar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi M Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
52
|
Leite K, Garg P, Spitzner FP, Guerin Darvas S, Bähr M, Priesemann V, Kügler S. α-Synuclein Impacts on Intrinsic Neuronal Network Activity Through Reduced Levels of Cyclic AMP and Diminished Numbers of Active Presynaptic Terminals. Front Mol Neurosci 2022; 15:868790. [PMID: 35721317 PMCID: PMC9199018 DOI: 10.3389/fnmol.2022.868790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
α-synuclein (α-Syn) is intimately linked to synucleinopathies like Parkinson’s disease and dementia with Lewy bodies. However, the pathophysiological mechanisms that are triggered by this protein are still largely enigmatic. α-Syn overabundance may cause neurodegeneration through protein accumulation and mitochondrial deterioration but may also result in pathomechanisms independent from neuronal cell death. One such proposed pathological mechanism is the influence of α-Syn on non-stimulated, intrinsic brain activity. This activity is responsible for more than 90% of the brain’s energyconsumption, and is thus thought to play an eminent role in basic brain functionality. Here we report that α-Syn substantially disrupts intrinsic neuronal network burst activity in a long-term neuronal cell culture model. Mechanistically, the impairment of network activity originates from reduced levels of cyclic AMP and cyclic AMP-mediated signaling as well as from diminished numbers of active presynaptic terminals. The profound reduction of network activity due to α-Syn was mediated only by intracellularly expressed α-Syn, but not by α-Syn that is naturally released by neurons. Conversely, extracellular pre-formed fibrils of α-Syn mimicked the effect of intracellular α-Syn, suggesting that they trigger an off-target mechanism that is not activated by naturally released α-Syn. A simulation-based model of the network activity in our cultures demonstrated that even subtle effect sizes in reducing outbound connectivity, i.e., loss of active synapses, can cause substantial global reductions in non-stimulated network activity. These results suggest that even low-level loss of synaptic output capabilities caused by α-Syn may result in significant functional impairments in terms of intrinsic neuronal network activity. Provided that our model holds true for the human brain, then α-Syn may cause significant functional lesions independent from neurodegeneration.
Collapse
Affiliation(s)
- Kristian Leite
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Pretty Garg
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - F. Paul Spitzner
- Neural Systems Theory group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Sofia Guerin Darvas
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Neural Systems Theory group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Sebastian Kügler
| |
Collapse
|
53
|
Studart-Neto A, Coutinho AM. From clinical phenotype to proteinopathy: molecular neuroimaging in neurodegenerative dementias. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:24-35. [PMID: 35976328 PMCID: PMC9491407 DOI: 10.1590/0004-282x-anp-2022-s138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative dementias are characterized by the abnormal accumulation of misfolded proteins. However, its diagnostic criteria are still based on the clinical phenotype. The development of biomarkers allowed in vivo detection of pathophysiological processes. This article aims to make a non-systematic review of the use of molecular neuroimaging as a biomarker. Molecular neuroimaging is based on the use of radiotracers for image acquisition. The radiotracer most used in PET is 18F-fluorodeoxyglucose (FDG), with which it is possible to study the regional brain glucose metabolism. The pattern of regional hypometabolism provides neuroanatomical information on the neurodegenerative process, which, in turn, has a good specificity for each type of proteinopathy. FDG is very useful in the differential diagnosis of neurodegenerative dementias through the regional pattern of involvement, including dementia with Lewy bodies and the spectrum of frontotemporal dementia. More recently, radiotracers with specific ligands to some of the pathological proteins have been developed. Pittsburgh compound B (PIB) labeled with 11C and the ligands that use 18F (florbetapir, florbetaben and flutemetamol) are the most used radiotracers for the detection of insoluble β-amyloid peptide in Alzheimer's disease (AD). A first generation of ligands for tau protein has been developed, but it has some affinity for other non-tau protein aggregates. A second generation has the advantage of having a higher affinity for hyperphosphorylated tau protein, including in primary tauopathies.
Collapse
Affiliation(s)
- Adalberto Studart-Neto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo, SP, Brazil
| | - Artur Martins Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Radiologia e Oncologia, Divisão e Laboratório de Medicina Nuclear (LIM 43), São Paulo, SP, Brazil
| |
Collapse
|
54
|
Lucien F, Benarroch EE, Mullan A, Ali F, Boeve BF, Mielke MM, Petersen RC, Kim Y, Stang C, Camerucci E, Ross OA, Wszolek ZK, Knopman D, Bower J, Singer W, Savica R. Poly (ADP-Ribose) and α-synuclein extracellular vesicles in patients with Parkinson disease: A possible biomarker of disease severity. PLoS One 2022; 17:e0264446. [PMID: 35395000 PMCID: PMC8993007 DOI: 10.1371/journal.pone.0264446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND/OBJECTIVE Despite multiple attempts, no surrogate biomarker of Parkinson disease (PD) has been definitively identified. Alternatively, identifying a non-invasive biomarker is crucial to understanding the natural history, severity, and progression of PD and to guide future therapeutic trials. Recent work highlighted alpha synuclein-containing extracellular vesicles and Poly (ADP-ribose) polymerase (PARP-1) activity as drivers of PD pathogenesis and putative PD biomarkers. This exploratory study evaluated the role of alpha-synuclein-positive extracellular vesicles and PARP-1 activity in the plasma of PD patients as non-invasive markers of the disease's severity and progression. METHODS We collected plasma of 57 PD patients (discovery cohort 20, replication cohort 37) and compared it with 20 unaffected individuals, 20 individuals with clinically diagnosed Alzheimer's disease, and 20 individuals with dementia with Lewy bodies. We analyzed alpha-synuclein-positive extracellular vesicles from platelet-free plasma by nanoscale flow cytometry and blood concentrations of poly ADP-ribose using sandwich ELISA kits. RESULTS Median concentration of α-synuclein extracellular vesicles was significantly higher in PD patients compared to the other groups (Kruskal-Wallis, p < .0001). In the discovery cohort, patients with higher α-synuclein extracellular vesicles had a higher Unified Parkinson Disease Rating Scale score (UPDRS III median = 22 vs. 5, p = 0.045). Seven out of 20 patients (35%) showed detectable PAR levels, with positive patients showing significantly higher levels of α-synuclein extracellular vesicles. In the replication cohort, we did not observe a significant difference in the PAR-positive cases in relationship with UPDRS III. CONCLUSIONS Non-invasive determination of α-synuclein-positive extracellular vesicles may provide a potential non-invasive marker of PD disease severity, and longitudinal studies are needed to evaluate the role of α-synuclein-positive extracellular vesicles as a marker of disease progression.
Collapse
Affiliation(s)
- Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eduardo E. Benarroch
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aidan Mullan
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michelle M. Mielke
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cole Stang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Emanuele Camerucci
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Zbigniew K. Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - James Bower
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
55
|
Kamboj S, Harms C, Wright D, Nash A, Kumar L, Klein-Seetharaman J, Sarkar SK. Identification of allosteric fingerprints of alpha-synuclein aggregates in matrix metalloprotease-1 and substrate-specific virtual screening with single molecule insights. Sci Rep 2022; 12:5764. [PMID: 35388085 PMCID: PMC8987064 DOI: 10.1038/s41598-022-09866-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previous reports showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. This paper reports quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is unavailable, binding poses were predicted by molecular docking of MMP1 with aSyn using ClusPro. MMP1 dynamics were simulated using predicted binding poses and compared with the experimental interdomain dynamics to identify an appropriate pose. The selected aSyn-MMP1 binding pose near aSyn residue K45 was simulated and analyzed to define conformational changes at the catalytic site. Allosteric residues in aSyn-bound MMP1 exhibiting strong correlations with the catalytic motif residues were compared with allosteric residues in free MMP1, and aSyn-specific residues were identified. The allosteric residues in aSyn-bound MMP1 are K281, T283, G292, G327, L328, E329, R337, F343, G345, N346, Y348, G353, Q354, D363, Y365, S366, S367, F368, P371, R372, V374, K375, A379, F391, A394, R399, M414, F419, V426, and C466. Shannon entropy was defined to quantify MMP1 dynamics. Virtual screening was performed against a site on selected aSyn-MMP1 binding poses, which showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for potential substrate-specific control of MMP1 activity in the future. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.
Collapse
Affiliation(s)
- Sumaer Kamboj
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Chase Harms
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
56
|
Ponirakis G, Hamad HA, Khan A, Petropoulos IN, Gad H, Chandran M, Elsotouhy A, Ramadan M, Gawhale PV, Elorrabi M, Gadelseed M, Tosino R, Arasn A, Manikoth P, Abdelrahim YH, Refaee MA, Thodi N, Vattoth S, Almuhannadi H, Mahfoud ZR, Bhat H, Own A, Shuaib A, Malik RA. Loss of corneal nerves and brain volume in mild cognitive impairment and dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12269. [PMID: 35415208 PMCID: PMC8983001 DOI: 10.1002/trc2.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
Introduction This study compared the capability of corneal confocal microscopy (CCM) with magnetic resonance imaging (MRI) brain volumetry for the diagnosis of mild cognitive impairment (MCI) and dementia. Methods In this cross-sectional study, participants with no cognitive impairment (NCI), MCI, and dementia underwent assessment of Montreal Cognitive Assessment (MoCA), MRI brain volumetry, and CCM. Results Two hundred eight participants with NCI (n = 42), MCI (n = 98), and dementia (n = 68) of comparable age and gender were studied. For MCI, the area under the curve (AUC) of CCM (76% to 81%), was higher than brain volumetry (52% to 70%). For dementia, the AUC of CCM (77% to 85%), was comparable to brain volumetry (69% to 93%). Corneal nerve fiber density, length, branch density, whole brain, hippocampus, cortical gray matter, thalamus, amygdala, and ventricle volumes were associated with cognitive impairment after adjustment for confounders (All P's < .01). Discussion The diagnostic capability of CCM compared to brain volumetry is higher for identifying MCI and comparable for dementia, and abnormalities in both modalities are associated with cognitive impairment.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Hanadi Al Hamad
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Adnan Khan
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | | | - Hoda Gad
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Mani Chandran
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Ahmed Elsotouhy
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
- NeuroradiologyHamad General HospitalHamad Medical CorporationDohaQatar
| | - Marwan Ramadan
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Priya V. Gawhale
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Marwa Elorrabi
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Masharig Gadelseed
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Rhia Tosino
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Anjum Arasn
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Pravija Manikoth
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | | | - Mahmoud A Refaee
- Geriatric & Memory ClinicRumailah HospitalHamad Medical CorporationDohaQatar
| | - Noushad Thodi
- MRI UnitRumailah HospitalHamad Medical CorporationDohaQatar
| | - Surjith Vattoth
- RadiologyUniversity of Arkansas for Medical SciencesArkansasUSA
| | - Hamad Almuhannadi
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Ziyad R. Mahfoud
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Harun Bhat
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
| | - Ahmed Own
- NeuroradiologyHamad General HospitalHamad Medical CorporationDohaQatar
| | - Ashfaq Shuaib
- Department of MedicineUniversity of AlbertaAlbertaCanada
| | - Rayaz A. Malik
- Department of MedicineWeill Cornell Medicine‐QatarQatar FoundationDohaQatar
- Faculty of BiologyMedicine and HealthUniversity of ManchesterManchesterUK
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
57
|
Vijayakumar D, Jankovic J. Slowing Parkinson's Disease Progression with Vaccination and Other Immunotherapies. CNS Drugs 2022; 36:327-343. [PMID: 35212935 DOI: 10.1007/s40263-022-00903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. There are several recognized pathways leading up to dopaminergic neuron loss in the substantia nigra pars compacta and other cells in the brain as a result of age-related, genetic, environmental, and other processes. Of these, the most prominent is the role played by the protein α-synuclein, which aggregates and is the primary component of Lewy bodies, the histopathological hallmark of PD. The latest disease-modifying treatment options being investigated in PD are active and passive immunization against α-synuclein. There are currently five different monoclonal antibodies investigated as passive immunization and three drugs being studied as active immunization modalities in PD. These work through different mechanisms but with a common goal-to minimize or prevent α-synuclein-driven neurotoxicity by reducing α-synuclein synthesis, increasing α-synuclein degradation, and preventing aggregation and propagation from cell to cell. These promising strategies, along with other potential therapies, may favorably alter disease progression in PD.
Collapse
Affiliation(s)
- Dhanya Vijayakumar
- Department of Medicine, Prisma Health Upstate, The University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Joseph Jankovic
- Distinguished Chair in Movement Disorders, Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Baylor St. Luke's Medical Center at the McNair Campus, 7200 Cambridge, 9th Floor, Suite 9A, Houston, TX, 77030-4202, USA.
| |
Collapse
|
58
|
Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharmacol 2022; 199:115011. [PMID: 35314166 DOI: 10.1016/j.bcp.2022.115011] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic membrane coupling regions formed by the coupling of the mitochondrial outer membrane and endoplasmic reticulum (ER). MAMs are involved in the mitochondrial dynamics, mitophagy, Ca2+ exchange, and ER stress. A large number of studies indicate that many proteins are involved in the formation of MAMs, including dynamic-related protein 1 (Drp1), DJ-1, PTEN-induced putative kinase 1 (PINK), α-synuclein (α-syn), sigma-1 receptor (S1R), mitofusin-2 (Mfn2), presenilin-1 (PS1), protein kinase R (PKR)-like ER kinase (PERK), Parkin, Cyclophilin D (CypD), glucose-related protein 75 (Grp75), FUN14 domain containing 1 (Fundc1), vesicle-associated membrane-protein-associated protein B (VAPB), phosphofurin acidic cluster sorting protein 2 (PACS-2), ER oxidoreductin 1 (Ero1), and receptor expression-enhancing protein 1 (REEP1). These proteins play an important role in the structure and functions of the MAMs. Abnormalities in these MAM proteins further contribute to the occurrence and development of related diseases, such as neurodegenerative diseases, non-alcoholicfattyliverdisease (NALFD), type 2 diabetes mellitus (T2DM), and diabetic kidney (DN). In this review, we introduce important proteins involved in the structure and the functions of the MAMs. Furthermore, we effectively summarize major insights about these proteins that are involved in the physiopathology of several diseases through the effect on MAMs.
Collapse
|
59
|
Marianetti M, Pinna S, Venuti A, Liguri G. Olive polyphenols and bioavailable glutathione: Promising results in patients diagnosed with mild Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12278. [PMID: 35310529 PMCID: PMC8918095 DOI: 10.1002/trc2.12278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Introduction Recent studies highlighted the role of olive polyphenols in disrupting the ordered structure of highly cytotoxic amyloid beta protofibrils and the efficacy of a derivatized form of glutathione to counteract neuronal oxidative stress affecting specific brain regions at early stages of Alzheimer's disease (AD) pathogenesis. We performed a randomized cross-over clinical trial to evaluate their potential benefits in mild AD. Methods Oleuropein and S-acetyl glutathione were administered as dietary supplement for 6 months to 18 patients diagnosed for probable mild AD according to International Working Group 2 criteria. Patients underwent an extensive cognitive and behavioral neuropsychological test battery at the beginning and end of the study to evaluate cognitive deterioration, memory, visuospatial abilities, attention, language, executive functions, and behavioral disorders. We compared patients receiving treatment to patients receiving no treatment. Results All the measured neurocognitive parameters stabilized or improved after the treatment in all patients. Discussion Dietary supplement with olive polyphenols and bioavailable glutathione could be useful for patients diagnosed with mild AD.
Collapse
Affiliation(s)
| | - Silvia Pinna
- Experimental Alzheimer CenterFatebenefratelli Roman ProvinceRomeItaly
| | - Angelo Venuti
- Experimental Alzheimer CenterFatebenefratelli Roman ProvinceRomeItaly
| | - Gianfranco Liguri
- Department of Biochemistry and Molecular BiologyUniversity of FlorenceFlorenceItaly
| |
Collapse
|
60
|
Neuropathological substrates of cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:177-193. [PMID: 35248194 DOI: 10.1016/bs.pbr.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autopsy validation is still required for a definitive diagnosis of Parkinson's disease (Postuma et al., 2015), where the presence of Lewy bodies and Lewy neurites, composed primarily of alpha-synuclein, are observed in stereotyped patterns throughout regions of the brainstem, limbic, and neocortical regions of the brain (Braak et al., 2003). In spite of these relatively reliable observed patterns of alpha-synuclein pathology, there is a large degree of heterogeneity in the timing and features of neuropsychiatric and cognitive dysfunction in Parkinson's disease (Fereshtehnejad et al., 2015; Selikhova et al., 2009; Williams-Gray et al., 2013). Detailed studies of their neuropathological substrates of cognitive dysfunction and their associations with a variety of in vivo biomarkers have begun to disentangle this complex relationship, but ongoing multicentered, longitudinal studies of well-characterized and autopsy validated cases are still required.
Collapse
|
61
|
Duggan MR, Lu A, Foster TC, Wimmer M, Parikh V. Exosomes in Age-Related Cognitive Decline: Mechanistic Insights and Improving Outcomes. Front Aging Neurosci 2022; 14:834775. [PMID: 35299946 PMCID: PMC8921862 DOI: 10.3389/fnagi.2022.834775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the most prominent risk factor for cognitive decline, yet behavioral symptomology and underlying neurobiology can vary between individuals. Certain individuals exhibit significant age-related cognitive impairments, while others maintain intact cognitive functioning with only minimal decline. Recent developments in genomic, proteomic, and functional imaging approaches have provided insights into the molecular and cellular substrates of cognitive decline in age-related neuropathologies. Despite the emergence of novel tools, accurately and reliably predicting longitudinal cognitive trajectories and improving functional outcomes for the elderly remains a major challenge. One promising approach has been the use of exosomes, a subgroup of extracellular vesicles that regulate intercellular communication and are easily accessible compared to other approaches. In the current review, we highlight recent findings which illustrate how the analysis of exosomes can improve our understanding of the underlying neurobiological mechanisms that contribute to cognitive variation in aging. Specifically, we focus on exosome-mediated regulation of miRNAs, neuroinflammation, and aggregate-prone proteins. In addition, we discuss how exosomes might be used to enhance individual patient outcomes by serving as reliable biomarkers of cognitive decline and as nanocarriers to deliver therapeutic agents to the brain in neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael R. Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Anne Lu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mathieu Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
62
|
A light-inducible protein clustering system for in vivo analysis of α-synuclein aggregation in Parkinson disease. PLoS Biol 2022; 20:e3001578. [PMID: 35263320 PMCID: PMC8936469 DOI: 10.1371/journal.pbio.3001578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/21/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation. Here, we report on the development of a light-inducible protein aggregation (LIPA) system that enables spatiotemporal control of α-synuclein (α-syn) aggregation into insoluble deposits called Lewy bodies (LBs), the pathological hallmark of Parkinson disease (PD) and other proteinopathies. We demonstrate that LIPA-α-syn inclusions mimic key biochemical, biophysical, and ultrastructural features of authentic LBs observed in PD-diseased brains. In vivo, LIPA-α-syn aggregates compromise nigrostriatal transmission, induce neurodegeneration and PD-like motor impairments. Collectively, our findings provide a new tool for the generation, visualization, and dissection of the role of α-syn aggregation in PD.
Collapse
|
63
|
Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in Combating Neuronal Dysregulated Signaling Pathways: Recent Approaches to the Nanoformulations of Phytochemicals and Synthetic Drugs Against Neurodegenerative Diseases. Int J Nanomedicine 2022; 17:299-331. [PMID: 35095273 PMCID: PMC8791303 DOI: 10.2147/ijn.s347187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
As the worldwide average life expectancy has grown, the prevalence of age-related neurodegenerative diseases (NDDs) has risen dramatically. A progressive loss of neuronal function characterizes NDDs, usually followed by neuronal death. Inflammation, apoptosis, oxidative stress, and protein misfolding are critical dysregulated signaling pathways that mainly orchestrate neuronal damage from a mechanistic point. Furthermore, in afflicted families with genetic anomalies, mutations and multiplications of α-synuclein and amyloid-related genes produce some kinds of NDDs. Overproduction of such proteins, and their excessive aggregation, have been proven in various models of neuronal malfunction and death. In this line, providing multi-target therapies carried by novel delivery systems would pave the road to control NDDs through simultaneous modulation of such dysregulated pathways. Phytochemicals are multi-target therapeutic agents, which employ several mechanisms towards neuroprotection. Besides, the blood-brain barrier (BBB) is a critical issue in managing NDDs since it inhibits the accessibility of drugs to the brain in sufficient concentration. Besides, discovering novel delivery systems is vital to improving the efficacy, bioavailability, and pharmacokinetic of therapeutic agents. Such novel formulations are also employed to improve the drug's biodistribution, allow for the co-delivery of several medicines, and offer targeted intracellular delivery against NDDs. The present review proposes nanoformulations of phytochemicals and synthetic agents to combat NDDs by modulating neuroinflammation, neuroapoptosis, neuronal oxidative stress pathways and protein misfolding.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Marsili L, Mahajan A. Clinical milestones in Parkinson's disease: Past, present, and future. J Neurol Sci 2022; 432:120082. [PMID: 34923333 DOI: 10.1016/j.jns.2021.120082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Abhimanyu Mahajan
- Rush Parkinson's Disease and Movement Disorders Program, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
65
|
Shahzadi S, Yasir M, Aftab B, Babar S, Hassan M. Exploration of Protein Aggregations in Parkinson's Disease Through Computational Approaches and Big Data Analytics. Methods Mol Biol 2022; 2340:449-467. [PMID: 35167085 DOI: 10.1007/978-1-0716-1546-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation has been implicated in numerous neurodegenerative disorders whose etiologies are poorly understood, and for which there are no effective treatments. Here we show that the computational approaches may help us to better understand the basics of Parkinson's disease (PD). The high-resolution structural, dynamical, and mechanistic insights delivered by computational studies of protein aggregation have a unique potential to enable the rational manipulation of oligomer formation. Additionally, big data and machine learning methods may provide valuable insights to better understand the nature of proteins involved in PD and their aggregative behavior for the betterment of PD treatment.
Collapse
Affiliation(s)
- Saba Shahzadi
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | - Muhammad Yasir
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Bisma Aftab
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sumbal Babar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
- Battelle Center for Mathematical Medicine, Nationwide Children Hospital & Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
66
|
Matar E, Brooks D, Lewis SJ, Halliday GM. Limbic thalamus atrophy is associated with visual hallucinations in Lewy body disorders. Neurobiol Aging 2022; 112:122-128. [DOI: 10.1016/j.neurobiolaging.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 01/22/2023]
|
67
|
Rahayel S, Mišić B, Zheng YQ, Liu ZQ, Abdelgawad A, Abbasi N, Caputo A, Zhang B, Lo A, Kehm V, Kozak M, Soo Yoo H, Dagher A, Luk KC. Differentially targeted seeding reveals unique pathological alpha-synuclein propagation patterns. Brain 2021; 145:1743-1756. [PMID: 34910119 PMCID: PMC9166565 DOI: 10.1093/brain/awab440] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
Parkinson's Disease is a progressive neurodegenerative disorder characterized by the intracellular accumulation of insoluble alpha-synuclein aggregates into Lewy bodies and neurites. Increasing evidence indicates that Parkinson's Disease progression results from the spread of pathologic alpha-synuclein through neuronal networks. However, the exact mechanisms underlying the propagation of abnormal proteins in the brain are only partially understood. The objective of this study was first to describe the long-term spatiotemporal distributions of Lewy-related pathology in mice injected with alpha-synuclein preformed fibrils and then to recreate these patterns using a computational model that simulates in silico the spread of pathologic alpha-synuclein. In this study, 87 two-to-three-month-old non-transgenic mice were injected with alpha-synuclein preformed fibrils to generate a comprehensive post-mortem dataset representing the long-term spatiotemporal distributions of hyperphosphorylated alpha-synuclein, an established marker of Lewy pathology, across the 426 regions of the Allen Mouse Brain Atlas. The mice were injected into either the caudoputamen, nucleus accumbens or hippocampus and followed over 24 months with pathologic alpha-synuclein quantified at seven intermediate time points. The pathologic patterns observed at each time point in this high-resolution dataset were then compared to those generated using a Susceptible-Infected-Removed computational model, an agent-based model that simulates the spread of pathologic alpha-synuclein for every brain region taking simultaneously into account the effect of regional brain connectivity and Snca gene expression. Our histopathological findings showed that differentially targeted seeding of pathologic alpha-synuclein resulted in unique propagation patterns over 24 months and that most brain regions were permissive to pathology. We found that the Susceptible-Infected-Removed model recreated the observed distributions of pathology over 24 months for each injection site. Null models showed that both Snca gene expression and connectivity had a significant influence on model fit. In sum, our study demonstrates that the combination of normal alpha-synuclein concentration and brain connectomics contributes to making brain regions more vulnerable to the pathological process, providing support for a prion-like spread of pathologic alpha-synuclein. We propose that this rich dataset and the related computational model will help test new hypotheses regarding mechanisms that may alter the spread of pathologic alpha-synuclein in the brain.
Collapse
Affiliation(s)
- Shady Rahayel
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec H4J 1C5, Canada
| | - Bratislav Mišić
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ying-Qiu Zheng
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alaa Abdelgawad
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nooshin Abbasi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Anna Caputo
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA
| | - Bin Zhang
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA
| | - Angela Lo
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA
| | - Victoria Kehm
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA
| | - Michael Kozak
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA
| | - Han Soo Yoo
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA.,Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Alain Dagher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA
| |
Collapse
|
68
|
Fang J, Zhang P, Zhou Y, Chiang CW, Tan J, Hou Y, Stauffer S, Li L, Pieper AA, Cummings J, Cheng F. Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer's disease. NATURE AGING 2021; 1:1175-1188. [PMID: 35572351 PMCID: PMC9097949 DOI: 10.1038/s43587-021-00138-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We developed an endophenotype disease module-based methodology for Alzheimer's disease (AD) drug repurposing and identified sildenafil as a potential disease risk modifier. Based on retrospective case-control pharmacoepidemiologic analyses of insurance claims data for 7.23 million individuals, we found that sildenafil usage was significantly associated with a 69% reduced risk of AD (hazard ratio = 0.31, 95% confidence interval 0.25-0.39, P<1.0×10-8). Propensity score stratified analyses confirmed that sildenafil is significantly associated with a decreased risk of AD across all four drug cohorts we tested (diltiazem, glimepiride, losartan and metformin) after adjusting age, sex, race, and disease comorbidities. We also found that sildenafil increases neurite growth and decreases phospho-tau expression in AD patient-induced pluripotent stem cells-derived neuron models, supporting mechanistically its potential beneficial effect in Alzheimer's disease. The association between sildenafil use and decreased incidence of AD does not establish causality or its direction, which requires a randomized clinical trial approach.
Collapse
Affiliation(s)
- Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Pengyue Zhang
- Department of Biostatistics, School of Medicine, Indiana University
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Juan Tan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Correspondence to: Feixiong Cheng, Ph.D., Lerner Research Institute, Cleveland Clinic, , Tel: +1-216-4447654; Fax: +1-216-6361609
| |
Collapse
|
69
|
Visanji NP, Kovacs GG, Lang AE. The Discovery of α-Synuclein in Lewy Pathology of Parkinson's Disease: The Inspiration of a Revolution. Mov Disord Clin Pract 2021; 8:1189-1193. [PMID: 34765684 DOI: 10.1002/mdc3.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Naomi P Visanji
- Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| | - Gabor G Kovacs
- Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada.,Tanz Centre for Research in Neurodegenerative Disease University of Toronto Toronto Ontario Canada
| | - Anthony E Lang
- Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| |
Collapse
|
70
|
Villanueva EB, Tresse E, Liu Y, Duarte JN, Jimenez-Duran G, Ejlerskov P, Kretz O, Loreth D, Goldmann T, Prinz M, Issazadeh-Navikas S. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol 2021; 90:789-807. [PMID: 34476836 DOI: 10.1002/ana.26209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) manifests in motor dysfunction, non-motor symptoms, and eventual dementia (PDD). Neuropathological hallmarks include nigrostriatal neurodegeneration, Lewy body (LB) pathology, and neuroinflammation. Alpha-synuclein (α-syn), a primary component of LBs, is implicated in PD pathogenesis, accumulating, and aggregating in both familial and sporadic PD. However, as α-syn pathology is often comorbid with amyloid-beta (Aβ) plaques and phosphorylated tau (pTau) tangles in PDD, it is still unclear whether α-syn is the primary cause of neurodegeneration in sporadic PDD. We aimed to determine how the absence of α-syn would affect PDD manifestation. METHODS IFN-β knockout (Ifnb-/- ) mice spontaneously develop progressive behavior abnormalities and neuropathology resembling PDD, notably with α-syn+ LBs. We generated Ifnb/Snca double knockout (DKO) mice and evaluated their behavior and neuropathology compared with wild-type (Wt), Ifnb-/- , and Snca-/- mice using immunohistochemistry, electron microscopy, immunoblots, qPCR, and modification of neuronal signaling. RESULTS Ifnb/Snca DKO mice developed all clinical PDD-like behavioral manifestations induced by IFN-β loss. Independently of α-syn expression, lack of IFN-β alone induced Aβ plaques, pTau tangles, and LB-like Aβ+ /pTau+ inclusion bodies and neuroinflammation. IFN-β loss caused significant elevated glial and neuronal TNF-α and neuronal TNFR1, associated with neurodegeneration. Restoring neuronal IFN-β signaling or blocking TNFR1 rescued caspase 3/t-BID-mediated neuronal-death through upregulation of c-FLIPS and lowered intraneuronal Aβ and pTau accumulation. INTERPRETATION These findings increase our understanding of PD pathology and suggest that targeting α-syn alone is not sufficient to mitigate disease. Targeting specific aspects of neuroinflammation, such as aberrant neuronal TNF-α/TNFR1 or IFN-β/IFNAR signaling, may attenuate disease. ANN NEUROL 2021;90:789-807.
Collapse
Affiliation(s)
- Erika B Villanueva
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Tresse
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - João N Duarte
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gisela Jimenez-Duran
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Ejlerskov
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Kretz
- Department of Internal Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Goldmann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiberg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiberg, Germany
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
71
|
Torres P, Cabral-Miranda F, Gonzalez-Teuber V, Hetz C. Proteostasis deregulation as a driver of C9ORF72 pathogenesis. J Neurochem 2021; 159:941-957. [PMID: 34679204 DOI: 10.1111/jnc.15529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative disorders that display overlapping features. The hexanucleotide repeat expansion GGGGCC (G4 C2 ) in C9ORF72 gene has been causally linked to both ALS and FTD emergence, thus opening a novel potential therapeutic target for disease intervention. The main driver of C9ORF72 pathology is the disruption of distinct cellular processes involved in the function of the proteostasis network. Here we discuss main findings relating to the induction of neurodegeneration by C9ORF72 mutation and proteostasis deregulation, highlighting the role of the endoplasmic reticulum stress, nuclear transport, and autophagy in the disease process. We further discuss possible points of intervention to target proteostasis mediators to treat C9ORF72-linked ALS/FTD.
Collapse
Affiliation(s)
- Paulina Torres
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile
| | - Felipe Cabral-Miranda
- Instituto de Ciências Biomédicas, Universidade do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vicente Gonzalez-Teuber
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Science, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
72
|
Chung SJ, Lee TY, Lee YH, Baik K, Jung JH, Yoo HS, Shim CJ, Eom H, Hong JY, Kim DJ, Sohn YH, Lee PH. Phase I Trial of Intra-arterial Administration of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Patients with Multiple System Atrophy. Stem Cells Int 2021; 2021:9886877. [PMID: 34712335 PMCID: PMC8548132 DOI: 10.1155/2021/9886877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND This study is aimed at investigating the safety and tolerability of the intra-arterial administration of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with multiple system atrophy- (MSA-) cerebellar type (MSA-C). METHODS This was a single-center, open-label phase I clinical trial in patients with MSA-C. A three-stage dose escalation scheme (low-dose, 3.0 × 105 cells/kg; medium-dose, 6.0 × 105 cells/kg; high-dose, 9.0 × 105 cells/kg) was applied to determine the maximum tolerated dose of intra-arterial administration of BM-MSCs based on the no-observed-adverse-effect level derived from the toxicity study. The occurrence of adverse events was evaluated 1 day before and 1, 14, and 28 days after BM-MSC therapy. Additionally, we assessed changes in the Unified MSA Rating Scale (UMSARS) score 3 months after BM-MSC treatment. RESULTS One serious adverse drug reaction (ADR) of leptomeningeal enhancement following the intra-arterial BM-MSC administration occurred in one patient in the low-dose group. The safety review of the Internal Monitoring Committee interpreted this as radiological evidence of the blood-brain barrier permeability for MSCs. No other ADRs were observed in the medium- or high-dose groups. In particular, no ischemic lesions on diffusion-weighted images were observed in any of the study participants. Additionally, the medium- and high-dose groups tended to show a slower increase in UMSARS scores than the low-dose group during the 3-month follow-up. CONCLUSION The present study confirmed that a single intra-arterial administration of autologous BM-MSCs is a safe and promising neuroprotective strategy in patients with MSA-C.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin 16995, Republic of Korea
| | - Tae Yong Lee
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Jae Shim
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Hyojin Eom
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Ji-Yeon Hong
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Dong Joon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
73
|
Wang X, Cao G, Ding D, Li F, Zhao X, Wang J, Yang Y. Ferruginol prevents degeneration of dopaminergic neurons by enhancing clearance of α-synuclein in neuronal cells. Fitoterapia 2021; 156:105066. [PMID: 34678438 DOI: 10.1016/j.fitote.2021.105066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Lewy bodies are characteristic spherical inclusions in Parkinson's disease (PD) that are formed by α-synuclein fibrils. Ferruginol (Fer) is an amonomeric compound isolated from a traditional Chinese herb. Here, we show that Fer exerted potent neuroprotective effects in both in vitro and in vivo PD models. Neuronal cells transfected with A53T mutant (A53T) α-synuclein plasmids and treated with Fer exhibited attenuated the cytotoxicity induced by pathogenic A53T α-synuclein overexpression. Further, when we transfected neuronal cells with siRNA-SNCA (alpha-synuclein) plasmids and incubated them with Fer, the protective role of Fer decreased. We also found that Fer was a potent α-synuclein inhibitor in neuronal cells, which promotes the clearance of αsynuclein in dopaminergic neurons exposed to 1-Methyl-4-phenylpyridinium (MPP +). Fer could inhibit abnormal α-synuclein aggregation and dopaminergic neuron depletion in A53T-Tg mice, suggesting that a role for Fer in α-synuclein accumulation and nigrostriatal pathway injury. Our study revealed that Fer strongly alleviated neurodegeneration by promoting α-synuclein clearance, indicating a neuroprotective role against α-synuclein oligomer-induced neurodegeneration, which makes it a promising candidate for the treatment of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Guiyun Cao
- School of Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Dongyi Ding
- School of Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Fei Li
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Xuesong Zhao
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Jiahua Wang
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Yang Yang
- School of Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
74
|
Low soluble amyloid-β 42 is associated with smaller brain volume in Parkinson's disease. Parkinsonism Relat Disord 2021; 92:15-21. [PMID: 34656902 DOI: 10.1016/j.parkreldis.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/19/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION We sought to examine whether levels of soluble alpha-synuclein (α-syn), amyloid-beta (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau), as measured in cerebrospinal fluid (CSF), are associated with changes in brain volume in Parkinson's disease. METHODS We assessed the 4-year change in total brain volume (n = 99) and baseline CSF α-syn, Aβ42, p-tau, and t-tau of Parkinson Progression Markers Initiative participants. We used linear mixed models to assess the longitudinal effect of baseline CSF biomarkers on total and regional brain volume and thickness as well as linear regression for cross-sectional analyses at baseline and year 2. All models were adjusted for age and gender; brain volume models also adjusted for baseline intracranial volume. Bonferroni correction was applied. RESULTS The 4-year change in total brain volume was -21.2 mm3 (95% confidence interval, -26.1, -16.3). There were no significant associations between the 4-year change in total brain volume and baseline levels of any CSF biomarker (all p-values > 0.05). On cross-sectional analyses, CSF Aβ42 was linearly associated with total brain volume at baseline (R2 = 0.60, p = 0.0004) and at year 2 (R2 = 0.66, p < 0.0001), with CSF Aβ42 < 1100 pg/ml, the threshold for brain amyloid pathology, associated with smaller total brain volume at baseline (p = 0.0010) and at year 2 (p = 0.0002). CSF α-syn was linearly associated with total brain volume at baseline (R2 = 0.58, p = 0.0044) but not at year 2 (R2 = 0.58, p = 0.1342). CONCLUSION Reduction in soluble Aβ42 is associated with lower total brain volume in Parkinson's disease.
Collapse
|
75
|
Espay AJ, Ezzat K, Sturchio A. Does the Anti-Tau Strategy in Progressive Supranuclear Palsy Need to Be Reconsidered? Yes. Mov Disord Clin Pract 2021; 8:1034-1037. [PMID: 34631938 DOI: 10.1002/mdc3.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology University of Cincinnati Cincinnati Ohio USA
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet Stockholm Sweden
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology University of Cincinnati Cincinnati Ohio USA
- Department of Clinical Neuroscience Neuro Svenningsson, Karolinska Institute Stockholm Sweden
| |
Collapse
|
76
|
Lungu C, Cedarbaum JM, Dawson TM, Dorsey ER, Faraco C, Federoff HJ, Fiske B, Fox R, Goldfine AM, Kieburtz K, Macklin EA, Matthews H, Rafaloff G, Saunders-Pullman R, Schor NF, Schwarzschild MA, Sieber BA, Simuni T, Surmeier DJ, Tamiz A, Werner MH, Wright CB, Wyse R. Seeking progress in disease modification in Parkinson disease. Parkinsonism Relat Disord 2021; 90:134-141. [PMID: 34561166 PMCID: PMC11770554 DOI: 10.1016/j.parkreldis.2021.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Disease modification in Parkinson disease (PD) has remained an elusive goal, in spite of large investments over several decades. Following a large meeting of experts, this review article discusses the state of the science, possible reasons for past PD trials' failures to demonstrate disease-modifying benefit, and potential solutions. METHODS The National Institute of Neurological Disorders and Stroke (NINDS) convened a meeting including leaders in the field and representatives of key stakeholder groups to discuss drug therapy with the goal of disease modification in PD. RESULTS Important lessons can be learned from previous attempts, as well as from other fields. The selection process for therapeutic targets and agents differs among various organizations committed to therapeutic development. The areas identified as critical to target in future research include the development of relevant biomarkers, refinements of the targeted patient populations, considerations of novel trial designs, and improving collaborations between all stakeholders. CONCLUSIONS We identify potential barriers to progress in disease modification for Parkinson's and propose a set of research priorities that may improve the likelihood of success.
Collapse
Affiliation(s)
- Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Blvd, #2188, Rockville, MD, 20852, USA.
| | | | - Ted M Dawson
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E Ray Dorsey
- University of Rochester Medical Center, Rochester, NY, USA
| | - Carlos Faraco
- Division of Clinical Research, NINDS, NIH, Bethesda, MD, USA
| | | | - Brian Fiske
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Robert Fox
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Karl Kieburtz
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | | | | - Tanya Simuni
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dalton J Surmeier
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amir Tamiz
- Division of Translational Research, NINDS, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
77
|
Leveille E, Ross OA, Gan-Or Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism Relat Disord 2021; 90:142-154. [PMID: 34593302 PMCID: PMC9310195 DOI: 10.1016/j.parkreldis.2021.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
MAPT encodes the microtubule-associated protein tau, which is the main component of neurofibrillary tangles (NFTs) and found in other protein aggregates. These aggregates are among the pathological hallmarks of primary tauopathies such as frontotemporal dementia (FTD). Abnormal tau can also be observed in secondary tauopathies such as Alzheimer's disease (AD) and synucleinopathies such as Parkinson's disease (PD). On top of pathological findings, genetic data also links MAPT to these disorders. MAPT variations are a cause or risk factors for many tauopathies and synucleinopathies and are associated with certain clinical and pathological features in affected individuals. In addition to clinical, pathological, and genetic overlap, evidence also suggests that tau and alpha-synuclein may interact on the molecular level, and thus might collaborate in the neurodegenerative process. Understanding the role of MAPT variations in tauopathies and synucleinopathies is therefore essential to elucidate the role of tau in the pathogenesis and phenotype of those disorders, and ultimately to develop targeted therapies. In this review, we describe the role of MAPT genetic variations in tauopathies and synucleinopathies, several genotype-phenotype and pathological features, and discuss their implications for the classification and treatment of those disorders.
Collapse
Affiliation(s)
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
78
|
Marsili L, Giannini G, Cortelli P, Colosimo C. Early recognition and diagnosis of multiple system atrophy: best practice and emerging concepts. Expert Rev Neurother 2021; 21:993-1004. [PMID: 34253122 DOI: 10.1080/14737175.2021.1953984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Multiple system atrophy (MSA) is a progressive degenerative disorder of the central and autonomic nervous systems characterized by parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal signs. The confirmatory diagnosis is pathological, but clinical-diagnostic criteria have been developed to help clinicians. To date, the early diagnosis of MSA is challenging due to the lack of reliable diagnostic biomarkers.Areas covered: The authors reappraised the main clinical, neurophysiological, imaging, genetic, and laboratory evidence to help in the early diagnosis of MSA in the clinical and in the research settings. They also addressed the practical clinical issues in the differential diagnosis between MSA and other parkinsonian and cerebellar syndromes. Finally, the authors summarized the unmet needs in the early diagnosis of MSA and proposed the next steps for future research efforts in this field.Expert opinion: In the last decade, many advances have been achieved to help the correct MSA diagnosis since early stages. In the next future, the early diagnosis and correct classification of MSA, together with a better knowledge of the causative mechanisms of the disease, will hopefully allow the identification of suitable candidates to enroll in clinical trials and select the most appropriate disease-modifying strategies to slow down disease progression.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Giulia Giannini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica NeuroMet, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università Bologna, Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica NeuroMet, Ospedale Bellaria, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università Bologna, Bologna, Italy
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
79
|
Espay AJ, Sturchio A, Schneider LS, Ezzat K. Soluble Amyloid-β Consumption in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1403-1415. [PMID: 34151810 DOI: 10.3233/jad-210415] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain proteins function in their soluble, native conformation and cease to function when transformed into insoluble aggregates, also known as amyloids. Biophysically, the soluble-to-insoluble phase transformation represents a process of polymerization, similar to crystallization, dependent on such extrinsic factors as concentration, pH, and a nucleation surface. The resulting cross-β conformation of the insoluble amyloid is markedly stable, making it an unlikely source of toxicity. The spread of brain amyloidosis can be fully explained by mechanisms of spontaneous or catalyzed polymerization and phase transformation instead of active replication, which is an enzyme- and energy-requiring process dependent on a specific nucleic acid code for the transfer of biological information with high fidelity. Early neuronal toxicity in Alzheimer's disease may therefore be mediated to a greater extent by a reduction in the pool of soluble, normal-functioning protein than its accumulation in the polymerized state. This alternative loss-of-function hypothesis of pathogenicity can be examined by assessing the clinical and neuroimaging effects of administering non-aggregating peptide analogs to replace soluble amyloid-β levels above the threshold below which neuronal toxicity may occur. Correcting the depletion of soluble amyloid-β, however, would only exemplify 'rescue medicine.' Precision medicine will necessitate identifying the pathogenic factors catalyzing the protein aggregation in each affected individual. Only then can we stratify patients for etiology-specific treatments and launch precision medicine for Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Lon S Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
80
|
Azam S, Haque ME, Balakrishnan R, Kim IS, Choi DK. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front Cell Dev Biol 2021; 9:683459. [PMID: 34485280 PMCID: PMC8414981 DOI: 10.3389/fcell.2021.683459] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Ageing is an inevitable event in the lifecycle of all organisms, characterized by progressive physiological deterioration and increased vulnerability to death. Ageing has also been described as the primary risk factor of most neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal lobar dementia (FTD). These neurodegenerative diseases occur more prevalently in the aged populations. Few effective treatments have been identified to treat these epidemic neurological crises. Neurodegenerative diseases are associated with enormous socioeconomic and personal costs. Here, the pathogenesis of AD, PD, and other neurodegenerative diseases has been presented, including a summary of their known associations with the biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communications. Understanding the central biological mechanisms that underlie ageing is important for identifying novel therapeutic targets for neurodegenerative diseases. Potential therapeutic strategies, including the use of NAD+ precursors, mitophagy inducers, and inhibitors of cellular senescence, has also been discussed.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - Md. Ezazul Haque
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - Rengasamy Balakrishnan
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju-si, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju-si, South Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju-si, South Korea
| |
Collapse
|
81
|
Hot Topics in Recent Parkinson's Disease Research: Where We are and Where We Should Go. Neurosci Bull 2021; 37:1735-1744. [PMID: 34313916 DOI: 10.1007/s12264-021-00749-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is clinically characterized by both motor and non-motor symptoms. Although overall great achievements have been made in elucidating the etiology and pathogenesis of PD, the exact mechanisms of this complicated systemic disease are still far from being clearly understood. Consequently, most of the currently-used diagnostic tools and therapeutic options for PD are symptomatic. In this perspective review, we highlight the hot topics in recent PD research for both clinicians and researchers. Some of these hot topics, such as sleep disorders and gut symptoms, have been neglected but are currently emphasized due to their close association with PD. Following these research directions in future PD research may help understand the nature of the disease and facilitate the discovery of new strategies for the diagnosis and therapy of PD.
Collapse
|
82
|
Feng G, Han K, Li Y, Yang Q, Feng W, Wang J, Yang X. Undigestible Gliadin Peptide Nanoparticles Penetrate Mucus and Reduce Mucus Production Driven by Intestinal Epithelial Cell Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7979-7989. [PMID: 34251199 DOI: 10.1021/acs.jafc.1c02177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wheat protein is the most consumed plant protein in our diet, and there is an increased prevalence of wheat/gluten intolerance and adherence to a gluten-free diet in many countries. Despite the known immunodominant effect of undigested gliadin peptides responsible for gluten-related intolerance, it remains unclear if and how gliadin peptides self-assemble into ordered nanostructures during gastrointestinal digestion, as well as their biological impact on the mucus barrier function. In this study, we purified undigestible gliadin peptide nanoparticles (UGPNs) by ultracentrifugation and characterized their structural and physiochemical properties. The results demonstrate that the UGPNs are self-assembled nanostructures generated by cationic amino acids (Lys and Arg)-capped surfactant-like peptides (SLPs), mainly derived from γ-gliadin and α-gliadin. SLPs trigger the concentration-dependent self-assembly driven by β-sheet conformational transitions above their critical aggregation concentration (cac, ∼0.1 mg/mL). UGPNs can easily penetrate the mucus layer in Caco-2/HT29-MTX cocultures with a high Papp value (∼5.7 × 10-6 cm/s) and reduce the production and thickness of the mucus layer driven by intestinal epithelial cell damage. Isothermal titration calorimetry and Langmuir monolayer studies indicate that the self-assembled state of UGPNs significantly affects their binding to DPPC/DOPE lipid membrane models. These results highlight the relevance of the self-assembly of gliadin peptides as a trigger of mucosal inflammation-related wheat/gluten intolerance.
Collapse
Affiliation(s)
- Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yanlei Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qian Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Weiting Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jinmei Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
83
|
Marsili L, Sharma J, Espay AJ, Migazzi A, Abdelghany E, Hill EJ, Duque KR, Hagen MC, Stephen CD, Kovacs GG, Lang AE, Hadjivassiliou M, Basso M, Kauffman MA, Sturchio A. Neither a Novel Tau Proteinopathy nor an Expansion of a Phenotype: Reappraising Clinicopathology-Based Nosology. Int J Mol Sci 2021; 22:ijms22147292. [PMID: 34298918 PMCID: PMC8329925 DOI: 10.3390/ijms22147292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
The gold standard for classification of neurodegenerative diseases is postmortem histopathology; however, the diagnostic odyssey of this case challenges such a clinicopathologic model. We evaluated a 60-year-old woman with a 7-year history of a progressive dystonia–ataxia syndrome with supranuclear gaze palsy, suspected to represent Niemann–Pick disease Type C. Postmortem evaluation unexpectedly demonstrated neurodegeneration with 4-repeat tau deposition in a distribution diagnostic of progressive supranuclear palsy (PSP). Whole-exome sequencing revealed a new heterozygous variant in TGM6, associated with spinocerebellar ataxia type 35 (SCA35). This novel TGM6 variant reduced transglutaminase activity in vitro, suggesting it was pathogenic. This case could be interpreted as expanding: (1) the PSP phenotype to include a spinocerebellar variant; (2) SCA35 as a tau proteinopathy; or (3) TGM6 as a novel genetic variant underlying a SCA35 phenotype with PSP pathology. None of these interpretations seem adequate. We instead hypothesize that impairment in the crosslinking of tau by the TGM6-encoded transglutaminase enzyme may compromise tau functionally and structurally, leading to its aggregation in a pattern currently classified as PSP. The lessons from this case study encourage a reassessment of our clinicopathology-based nosology.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
- Correspondence: ; Tel.: +1-(513)558-4050
| | - Jennifer Sharma
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Alberto J. Espay
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Alice Migazzi
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy; (A.M.); (M.B.)
| | - Elhusseini Abdelghany
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Emily J. Hill
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Kevin R. Duque
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| | - Matthew C. Hagen
- Department of Pathology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Christopher D. Stephen
- Ataxia Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Disease (CRND), Department of Laboratory Medicine and Pathobiology, University of Toronto, 60 Leonard Ave, Krembil Discovery Tower, Toronto, ON M5T 0S8, Canada;
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON M5T 1M8, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Progressive Supranuclear Palsy Program and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Progressive Supranuclear Palsy Program and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Royal Hallamshire Hospital, University of Sheffield, Sheffield S10 2JF, UK;
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy; (A.M.); (M.B.)
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Andrea Sturchio
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA; (J.S.); (A.J.E.); (E.A.); (E.J.H.); (K.R.D.); (A.S.)
| |
Collapse
|
84
|
EVOO Polyphenols Relieve Synergistically Autophagy Dysregulation in a Cellular Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137225. [PMID: 34281279 PMCID: PMC8267626 DOI: 10.3390/ijms22137225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Autophagy, the major cytoplasmic process of substrate turnover, declines with age, contributing to proteostasis decline, accumulation of harmful protein aggregates, damaged mitochondria and to ROS production. Accordingly, abnormalities in the autophagic flux may contribute to many different pathophysiological conditions associated with ageing, including neurodegeneration. Recent data have shown that extra-virgin olive oil (EVOO) polyphenols stimulate cell defenses against plaque-induced neurodegeneration, mainly, through autophagy induction. (2) Methods: We carried out a set of in vitro experiments on SH-SY5Y human neuroblastoma cells exposed to toxic Aβ1–42 oligomers to investigate the molecular mechanisms involved in autophagy activation by two olive oil polyphenols, oleuropein aglycone (OleA), arising from the hydrolysis of oleuropein (Ole), the main polyphenol found in olive leaves and drupes and its main metabolite, hydroxytyrosol (HT). (3) Results: Our data show that the mixture of the two polyphenols activates synergistically the autophagic flux preventing cell damage by Aβ1–42 oligomers., in terms of ROS production, and impairment of mitochondria. (4) Conclusion: Our results support the idea that EVOO polyphenols act synergistically in autophagy modulation against neurodegeneration. These data confirm and provide the rationale to consider these molecules, alone or in combination, as promising candidates to contrast ageing-associated neurodegeneration.
Collapse
|
85
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
86
|
Clarke J, Kayatekin C, Viel C, Shihabuddin L, Sardi SP. Murine Models of Lysosomal Storage Diseases Exhibit Differences in Brain Protein Aggregation and Neuroinflammation. Biomedicines 2021; 9:biomedicines9050446. [PMID: 33919140 PMCID: PMC8143154 DOI: 10.3390/biomedicines9050446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022] Open
Abstract
Genetic, epidemiological and experimental evidence implicate lysosomal dysfunction in Parkinson’s disease (PD) and related synucleinopathies. Investigate several mouse models of lysosomal storage diseases (LSDs) and evaluate pathologies reminiscent of synucleinopathies. We obtained brain tissue from symptomatic mouse models of Gaucher, Fabry, Sandhoff, Niemann–Pick A (NPA), Hurler, Pompe and Niemann–Pick C (NPC) diseases and assessed for the presence of Lewy body-like pathology (proteinase K-resistant α-synuclein and tau aggregates) and neuroinflammation (microglial Iba1 and astrocytic GFAP) by immunofluorescence. All seven LSD models exhibited evidence of proteinopathy and/or inflammation in the central nervous system (CNS). However, these phenotypes were divergent. Gaucher and Fabry mouse models displayed proteinase K-resistant α-synuclein and tau aggregates but no neuroinflammation; whereas Sandhoff, NPA and NPC showed marked neuroinflammation and no overt proteinopathy. Pompe disease animals uniquely displayed widespread distribution of tau aggregates accompanied by moderate microglial activation. Hurler mice also demonstrated proteinopathy and microglial activation. The present study demonstrated additional links between LSDs and pathogenic phenotypes that are hallmarks of synucleinopathies. The data suggest that lysosomal dysregulation can contribute to brain region-specific protein aggregation and induce widespread neuroinflammation in the brain. However, only a few LSD models examined exhibited phenotypes consistent with synucleinopathies. While no model can recapitulate the complexity of PD, they can enable the study of specific pathways and mechanisms contributing to disease pathophysiology. The present study provides evidence that there are existing, previously unutilized mouse models that can be employed to study pathogenic mechanisms and gain insights into potential PD subtypes, helping to determine if they are amenable to pathway-specific therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer Clarke
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 49 New York Ave., Framingham, MA 01701, USA
| | - Can Kayatekin
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 49 New York Ave., Framingham, MA 01701, USA
| | - Catherine Viel
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 49 New York Ave., Framingham, MA 01701, USA
| | - Lamya Shihabuddin
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 49 New York Ave., Framingham, MA 01701, USA
| | - Sergio Pablo Sardi
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 49 New York Ave., Framingham, MA 01701, USA
| |
Collapse
|
87
|
Mitchell SD, Sidiropoulos C. Therapeutic Applications of Botulinum Neurotoxin for Autonomic Symptoms in Parkinson's Disease: An Updated Review. Toxins (Basel) 2021; 13:226. [PMID: 33808714 PMCID: PMC8003355 DOI: 10.3390/toxins13030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease is the most common age-related motoric neurodegenerative disease. In addition to the cardinal motor symptoms of tremor, rigidity, bradykinesia, and postural instability, there are numerous non-motor symptoms as well. Among the non-motor symptoms, autonomic nervous system dysfunction is common. Autonomic symptoms associated with Parkinson's disease include sialorrhea, hyperhidrosis, gastrointestinal dysfunction, and urinary dysfunction. Botulinum neurotoxin has been shown to potentially improve these autonomic symptoms. In this review, the varied uses of botulinum neurotoxin for autonomic dysfunction in Parkinson's disease are discussed. This review also includes discussion of some additional indications for the use of botulinum neurotoxin in Parkinson's disease, including pain.
Collapse
Affiliation(s)
- Steven D. Mitchell
- Department of Neurology, Michigan State University, East Lansing, MI 48824-7015, USA;
| | | |
Collapse
|
88
|
Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin IH, Glass AD, Arain HA, Stecker MM. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist 2021; 26:52-61. [PMID: 33646990 DOI: 10.1097/nrl.0000000000000320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of slowing or halting the development of Alzheimer disease (AD) has resulted in the huge allocation of resources by academic institutions and pharmaceutical companies to the development of new treatments. The etiology of AD is elusive, but the aggregation of amyloid-β and tau peptide and oxidative processes are considered critical pathologic mechanisms. The failure of drugs with multiple mechanisms to meet efficacy outcomes has caused several companies to decide not to pursue further AD studies and has left the field essentially where it has been for the past 15 years. Efforts are underway to develop biomarkers for detection and monitoring of AD using genetic, imaging, and biochemical technology, but this is of minimal use if no intervention can be offered. REVIEW SUMMARY In this review, we consider the natural progression of AD and how it continues despite present attempts to modify the amyloid-related machinery to alter the disease trajectory. We describe the mechanisms and approaches to AD treatment targeting amyloid, including both passive and active immunotherapy as well as inhibitors of enzymes in the amyloidogenic pathway. CONCLUSION Lessons learned from clinical trials of amyloid reduction strategies may prove crucial for the leap forward toward novel therapeutic targets to treat AD.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Natalie Montufar
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Joshua DeLeon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Aaron Pinkhasov
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Irving H Gomolin
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Amy D Glass
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Hirra A Arain
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY
| | - Mark M Stecker
- Fresno Center for Medical Education and Research, Department of Medicine, University of California-San Francisco, Fresno, CA
| |
Collapse
|
89
|
Wu Q, Yu X, Liu L, Sun S, Sun S. Centrosome-phagy: implications for human diseases. Cell Biosci 2021; 11:49. [PMID: 33663596 PMCID: PMC7934278 DOI: 10.1186/s13578-021-00557-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/16/2021] [Indexed: 01/11/2023] Open
Abstract
Autophagy is a prominent mechanism to preserve homeostasis and the response to intracellular or extracellular stress. Autophagic degradation can be selectively targeted to dysfunctional subcellular compartments. Centrosome homeostasis is pivotal for healthy proliferating cells, but centrosome aberration is a hallmark of diverse human disorders. Recently, a process called centrosome-phagy has been identified. The process involves a panel of centrosomal proteins and centrosome-related pathways that mediate the specific degradation of centrosomal components via the autophagic machinery. Although autophagy normally mediates centrosome homeostasis, autophagy defects facilitate ageing and multiple human diseases, such as ciliopathies and cancer, which benefit from centrosome aberration. Here, we discuss the molecular systems that trigger centrosome-phagy and its role in human disorders.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Le Liu
- Center of Ultramicroscopic Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
90
|
Galiano-Landeira J, Torra A, Vila M, Bové J. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson's disease. Brain 2021; 143:3717-3733. [PMID: 33118032 DOI: 10.1093/brain/awaa269] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
There is no consensus on the exact role of the adaptive immune system in Parkinson's disease pathogenesis, although there is increasing evidence that it is somehow involved. Moreover, T cell infiltration in the brain has not been thoroughly studied in Parkinson's disease and no study has assessed the infiltration in incidental Lewy body diseases cases that are considered to be early presymptomatic stages of the disease. In this study, we performed an immunohistochemistry/immunofluorescence quantitative and phenotypic assessment of T cell infiltration in human substantia nigra pars compacta and analysed the correlations with neuronal death and synucleinopathy throughout different stages of the disease. We included two groups of incidental Lewy disease in the study. One of the groups, which is believed to be the earliest stage of the disease, showed α-synuclein aggregates only in the olfactory bulb. The second group also presented α-synuclein aggregates in the substantia nigra. We also assessed the formation of different α-synuclein aggregates throughout the different stages of the unified staging system for Lewy body disorders (I to IV). We found that CD8 T cells were increased in diagnosed Parkinson's disease cases compared to the control group and their density positively correlated with neuronal death. Some of the infiltrating CD8 T cells were indeed contacting dopaminergic neurons. No differences were found regarding CD4 T cells. In the earliest stage of the disease, when substantia nigra α-synuclein aggregation is absent, we found a robust CD8 T cell infiltration and no dopaminergic neuronal death yet. Conversely, in the next stage we found neuronal loss and a milder CD8 T cell infiltration. CD8 T cell infiltration paralleled that of α-synuclein accumulation and neuronal death throughout stages II to IV. We also confirmed that CD8 T cells in charge of immune surveillance and involved in the aetiopathogenesis of the disease are equipped with cytolytic enzymes (granzyme A, B and K) and/or proinflammatory cytokines (interferon gamma), and that phenotypic differences were observed between early and late stages of the disease. We also demonstrate that a high proportion of nigral CD8 T cells are tissue resident memory T cells. Our results show that nigral cytotoxic CD8 T cell infiltration is an earlier pathogenic event than α-synuclein aggregation and neuronal death and that it parallels the progression of neuronal death and synucleinopathy in Parkinson's disease. Overall, our study suggests that CD8 T cell cytotoxic attack may initiate and propagate neuronal death and synucleinopathy in Parkinson's disease.
Collapse
Affiliation(s)
- Jordi Galiano-Landeira
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.,Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| |
Collapse
|
91
|
Sturchio A, Dwivedi AK, Vizcarra JA, Chirra M, Keeling EG, Mata IF, Kauffman MA, Pandey MK, Roviello G, Comi C, Versino M, Marsili L, Espay AJ. Genetic parkinsonisms and cancer: a systematic review and meta-analysis. Rev Neurosci 2021; 32:159-167. [PMID: 33151182 DOI: 10.1515/revneuro-2020-0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Genes associated with parkinsonism may also be implicated in carcinogenesis, but their interplay remains unclear. We systematically reviewed studies (PubMed 1967-2019) reporting gene variants associated with both parkinsonism and cancer. Somatic variants were examined in cancer samples, whereas germline variants were examined in cancer patients with both symptomatic and asymptomatic (carriers) genetic parkinsonisms. Pooled proportions were calculated with random-effects meta-analyses. Out of 9,967 eligible articles, 60 were included. Of the 28 genetic variants associated with parkinsonism, six were also associated with cancer. In cancer samples, SNCA was predominantly associated with gastrointestinal cancers, UCHL1 with breast cancer, and PRKN with head-and-neck cancers. In asymptomatic carriers, LRRK2 was predominantly associated with gastrointestinal and prostate cancers, PRKN with prostate and genitourinary tract cancers, GBA with sarcoma, and 22q11.2 deletion with leukemia. In symptomatic genetic parkinsonism, LRRK2 was associated with nonmelanoma skin cancers and breast cancers, and PRKN with head-and-neck cancers. Cancer was more often manifested in genetic parkinsonisms compared to asymptomatic carriers. These results suggest that intraindividual genetic contributions may modify the co-occurrence of cancer and neurodegeneration.
Collapse
Affiliation(s)
- Andrea Sturchio
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, 260 Stetson St., Cincinnati, OH45219, USA
| | - Alok K Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Joaquin A Vizcarra
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, 260 Stetson St., Cincinnati, OH45219, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Martina Chirra
- Department of Oncology, Medical Oncology Unit, University of Siena, Siena, Italy
| | - Elizabeth G Keeling
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, 260 Stetson St., Cincinnati, OH45219, USA
| | - Ignacio F Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| | - Manoj K Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Interdisciplinary Research Centre of Autoimmune Diseases, Movement Disorders Centre, University of Piemonte Orientale, Novara, Italy
| | | | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, 260 Stetson St., Cincinnati, OH45219, USA
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, 260 Stetson St., Cincinnati, OH45219, USA
| |
Collapse
|
92
|
Pillny C, Nitsch L, Proske-Schmitz S, Sharma A, Wüllner U. Abnormal subpopulations of monocytes in the cerebrospinal fluid of patients with Parkinson's disease. Parkinsonism Relat Disord 2021; 84:144-145. [PMID: 33631553 DOI: 10.1016/j.parkreldis.2021.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
We performed immune cell profiling by multiparameter flow cytometry in cerebrospinal fluid (CSF) and peripheral blood (PB) of Parkinson's Disease (PD) patients (n = 9) and healthy controls (n = 8). Classical and non-classical monocytes were increased in the CSF of PD patients.
Collapse
Affiliation(s)
| | - Louisa Nitsch
- Department of Neurology, University Hospital Bonn, Germany
| | - Sabine Proske-Schmitz
- Department of Neurology, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amit Sharma
- Department of Experimental Ophthalmology, University Eye Hospital, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
93
|
Kimber TE. Approach to the patient with early Parkinson disease: diagnosis and management. Intern Med J 2021; 51:20-26. [DOI: 10.1111/imj.15148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas E. Kimber
- Neurology Unit Royal Adelaide Hospital Adelaide South Australia Australia
- University Department of Medicine, Faculty of Health and Medical Sciences University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
94
|
Wu M, Su H, Zhao M. The Role of α-Synuclein in Methamphetamine-Induced Neurotoxicity. Neurotox Res 2021; 39:1007-1021. [PMID: 33555547 DOI: 10.1007/s12640-021-00332-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH), a highly addictive psychostimulant, is the second most widely used illicit drug. METH produces damage dopamine neurons and apoptosis via multiple inter-regulating mechanisms, including dopamine overload, hyperthermia, oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, protein degradation system dysfunction, and neuroinflammation. Increasing evidence suggests that chronic METH abuse is associated with neurodegenerative changes in the human brain and an increased risk of Parkinson's disease (PD). METH use and PD may share some common steps in causing neurotoxicity. Accumulation of α-synuclein, a presynaptic protein, is the pathological hallmark of PD. Intriguingly, α-synuclein upregulation and aggregation are also found in dopaminergic neurons in the substantia nigra in chronic METH users. This suggests α-synuclein may play a role in METH-induced neurotoxicity. The mechanism of α-synuclein cytotoxicity in PD has attracted considerable attention; however, how α-synuclein affects METH-induced neurotoxicity has not been reviewed. In this review, we summarize the relationship between METH use and PD, interdependent mechanisms that are involved in METH-induced neurotoxicity and the significance of α-synuclein upregulation in response to METH use. The identification of α-synuclein overexpression and aggregation as a contributor to METH-induced neurotoxicity may provide a novel therapeutic target for the treatment of the deleterious effect of this drug and drug addiction.
Collapse
Affiliation(s)
- Manqing Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
- Shanghai Clinical Research Center for Mental Health, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
95
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|
96
|
Distinguishing normal and aggregated alpha-synuclein interaction on gold nanorod incorporated zinc oxide nanocomposite by electrochemical technique. Int J Biol Macromol 2021; 171:217-224. [PMID: 33418041 DOI: 10.1016/j.ijbiomac.2021.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022]
Abstract
Misfolding and accumulation of the protein alpha synuclein in the brain cells characterize Parkinson's disease (PD). Electrochemical based aluminum interdigitated electrodes (ALIDEs) was fabricated by using conventional photolithography method and modified the surfaces with zinc oxide and gold nanorod by using spin coating method for the analysis of PD protein biomarker. The device surface modified with gold nanorod of 25 nm diameter was used. The bare devices and the surface modified devices were characterized by Scanning Electron Microscope, 3D-Profilometer, Atomic Force Microscope and high-power microscope. The above measurement was also performed to measure the interaction of antibody with aggregated alpha-synuclein for normal, aggregated and aggregated alpha synuclein in human serum and distinguished against 3 control proteins (PARK1, DJ-1 and Factor IX). The detection limit for normal alpha synuclein was 1 f. with the sensitivity of 1 f. on a linear regression (R2 = 0.9759). The detection limit for aggregated alpha synuclein was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9797). Also, the detection limit of aggregated alpha synuclein in serum was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9739). These results however indicate that, serum has only minimal amount of alpha synuclein.
Collapse
|
97
|
Pang C, Zhang N, Falahati M. Acceleration of α-synuclein fibril formation and associated cytotoxicity stimulated by silica nanoparticles as a model of neurodegenerative diseases. Int J Biol Macromol 2020; 169:532-540. [PMID: 33352154 DOI: 10.1016/j.ijbiomac.2020.12.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
A wide range of biophysical and theoretical analysis were employed to explore the formation of (α-syn) amyloid fibril formation as a model of Parkinson's disease in the presence of silica oxide nanoparticles (SiO2 NPs). Also, different cellular and molecular assays such as MTT, LDH, caspase, ROS, and qPCR were performed to reveal the α-syn amyloid fibrils-associated cytotoxicity against SH-SY5Y cells. Fluorescence measurements showed that SiO2 NPs accelerate the α-syn aggregation and exposure of hydrophobic moieties. Congo red absorbance, circular dichroism (CD), and transmission electron microscopy (TEM) analysis depicted the SiO2 NPs accelerated the formation of α-syn amyloid fibrils. Molecular docking study showed that SiO2 clusters preferably bind to the N-terminal of α-syn as the helix folding site. We also realized that SiO2 NPs increase the cytotoxicity of α-syn amyloid fibrils through a significant decrease in cell viability, increase in membrane leakage, activation of caspase-9 and -3, elevation of ROS, and increase in the ratio of Bax/Bcl2 mRNA. The cellular assay indicated that α-syn amyloid fibrils formed in the presence of SiO2 NPs induce their cytotoxic effects through the mitochondrial-mediated intrinsic apoptosis pathway. We concluded that these data may reveal some adverse effects of NPs on the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Chao Pang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shengyang 110000, China.
| | - Na Zhang
- Medical Education Research Center, Shenyang Medical College, Shenyang 110000, China
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
98
|
Biomarkers and phenotypic expression in Alzheimer's disease: exploring the contribution of frailty in the Alzheimer's Disease Neuroimaging Initiative. GeroScience 2020; 43:1039-1051. [PMID: 33210215 PMCID: PMC8110661 DOI: 10.1007/s11357-020-00293-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed at investigating if the main biomarkers of Alzheimer’s disease (AD) neuropathology and their association with cognitive disturbances and dementia are modified by the individual’s frailty status. We performed a cross-sectional analysis of data from participants with normal cognition, mild cognitive impairment (MCI), and AD dementia enrolled in the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2) study. Frailty was operationalized by computing a 40-item Frailty Index (FI). The following AD biomarkers were considered and analyzed according to the participants’ frailty status: CSF Aβ1-42, 181P-tau, and T-tau; MRI-based hippocampus volume; cortical glucose metabolism at the FDG PET imaging; amyloid deposition at the 18F-AV-45 PET imaging. Logistic regression models, adjusted for age, sex, and education, were performed to explore the association of biomarkers with cognitive status at different FI levels. Subjects with higher FI scores had lower CSF levels of Aβ1-42, hippocampus volumes at the MRI, and glucose metabolism at the FDG PET imaging, and a higher amyloid deposition at the 18F-AV-45 PET. No significant differences were observed among the two frailty groups concerning ApoE genotype, CSF T-tau, and P-tau. Increasing frailty levels were associated with a weakened relationship between dementia and 18F-AV-45 uptake and hippocampus volume and with a stronger relationship of dementia with FDG PET. Frailty contributes to the discrepancies between AD pathology and clinical manifestations and influences the association of AD pathological modifications with cognitive changes. AD and dementia should increasingly be conceived as “complex diseases of aging,” determined by multiple, simultaneous, and interacting pathophysiological processes.
Collapse
|
99
|
Ibanez L, Bahena JA, Yang C, Dube U, Farias FHG, Budde JP, Bergmann K, Brenner-Webster C, Morris JC, Perrin RJ, Cairns NJ, O'Donnell J, Álvarez I, Diez-Fairen M, Aguilar M, Miller R, Davis AA, Pastor P, Kotzbauer P, Campbell MC, Perlmutter JS, Rhinn H, Harari O, Cruchaga C, Benitez BA. Functional genomic analyses uncover APOE-mediated regulation of brain and cerebrospinal fluid beta-amyloid levels in Parkinson disease. Acta Neuropathol Commun 2020; 8:196. [PMID: 33213513 PMCID: PMC7678051 DOI: 10.1186/s40478-020-01072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022] Open
Abstract
Alpha-synuclein is the main protein component of Lewy bodies, the pathological hallmark of Parkinson's disease. However, genetic modifiers of cerebrospinal fluid (CSF) alpha-synuclein levels remain unknown. The use of CSF levels of amyloid beta1-42, total tau, and phosphorylated tau181 as quantitative traits in genetic studies have provided novel insights into Alzheimer's disease pathophysiology. A systematic study of the genomic architecture of CSF biomarkers in Parkinson's disease has not yet been conducted. Here, genome-wide association studies of CSF biomarker levels in a cohort of individuals with Parkinson's disease and controls (N = 1960) were performed. PD cases exhibited significantly lower CSF biomarker levels compared to controls. A SNP, proxy for APOE ε4, was associated with CSF amyloid beta1-42 levels (effect = - 0.5, p = 9.2 × 10-19). No genome-wide loci associated with CSF alpha-synuclein, total tau, or phosphorylated tau181 levels were identified in PD cohorts. Polygenic risk score constructed using the latest Parkinson's disease risk meta-analysis were associated with Parkinson's disease status (p = 0.035) and the genomic architecture of CSF amyloid beta1-42 (R2 = 2.29%; p = 2.5 × 10-11). Individuals with higher polygenic risk scores for PD risk presented with lower CSF amyloid beta1-42 levels (p = 7.3 × 10-04). Two-sample Mendelian Randomization revealed that CSF amyloid beta1-42 plays a role in Parkinson's disease (p = 1.4 × 10-05) and age at onset (p = 7.6 × 10-06), an effect mainly mediated by variants in the APOE locus. In a subset of PD samples, the APOE ε4 allele was associated with significantly lower levels of CSF amyloid beta1-42 (p = 3.8 × 10-06), higher mean cortical binding potentials (p = 5.8 × 10-08), and higher Braak amyloid beta score (p = 4.4 × 10-04). Together these results from high-throughput and hypothesis-free approaches converge on a genetic link between Parkinson's disease, CSF amyloid beta1-42, and APOE.
Collapse
Affiliation(s)
- Laura Ibanez
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - Jorge A Bahena
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - Chengran Yang
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - Umber Dube
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - Fabiana H G Farias
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - John P Budde
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - Kristy Bergmann
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - Carol Brenner-Webster
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
| | - John C Morris
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Richard J Perrin
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, 63110, USA
| | - Nigel J Cairns
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, 63110, USA
- College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | - John O'Donnell
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
| | - Ignacio Álvarez
- Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Monica Diez-Fairen
- Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Miquel Aguilar
- Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Rebecca Miller
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
| | - Albert A Davis
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
| | - Pau Pastor
- Memory Unit, Department of Neurology, University Hospital Mutua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Paul Kotzbauer
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
| | - Meghan C Campbell
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
- Departments of Neuroscience and Radiology, Programs in Physical Therapy and Occupational Therapy, Washington University, St. Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University, St. Louis, MO, 63110, USA
- Departments of Neuroscience and Radiology, Programs in Physical Therapy and Occupational Therapy, Washington University, St. Louis, MO, 63110, USA
| | - Herve Rhinn
- Department of Bioinformatics, Alector, INC, San Francisco, CA, 94080, USA
| | - Oscar Harari
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA
- Hope Center for Neurologic Disorders, Washington University, St. Louis, MO, 63110, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bruno A Benitez
- Department of Psychiatry, BJC Institute of Health, Washington University School of Medicine, Box 8134, 425 S. Euclid Ave., St. Louis, MO, 63110, USA.
- NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, 63110, USA.
| |
Collapse
|
100
|
Devos D, Hirsch E, Wyse R. Seven Solutions for Neuroprotection in Parkinson's Disease. Mov Disord 2020; 36:306-316. [PMID: 33184908 DOI: 10.1002/mds.28379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra and accumulation of iron and alpha-synuclein; it follows a characteristic pattern throughout the nervous system. Despite decades of successful preclinical neuroprotective studies, no drug has then shown efficacy in clinical trials. Considering this dilemma, we have reviewed and organized solutions of varying importance that can be exclusive or additive, and we outline approaches to help generate successful development of neuroprotective drugs for PD: (1) select patients in which the targeted mechanism is involved in the pathological process associated with the monitoring of target engagement, (2) combine treatments that target multiple pathways, (3) establish earliest interventions and develop better prodromal biomarkers, (4) adopt rigorous methodology and specific disease-relevant designs for disease-modifying clinical trials, (5) customize drug with better brain biodistribution, (6) prioritize repurposed drugs as a first line approach, and (7) adapt preclinical models to the targeted mechanisms with translational biomarkers to increase their predictive value. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Devos
- Department of Medical Pharmacology, Expert Center for Parkinson, CHU-Lille, Lille Neuroscience & Cognition, Inserm, zUMR-S1172, LICEND, University of Lille, Lille, France
| | - Etienne Hirsch
- Institut du Cerveau-ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Richard Wyse
- The Cure Parkinson's Trust, London, United Kingdom
| |
Collapse
|