51
|
Tomoto T, Verma A, Kostroske K, Tarumi T, Patel NR, Pasha EP, Riley J, Tinajero CD, Hynan LS, Rodrigue KM, Kennedy KM, Park DC, Zhang R. One-year aerobic exercise increases cerebral blood flow in cognitively normal older adults. J Cereb Blood Flow Metab 2023; 43:404-418. [PMID: 36250505 PMCID: PMC9941859 DOI: 10.1177/0271678x221133861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 09/04/2022] [Indexed: 02/16/2023]
Abstract
The impact of aerobic exercise training (AET) on cerebral blood flow (CBF) regulation remains inconclusive. This study investigated the effects of one-year progressive, moderate-to-vigorous AET on CBF, central arterial stiffness, and cognitive performance in cognitively normal older adults. Seventy-three older adults were randomly assigned to AET or stretching-and-toning (SAT, active control) intervention. CBF was measured with 2D duplex ultrasonography. Central arterial stiffness, measured by carotid β-stiffness index, was assessed with the ultrasonography and applanation tonometry. Cerebrovascular resistance (CVR) was calculated as mean arterial pressure divided by CBF. A cognitive battery was administered with a focus on memory and executive function. Cardiorespiratory fitness was measured by peak oxygen consumption (V ˙ O2peak). One-year AET increased V ˙ O2peak and CBF and decreased CVR and carotid β-stiffness index. In the AET group, improved V ˙ O2peak was correlated with increased CBF (r = 0.621, p = 0.001) and decreased CVR (r = -0.412, p = 0.037) and carotid β-stiffness index (r = -0.478, p = 0.011). Further, increased Woodcock-Johnson recall score was associated with decreased CVR (r = -0.483, p = 0.012) and carotid β-stiffness index (r = -0.498, p = 0.008) in AET group (not in SAT group). In conclusion, one-year progressive, moderate-to-vigorous aerobic exercise training increased CBF and decreased carotid arterial stiffness and CVR which were associated with improved memory function in cognitively normal older adults.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National
Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki,
Japan
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Aryan Verma
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Kayla Kostroske
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National
Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki,
Japan
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
- Graduate School of Comprehensive Human Sciences, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Neena R Patel
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Evan P Pasha
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Jonathan Riley
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Cynthia D Tinajero
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Linda S Hynan
- Department of Psychiatry, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain
Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain
Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain
Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
52
|
Xu L, Gu H, Cai X, Zhang Y, Hou X, Yu J, Sun T. The Effects of Exercise for Cognitive Function in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1088. [PMID: 36673844 PMCID: PMC9858649 DOI: 10.3390/ijerph20021088] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Physical exercise can slow down the decline of the cognitive function of the older adults, yet the review evidence is not conclusive. The purpose of this study was to compare the effects of aerobic and resistance training on cognitive ability. METHODS A computerized literature search was carried out using PubMed, Cochrane Library, Embase SCOPUS, Web of Science, CNKI (China National Knowledge Infrastructure), Wanfang, and VIP database to identify relevant articles from inception through to 1 October 2022. Based on a preliminary search of the database and the references cited, 10,338 records were identified. For the measured values of the research results, the standardized mean difference (SMD) and 95% confidence interval (CI) were used to synthesize the effect size. RESULTS Finally, 10 studies were included in this meta-analysis. Since the outcome indicators of each literature are different in evaluating the old cognitive ability, a subgroup analysis was performed on the included literature. The study of results suggests that aerobic or resistance training interventions significantly improved cognitive ability in older adults compared with control interventions with the Mini-Mental State Examination (MD 2.76; 95% CI 2.52 to 3.00), the Montreal Cognitive Assessment (MD 2.64; 95% CI 2.33 to 2.94), the Wechsler Adult Intelligence Scale (MD 2.86; 95% CI 2.25 to 3.47), the Wechsler Memory Scale (MD 9.33; 95% CI 7.12 to 11.54), the Wisconsin Card Sorting Test (MD 5.31; 95% CI 1.20 to 9.43), the Trail Making Tests (MD -8.94; 95% CI -9.81 to -8.07), and the Stroop Color and Word Test (MD -5.20; 95% CI -7.89 to -2.51). CONCLUSION Physical exercise improved the cognitive function of the older adults in all mental states. To improve cognitive ability, this meta-analysis recommended that patients perform at least moderate-intensity aerobic exercise and resistance exercise on as many days as possible in the week to comply with current exercise guidelines while providing evidence for clinicians.
Collapse
Affiliation(s)
- Liya Xu
- Faculty of Sports and Human Sciences, Beijing Sports University, Beijing 100084, China
- Key Laboratory of Sports and Physical Health, Ministry of Education, Beijing 100084, China
| | - Hongyi Gu
- Faculty of Sports and Human Sciences, Beijing Sports University, Beijing 100084, China
- Key Laboratory of Sports and Physical Health, Ministry of Education, Beijing 100084, China
| | - Xiaowan Cai
- Faculty of Sports and Human Sciences, Beijing Sports University, Beijing 100084, China
- Key Laboratory of Sports and Physical Health, Ministry of Education, Beijing 100084, China
| | - Yimin Zhang
- Key Laboratory of Sports and Physical Health, Ministry of Education, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sports University, Beijing 100084, China
| | - Xiao Hou
- Faculty of Sports and Human Sciences, Beijing Sports University, Beijing 100084, China
- Key Laboratory of Sports and Physical Health, Ministry of Education, Beijing 100084, China
| | - Jingjing Yu
- Key Laboratory of Sports and Physical Health, Ministry of Education, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sports University, Beijing 100084, China
| | - Tingting Sun
- Key Laboratory of Sports and Physical Health, Ministry of Education, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sports University, Beijing 100084, China
| |
Collapse
|
53
|
Falkenreck JM, Kunkler MC, Ophey A, Weigert H, Friese A, Jahr P, Nelles G, Kalbe E, Polidori MC. Effects of the Multicomponent Cognitive Training Program BrainProtect in Cognitively Healthy Adults: A Randomized Controlled Trial. J Alzheimers Dis 2023; 94:1013-1034. [PMID: 37393493 DOI: 10.3233/jad-220619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Cognitive integrity is a fundamental driver of health. The exact structure of strategies against cognitive impairment is still under debate. OBJECTIVE To compare the short-term effects of a multicomponent cognitive training (BrainProtect) with those of general health counseling (GHC) on cognitive abilities and health-related quality of life (HRQoL) in healthy adults in Germany. METHODS In this parallel randomized controlled trial (RCT), 132 eligible cognitively healthy adults (age ≥50 years, Beck Depression Inventory ≤9/63; Montreal Cognitive Assessment ≥26/30) were randomized to either GHC (N = 72) or to intervention with BrainProtect (intervention group, IG; N = 60). IG participants received 8 weekly sessions of 90 min of the group-based BrainProtect program focusing on executive functions, concentration, learning, perception, and imagination, plus nutritional and physical exercise units. Before and after intervention, all participants underwent neuropsychological testing and HRQoL evaluation, blinded for pretest. RESULTS No significant training effect was observed for the primary endpoint of global cognition as assessed by CERAD-Plus-z Total Score (p = 0.113; ηp2 = 0.023). Improvements in several cognitive subtests were shown in the IG (N = 53) compared to the GHC (N = 62) without adverse events. Differences reached significance for verbal fluency (p = 0.021), visual memory (p = 0.013), visuo-constructive functions (p = 0.034), and HRQoL (p = 0.009). Significance was lost after adjustment, though several changes were clinically relevant. CONCLUSION BrainProtect did not significantly impact global cognition in this RCT. Nevertheless, the results of some outcomes indicate clinically meaningful changes, so that a strengthening of the cognitive performance by BrainProtect cannot be excluded. Further studies with larger sample size are needed to confirm these findings.
Collapse
Affiliation(s)
- Julia Maria Falkenreck
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michelle Celine Kunkler
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anja Ophey
- Department of Medical Psychology ∣ Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Weigert
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | | | | | - Elke Kalbe
- Department of Medical Psychology ∣ Neuropsychology and Gender Studies, Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - M Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
54
|
Fernandez-Gamez B, Solis-Urra P, Olvera-Rojas M, Molina-Hidalgo C, Fernández-Ortega J, Lara CP, Coca-Pulido A, Bellón D, Sclafani A, Mora-Gonzalez J, Toval A, Martín-Fuentes I, Bakker EA, Lozano RM, Navarrete S, Jiménez-Pavón D, Liu-Ambrose T, Erickson KI, Ortega FB, Esteban-Cornejo I. Resistance Exercise Program in Cognitively Normal Older Adults: CERT-Based Exercise Protocol of the AGUEDA Randomized Controlled Trial. J Nutr Health Aging 2023; 27:885-893. [PMID: 37960912 DOI: 10.1007/s12603-023-1982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES To provide a comprehensive CERT (Consensus on Exercise Reporting Template)-based description of the resistance exercise program implemented in the AGUEDA (Active Gains in brain Using Exercise During Aging) study, a randomized controlled trial investigating the effects of a 24-week supervised resistance exercise program on executive function and related brain structure and function in cognitively normal older adults. DESIGN AND PARTICIPANTS 90 cognitively normal older adults aged 65 to 80 were randomized (1:1) to a: 1) resistance exercise group; or a 2) wait-list control group. Participants in the exercise group (n = 46) performed 180 min/week of resistance exercise (3 supervised sessions per week, 60 min/session) for 24 weeks. INTERVENTION The exercise program consisted of a combination of upper and lower limb exercises using elastic bands and the participant's own body weight as the main resistance. The load and intensity were based on the resistance of the elastic bands (7 resistances), number of repetitions (individualized), motor complexity of exercises (3 levels), sets and rest (3 sets/60 sec rest), execution time (40-60 sec) and velocity (as fast as possible). SETTINGS The maximum prescribed-target intensity was 70-80% of the participants' maximum rate of perceived exertion (7-8 RPE). Heart rate, sleep quality and feeling scale were recorded during all exercise sessions. Those in the wait-list control group (n = 44) were asked to maintain their usual lifestyle. The feasibility of AGUEDA project was evaluated by retention, adherence, adverse events and cost estimation on the exercise program. RESULTS AND CONCLUSIONS This study details the exercise program of the AGUEDA trial, including well-described multi-language manuals and videos, which can be used by public health professionals, or general public who wish to implement a feasible and low-cost resistance exercise program. The AGUEDA exercise program seems to be feasible by the high retention (95.6%) and attendance rate (85.7%), very low serious adverse event (1%) and low economic cost (144.23 € /participant/24 weeks). We predict that a 24-week resistance exercise program will have positive effects on brain health in cognitively normal older adults.
Collapse
Affiliation(s)
- B Fernandez-Gamez
- Beatriz Fernandez-Gamez and Irene-Esteban-Cornejo. Department of Physical Education and Sports, Faculty of Sports Science, University of Granada; Carretera de Alfacar, 21. Granada 18071, Spain; +(34) 958 24 66 51, fax: +(34) 958 24 94 28, E-mail address: and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Mukaetova-Ladinska EB, Liu Y, Venneri A. Editorial: The impact of physical activity on white matter during healthy aging. Front Aging Neurosci 2023; 15:1140767. [PMID: 36891554 PMCID: PMC9987709 DOI: 10.3389/fnagi.2023.1140767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Affiliation(s)
- Elizabeta B Mukaetova-Ladinska
- School of Psychology and Visual Sciences, University of Leicester, Leicester, United Kingdom.,The Evington Centre, Leicestershire Partnership National Health Service Trust, Leicester, United Kingdom
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Annalena Venneri
- Brunel University London, Uxbridge, United Kingdom.,The University of Parma, Parma, Italy
| |
Collapse
|
56
|
Taylor JL, Barnes JN, Johnson BD. The Utility of High Intensity Interval Training to Improve Cognitive Aging in Heart Disease Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16926. [PMID: 36554807 PMCID: PMC9778921 DOI: 10.3390/ijerph192416926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Adults with cardiovascular disease and heart failure are at higher risk of cognitive decline. Cerebral hypoperfusion appears to be a significant contributor, which can result from vascular dysfunction and impairment of cerebral blood flow regulation. In contrast, higher cardiorespiratory fitness shows protection against brain atrophy, reductions in cerebral blood flow, and cognitive decline. Given that high intensity interval training (HIIT) has been shown to be a potent stimulus for improving cardiorespiratory fitness and peripheral vascular function, its utility for improving cognitive aging is an important area of research. This article will review the physiology related to cerebral blood flow regulation and cognitive decline in adults with cardiovascular disease and heart failure, and how HIIT may provide a more optimal stimulus for improving cognitive aging in this population.
Collapse
Affiliation(s)
- Jenna L. Taylor
- Human Integrative and Environmental Physiology Laboratory, Mayo Clinic, Rochester, MN 55902, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Jill N. Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce D. Johnson
- Human Integrative and Environmental Physiology Laboratory, Mayo Clinic, Rochester, MN 55902, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
57
|
Zhang S, Zhen K, Su Q, Chen Y, Lv Y, Yu L. The Effect of Aerobic Exercise on Cognitive Function in People with Alzheimer's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315700. [PMID: 36497772 PMCID: PMC9736612 DOI: 10.3390/ijerph192315700] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/25/2023]
Abstract
A growing body of research has examined the effect of aerobic exercise on cognitive function in people with Alzheimer's Disease (AD), but the findings of the available studies were conflicting. The aim of this study was to explore the effect of aerobic exercise on cognitive function in AD patients. Searches were performed in PubMed, Web of Science, and EBSCO databases from the inception of indexing until 12 November 2021. Cochrane risk assessment tool was used to evaluate the methodological quality of the included literature. From 1942 search records initially identified, 15 randomized controlled trials (RCTs) were considered eligible for systematic review and meta-analysis. Included studies involved 503 participants in 16 exercise groups (mean age: 69.2-84 years) and 406 participants (mean age: 68.9-84 years) in 15 control groups. There was a significant effect of aerobic exercise on increasing mini-mental state examination (MMSE) score in AD patients [weighted mean difference (WMD), 1.50 (95% CI, 0.55 to 2.45), p = 0.002]. Subgroup analyses showed that interventions conducted 30 min per session [WMD, 2.52 (95% CI, 0.84 to 4.20), p = 0.003], less than 150 min per week [WMD, 2.10 (95% CI, 0.84 to 3.37), p = 0.001], and up to three times per week [WMD, 1.68 (95% CI, 0.46 to 2.89), p = 0.007] increased MMSE score significantly. In addition, a worse basal cognitive status was associated with greater improvement in MMSE score. Our analysis indicated that aerobic exercise, especially conducted 30 min per session, less than 150 min per week, and up to three times per week, contributed to improving cognitive function in AD patients. Additionally, a worse basal cognitive status contributed to more significant improvements in cognitive function.
Collapse
Affiliation(s)
- Shiyan Zhang
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| | - Kai Zhen
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| | - Qing Su
- Ersha Sports Training Center of Guangdong Province, Guangzhou 510100, China
| | - Yiyan Chen
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
58
|
Zhang JN, Xiang LS, Shi Y, Xie F, Wang Y, Zhang Y. Normal pace walking is beneficial to young participants’ executive abilities. BMC Sports Sci Med Rehabil 2022; 14:195. [DOI: 10.1186/s13102-022-00587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background
Exercise can improve cognitive function. The impact of acute exercise on cognition is related to exercise intensity. This study aimed to explore whether normal walking had a beneficial effect on cognition.
Methods
Compared with standing still, thirty healthy young men walked on a treadmill at a normal pace, and completed the Stroop test. Near-infrared spectroscopy was used to monitor the hemodynamic changes of the prefrontal cortex during the entire experiment.
Results
Studies showed that normal walking did not stimulate higher average cerebral oxygen in the PFC, but the peak cerebral oxygen in cognitive tests during walking was higher (Stroop Word: 2.56 ± 0.43 and 3.80 ± 0.50, P < 0.01, Stroop Color: 2.50 ± 0.37 and 3.66 ± 0.59, P < 0.05, Stroop Color-Word: 4.13 ± 0.55 and 5.25 ± 0.66, P < 0.01, respectively), and better results were achieved in the Stroop Color-Word test, which was reflected in faster reaction times (49.18 ± 1.68 s, 56.92 ± 2.29 s, respectively, P < 0.001) and higher accuracies (46.19 ± 0.69, 44.15 ± 0.91, respectively, P = 0.018).
Conclusion
For healthy young people, even a normal walk is therefore good for cognition.
Collapse
|
59
|
Sugawara J, Tarumi T, Xing C, Liu J, Tomoto T, Pasha EP, Zhang R. Aerobic exercise training reduces cerebrovascular impedance in older adults: a 1-year randomized controlled trial. J Appl Physiol (1985) 2022; 133:902-912. [PMID: 36107990 PMCID: PMC9550583 DOI: 10.1152/japplphysiol.00241.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Older adults have higher cerebrovascular impedance than young individuals which may contribute to chronic brain hypoperfusion. Besides, middle-aged athletes exhibit lower cerebrovascular impedance than their sedentary peers. We examined whether aerobic exercise training (AET) reduces cerebrovascular impedance in sedentary older adults. We conducted a proof-of-concept trial that randomized 73 older adults to 1 yr of AET (n = 36) or stretching and toning (SAT, n = 37) interventions. Cerebrovascular impedance was estimated from simultaneous recordings of carotid artery pressure (CAP) via applanation tonometry and cerebral blood flow velocity (CBFV) in the middle cerebral artery via transcranial Doppler using transfer function analysis. Fifty-six participants completed 1-yr interventions, and 41 of those completed cerebrovascular impedance measurements. AET group showed a significant increase in V̇o2peak after the intervention [estimated marginal mean (95% confidence interval); from 22.8 (21.6 to 24.1) to 24.9 (23.6 to 26.2) mL·kg-1·cm-1, P < 0.001], but not SAT [from 21.7 (20.5 to 22.9) to 22.3 (21.1 to 23.7) mL·kg-1·cm-1, P = 0.114]. Coherence between changes in CBFV and CAP was >0.90 in the frequency range of 0.78-3.12 Hz. The averaged cerebrovascular impedance modulus (Z) in this frequency range decreased after 1-yr AET [from 1.05 (0.96 to 1.14) to 0.95 (0.92 to 1.06) mmHg·s·cm-1, P = 0.023], but not SAT [from 0.96 (0.87 to 1.04) to 1.01 (0.92 to 1.10) mmHg·s·cm-1, P = 0.138]. Reductions in Z were correlated positively with reductions in carotid pulse pressure (r = 0.628, P = 0.004) and inversely with mean CBFV (r = -0.563, P = 0.012) in the AET group. One-year AET reduces cerebrovascular impedance in older adults, which may benefit brain perfusion.NEW & NOTEWORTHY Estimation of cerebrovascular impedance is essential for understanding dynamic cerebral blood flow regulation. This randomized controlled trial demonstrated that aerobic exercise training reduced cerebrovascular impedance in older adults, which may benefit brain perfusion.
Collapse
Affiliation(s)
- Jun Sugawara
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Changyang Xing
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Liu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Evan P Pasha
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
60
|
Hinchman CA, Cabral DF, Ciesla M, Flothmann M, Nunez C, Rice J, Loewenstein DA, Kitaigorodsky M, Cahalin LP, Rundek T, Pascual-Leone A, Cattaneo G, Gomes-Osman J. Exercise engagement drives changes in cognition and cardiorespiratory fitness after 8 weeks of aerobic training in sedentary aging adults at risk of cognitive decline. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:923141. [PMID: 36189006 PMCID: PMC9397848 DOI: 10.3389/fresc.2022.923141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/11/2022] [Indexed: 12/23/2022]
Abstract
Background With our aging population, many individuals are at risk of developing age-related cognitive decline. Physical exercise has been demonstrated to enhance cognitive performance in aging adults. This study examined the effects of 8 weeks of aerobic exercise on cognitive performance and cardiorespiratory fitness in sedentary aging adults at risk for cognitive decline. Methods Fifty-two participants (age 62.9 ± 6.8, 76.9% female) engaged in eight weeks of moderate-to high-intensity exercise (19 in-person, 33 remotely). Global cognition was measured by the Repeatable Battery for the Assessment of Neuropsychological Status, the Delis-Kaplan Executive Function System, and the Digit Span subtest of the Wechsler Adult Intelligence Scale (WAIS) Fourth Edition. Cardiorespiratory fitness was measured via heart rate recovery at minute 1 (HRR1) and 2 (HRR2), and exercise engagement (defined as percent of total exercise time spent in the prescribed heart rate zone). We measured pre and post changes using paired t-tests and mixed effects models, and investigated the association between cardiorespiratory and cognitive performance using multiple regression models. Cohen's d were calculated to estimate effect sizes. Results Overall, 63.4 % of participants demonstrated high engagement (≥ 70% total exercise time spent in the prescribed heart rate zone). There were significant pre-post improvements in verbal fluency and verbal memory, and a significant decrement in working memory, but these were associated with small effect sizes (Cohen's d <0.5). Concerning cardiorespiratory fitness, there was a pre-to-post significant improvement in HRR1 (p = 0.01, d = 0.30) and HRR2 (p < 0.001, d = 0.50). Multiple regressions revealed significant associations between cardiorespiratory and cognitive performance, but all were associated with small effect sizes (Cohen's d < 0.5). Interestingly, there were significant between-group differences in exercise engagement (all p < 0.001), with remote participants demonstrating greater exercise engagement than in-person participants. Conclusion Improvements in cognition and cardiorespiratory fitness were observed after 8 weeks of moderate to high-intensity exercise in aging adults. These results suggest that committing to a regular exercise regimen, even for a brief two-month period, can promote improvements in both cardiorespiratory fitness and cognitive performance, and that improvements are driven by exercise engagement.
Collapse
Affiliation(s)
- Carrie A. Hinchman
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Danylo F. Cabral
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, United States
| | | | - Marti Flothmann
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Christina Nunez
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, United States
| | - Jordyn Rice
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, United States
| | - David A. Loewenstein
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marcela Kitaigorodsky
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lawrence P. Cahalin
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, United States
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alvaro Pascual-Leone
- Linus Health, Waltham, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Rosindale, MA, United States
- Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Rosindale, MA, United States
- Guttmann Brain Health Institute, Barcelona, Spain
| | - Gabriele Cattaneo
- Guttmann Brain Health Institute, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Joyce Gomes-Osman
- Linus Health, Waltham, MA, United States
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
- Evelyn McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
61
|
Marrero-Cristobal G, Gelpi-Dominguez U, Morales-Silva R, Alvarado-Torres J, Perez-Torres J, Perez-Perez Y, Sepulveda-Orengo M. Aerobic exercise as a promising nonpharmacological therapy for the treatment of substance use disorders. J Neurosci Res 2022; 100:1602-1642. [PMID: 34850988 PMCID: PMC9156662 DOI: 10.1002/jnr.24990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Despite the prevalence and public health impact of substance use disorders (SUDs), effective long-term treatments remain elusive. Aerobic exercise is a promising, nonpharmacological treatment currently under investigation as a strategy for preventing drug relapse. Aerobic exercise could be incorporated into the comprehensive treatment regimens for people with substance abuse disorders. Preclinical studies of SUD with animal models have shown that aerobic exercise diminishes drug-seeking behavior, which leads to relapse, in both male and female rats. Nevertheless, little is known regarding the effects of substance abuse-induced cellular and physiological adaptations believed to be responsible for drug-seeking behavior. Accordingly, the overall goal of this review is to provide a summary and an assessment of findings to date, highlighting evidence of the molecular and neurological effects of exercise on adaptations associated with SUD.
Collapse
Affiliation(s)
| | - Ursula Gelpi-Dominguez
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, PR, USA
| | - Roberto Morales-Silva
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - John Alvarado-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Joshua Perez-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Yobet Perez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
62
|
Vestergaard MB, Frederiksen JL, Larsson HBW, Cramer SP. Cerebrovascular Reactivity and Neurovascular Coupling in Multiple Sclerosis-A Systematic Review. Front Neurol 2022; 13:912828. [PMID: 35720104 PMCID: PMC9198441 DOI: 10.3389/fneur.2022.912828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
The inflammatory processes observed in the central nervous system in multiple sclerosis (MS) could damage the endothelium of the cerebral vessels and lead to a dysfunctional regulation of vessel tonus and recruitment, potentially impairing cerebrovascular reactivity (CVR) and neurovascular coupling (NVC). Impaired CVR or NVC correlates with declining brain health and potentially plays a causal role in the development of neurodegenerative disease. Therefore, we examined studies on CVR or NVC in MS patients to evaluate the evidence for impaired cerebrovascular function as a contributing disease mechanism in MS. Twenty-three studies were included (12 examined CVR and 11 examined NVC). Six studies found no difference in CVR response between MS patients and healthy controls. Five studies observed reduced CVR in patients. This discrepancy can be because CVR is mainly affected after a long disease duration and therefore is not observed in all patients. All studies used CO2 as a vasodilating stimulus. The studies on NVC demonstrated diverse results; hence a conclusion that describes all the published observations is difficult to find. Future studies using quantitative techniques and larger study samples are needed to elucidate the discrepancies in the reported results.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
63
|
A Comparison of the Effects of Short-Term Physical and Combined Multi-Modal Training on Cognitive Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127506. [PMID: 35742756 PMCID: PMC9223650 DOI: 10.3390/ijerph19127506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Physical training has beneficial effects not only on physical fitness, but also on cognitive functions. The most effective way to improve cognitive functions via physical training as well as the degree to which training effects transfer to untrained cognitive functions is still unclear, however. Here, we investigated the effects of adaptive and multi-modal short-term training interventions on cognitive training gains and transfer effects. Over a period of 12 weeks, 102 employees of a car manufacturing company (age range 20 to 61 years) received trainer-guided exercises, consisting of either two adaptive training interventions, physical (strength) training and multi-modal (motor-cognitive) training, or non-adaptive strength training (active control group). For the multi-modal intervention, the "Agility Board" was employed, a novel, multi-modal training device. Pre- and post-training, psychometric tests were conducted to measure cognitive abilities, such as perceptual speed, attention, short-term memory, working memory, inhibition, and mental rotation. In addition, motor-cognitive performance was assessed. Compared with the active control group, both training groups showed enhanced performance at posttest. While multi-modal training yielded performance improvements only in trained tasks, physical training was associated with improvements in untrained working memory updating and immediate recall tasks, suggesting transfer effects to short-term and working memory functioning. In summary, the results demonstrate the importance of adaptive difficulty settings for short-term physical training interventions, at least for the enhancement of working memory.
Collapse
|
64
|
Kennedy CM, Burma JS, Newel KT, Brassard P, Smirl JD. Time course recovery of cerebral blood velocity metrics post aerobic exercise: A systematic review. J Appl Physiol (1985) 2022; 133:471-489. [PMID: 35708702 DOI: 10.1152/japplphysiol.00630.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Currently, the standard approach for restricting exercise prior to cerebrovascular data collection varies widely between 6-24 hours. This universally employed practice is a conservative approach to safeguard physiological alterations that could potentially confound one's study design. Therefore, the purpose of this systematic review was to amalgamate the literature that examines the extent and duration cerebrovascular function is impacted following aerobic exercise measured via transcranial Doppler ultrasound. Further, an exploratory aim was to scrutinize and discuss common biases/limitations in the previous studies to help guide future investigations. Search strategies were developed and imported into PubMed, SPORTDiscus, and Medline databases. A total of 595 records were screened and 35 articles met the inclusion criteria in this review, which included assessments of basic cerebrovascular metrics (n=35), dynamic cerebral autoregulation (dCA; n=9), neurovascular coupling (NVC; n=2); and/or cerebrovascular reactivity (CVR-CO2; n=1) following acute bouts of aerobic exercise. Across all studies, it was found NVC was impacted for 1-hour, basic cerebrovascular parameters and CVR-CO2 parameters 2-hours, and dCA metrics 6-hours post-exercise. Therefore, future studies can provide participants with these evidence-based time restrictions, regarding the minimum time to abstain from exercise prior to data collection. However, it should be noted, other physiological mechanisms could still be altered (e.g., metabolic, hormonal, and/or autonomic influences), despite cerebrovascular function returning to baseline levels. Thus, future investigations should seek to control for as many physiological influences when employing cerebrovascular assessments, immediately following these time restraints. The main limitations/biases were lack of female participants, cardiorespiratory fitness, and consideration for vessel diameter.
Collapse
Affiliation(s)
- Courtney M Kennedy
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Université Laval, Québec, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| |
Collapse
|
65
|
Subclinical cognitive deficits are associated with reduced cerebrovascular response to visual stimulation in mid-sixties men. GeroScience 2022; 44:1905-1923. [PMID: 35648331 DOI: 10.1007/s11357-022-00596-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022] Open
Abstract
Reduced cerebrovascular response to neuronal activation is observed in patients with neurodegenerative disease. In the present study, we examined the correlation between reduced cerebrovascular response to visual activation (ΔCBFVis.Act) and subclinical cognitive deficits in a human population of mid-sixties individuals without neurodegenerative disease. Such a correlation would suggest that impaired cerebrovascular function occurs before overt neurodegenerative disease. A total of 187 subjects (age 64-67 years) of the Metropolit Danish Male Birth Cohort participated in the study. ΔCBFVis.Act was measured using arterial spin labelling (ASL) MRI. ΔCBFVis.Act correlated positively with cognitive performance in: Global cognition (p = 0.046), paired associative memory (p = 0.025), spatial recognition (p = 0.026), planning (p = 0.016), simple processing speed (p < 0.01), and with highly significant correlations with current intelligence (p < 10-5), and more complex processing speed (p < 10-3), the latter two explaining approximately 11-13% of the variance. Reduced ΔCBFVis.Act was independent of brain atrophy. Our findings suggest that inhibited cerebrovascular response to neuronal activation is an early deficit in the ageing brain and associated with subclinical cognitive deficits. Cerebrovascular dysfunction could be an early sign of a trajectory pointing towards the development of neurodegenerative disease. Future efforts should elucidate if maintenance of a healthy cerebrovascular function can protect against the development of dementia.
Collapse
|
66
|
Yasuda CL. My journey after a mild infection with COVID-19: I want my old brain back. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:631-633. [PMID: 35946703 PMCID: PMC9387179 DOI: 10.1590/0004-282x-anp-2022-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
ABSTRACT Although neurocognitive dysfunction has been observed after infection by SARS-CoV-2, few studies have detailed these alterations or demonstrated their impact on daily life activities and work. Here, I describe the sequence of events following a mild COVID-19 infection in August 2020 (which now is described as “post-COVID syndrome”) and comment on my ensuing limitations associated with cognitive difficulties, headache, fatigue and sleepiness. Furthermore, I discuss the efforts that I have made to recover from my infection since its beginning and the strategies adopted for living with persistent restrictions in terms of cognitive performance.
Collapse
Affiliation(s)
- Clarissa Lin Yasuda
- Universidade Estadual de Campinas, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Brazil
| |
Collapse
|
67
|
Bliss ES, Wong RHX, Howe PRC, Mills DE. The Effects of Aerobic Exercise Training on Cerebrovascular and Cognitive Function in Sedentary, Obese, Older Adults. Front Aging Neurosci 2022; 14:892343. [PMID: 35663579 PMCID: PMC9158462 DOI: 10.3389/fnagi.2022.892343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebrovascular function and cognition decline with age and are further exacerbated by obesity and physical inactivity. This decline may be offset by aerobic exercise training (AT). We investigated the effects of 16 weeks AT on cerebrovascular and cognitive function in sedentary, obese, older adults. Twenty-eight participants were randomly allocated to AT or a control group. Before and after the intervention, transcranial Doppler ultrasonography was used to measure the cerebrovascular responsiveness (CVR) to physiological (hypercapnia, 5% carbon dioxide) and cognitive stimuli. AT increased the CVR to hypercapnia (98.5 ± 38.4% vs. 58.0 ± 42.0%, P = 0.021), CVR to cognitive stimuli (25.9 ± 6.1% vs. 16.4 ± 5.4%, P < 0.001) and total composite cognitive score (111 ± 14 vs. 104 ± 14, P = 0.004) compared with the control group. A very strong relationship was observed between the number of exercise sessions completed and CVR to cognitive stimuli (r = 0.878, P < 0.001), but not for CVR to hypercapnia (r = 0.246, P = 0.397) or total composite cognitive score (r = 0.213, P = 0.465). Cerebrovascular function and cognition improved following 16 weeks of AT and a dose-response relationship exists between the amount of exercise sessions performed and CVR to cognitive stimuli.
Collapse
Affiliation(s)
- Edward S. Bliss
- Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD, Australia
- *Correspondence: Edward S. Bliss,
| | - Rachel H. X. Wong
- Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD, Australia
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Peter R. C. Howe
- Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD, Australia
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Dean E. Mills
- Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD, Australia
- Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, QLD, Australia
| |
Collapse
|
68
|
Lin H, Liu H, Dai Y, Yin X, Li Z, Yang L, Tao J, Liu W, Chen L. Effect of Physical Activity on Cognitive Impairment in Patients With Cerebrovascular Diseases: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:854158. [PMID: 35599737 PMCID: PMC9120585 DOI: 10.3389/fneur.2022.854158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose This study investigates the effect of physical activity (PA) on cognition in patients with cerebrovascular disease and explored the maximum benefit of different PA characteristics. Methods Databases, such as Pubmed, Web of Science, Embase, and Cochrane Library, were searched from their inception to May 31, 2021. Standardized mean difference (SMD) and 95% confidence intervals (CIs) were calculated to generate a forest plot. In addition, subgroup analysis, moderation analysis, and regression analysis were performed to explore the possible adjustment factors. Results In total, 22 studies that met the criteria were included, demonstrating data from 1,601 participants. The results indicated that PA produced a positive effect on the global cognition for patients with cerebrovascular disease (SMD: 0.20 [95% CI: 0.12-0.27]), at the same time, PA training prominently improved executive function (SMD: 0.09 [95% CI: 0.00-0.17]) and working memory (SMD: 0.25 [95% CI: 0.10-0.40]). Furthermore, patients with baseline cognitive impairment received the greater benefit of PA on cognition (SMD: 0.24 [95% CI: 0.14-0.34]) than those without cognitive impairment before intervention (SMD: 0.15 [95% CI: 0.04-0.26]). For patients in the acute stage (≤ 3 months), PA did not rescue impairment dysfunction significantly (SMD: 0.08 [95% CI: -0.04-0.21]) and remarkable cognitive gains were detected in the chronic stage of participants (>3 months) (SMD: 0.25 [95% CI: 0.16-0.35]). Moderate intensity PA showed a larger pooled effect size (SMD: 0.23 [95% CI: 0.11-0.36]) than low intensity (SMD: -0.01 [95% CI: -0.44-0.43]) and high intensity (SMD: 0.16 [95% CI: 0.03-0.29]). However, the different types, duration, and frequency of PA resulted in no differences in the improvement of cognitive function. Further regression analysis demonstrated that the beneficial effects of PA on cognition are negatively correlated with age (p < 0.05). Conclusions This study revealed that PA can prominently improve the cognitive ability in patients with cerebrovascular diseases and strengthened the evidence that PA held promise as a widely accessible and effective non-drug therapy for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - HuanHuan Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Yin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lei Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
69
|
Moncion K, Allison EY, Al-Khazraji BK, MacDonald MJ, Roig M, Tang A. What are the effects of acute exercise and exercise training on cerebrovascular hemodynamics following stroke? A systematic review and meta-analysis. J Appl Physiol (1985) 2022; 132:1379-1393. [PMID: 35482325 DOI: 10.1152/japplphysiol.00872.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Limited data exist regarding the effects of acute exercise and exercise training on cerebrovascular hemodynamic variables post-stroke. PURPOSE This systematic review and meta-analysis 1) examined the effects of acute exercise and exercise training on cerebrovascular hemodynamic variables reported in the stroke exercise literature; and 2) synthesized the peak middle cerebral artery blood velocity (MCAv) achieved during an acute bout of moderate-intensity exercise in individuals post-stroke. METHODS Six databases (MEDLINE, EMBASE, Web of Science, CINAHL, PsycINFO, AMED) were searched from inception to December 1st 2021, for studies that examined the effect of acute exercise or exercise training on cerebrovascular hemodynamics in adults post-stroke. Two reviewers conducted title and abstract screening, full-text evaluation, data extraction, and quality appraisal. Random effects models were used in meta-analysis. RESULTS Nine studies, including 4 acute exercise (n=61) and 5 exercise training studies (n=193), were included. Meta-analyses were not statistically feasible for several cerebrovascular hemodynamic variables. Descriptive analysis reveals that exercise training may increase cerebral blood flow and cerebrovascular reactivity to carbon dioxide among individuals post-stroke. Meta-analysis of three acute exercise studies revealed no significant changes in MCAv during acute moderate intensity exercise (n=48 participants, mean difference = 5.2 cm/s, 95% CI [-0.6, 11.0], P=0.08) compared to resting MCAv values. CONCLUSION This review suggests that individuals post-stroke may have attenuated cerebrovascular hemodynamics as measured by the MCAv during acute moderate-intensity exercise. Higher quality research utilizing agreed upon hemodynamic variables are needed to synthesize the effects of exercise training on cerebrovascular hemodynamics post-stroke.
Collapse
Affiliation(s)
- Kevin Moncion
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elric Y Allison
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Baraa K Al-Khazraji
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Marc Roig
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Ada Tang
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
70
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
71
|
Lake SL, Guadagni V, Kendall KD, Chadder M, Anderson TJ, Leigh R, Rawling JM, Hogan DB, Hill MD, Poulin MJ. Aerobic exercise training in older men and women-Cerebrovascular responses to submaximal exercise: Results from the Brain in Motion study. Physiol Rep 2022; 10:e15158. [PMID: 35212167 PMCID: PMC8874289 DOI: 10.14814/phy2.15158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Physical inactivity is a leading modifiable risk factor for cardiovascular and cerebrovascular disease, cognitive dysfunction, and global mortality. Regular exercise might mitigate age-related declines in cardiovascular and cerebrovascular function. In this study, we hypothesize that a 6-month aerobic exercise intervention will lead to a decrease in cerebrovascular resistance index (CVRi) and to an increase in cerebral blood flow (CBF) and cerebrovascular conductance index (CVCi) during two submaximal exercise workloads (40% VO2 max and 65 W), intensities that have been shown to be comparable to activities of daily life. Two hundred three low-active healthy men and women enrolled in the Brain in Motion study, completed a 6-month exercise intervention and underwent submaximal and maximal tests pre-/post-intervention. The intervention improved the gas exchange threshold and maximal oxygen consumption (VO2 max), with no change in heart rate at VO2 max, during the treadmill VO2 max test. Heart rate and CVRi decreased from pre-intervention values during both relative (40% VO2 max) and absolute (65 W) submaximal exercise tests. Blood flow velocity in the middle cerebral artery and CVCi increased post-intervention during 40% VO2 max and 65 W. Changes in mean arterial pressure were found only during the absolute component (65 W). Our study demonstrates that aerobic exercise improves not only cardiorespiratory indices but also cerebrovascular function at submaximal workloads which may help to mitigate age-related declines in everyday life. Investigation of the mechanisms underlying the decline in cardiovascular and cerebrovascular capacity with aging has important implications for the maintenance of health and continued independence of older adults.
Collapse
Affiliation(s)
- Sonja L Lake
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Clinical & Translational Exercise Physiology Lab, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Veronica Guadagni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen D Kendall
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Clinical & Translational Exercise Physiology Lab, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michaela Chadder
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Clinical & Translational Exercise Physiology Lab, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean M Rawling
- Department of Family Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David B Hogan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Division of Geriatric Medicine, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Brenda Strafford Foundation Chair in Alzheimer Research, Calgary, Alberta, Canada
| |
Collapse
|
72
|
Renke MB, Marcinkowska AB, Kujach S, Winklewski PJ. A Systematic Review of the Impact of Physical Exercise-Induced Increased Resting Cerebral Blood Flow on Cognitive Functions. Front Aging Neurosci 2022; 14:803332. [PMID: 35237146 PMCID: PMC8882971 DOI: 10.3389/fnagi.2022.803332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Brain perfusion declines with aging. Physical exercise represents a low-cost accessible form of intervention to increase cerebral blood flow; however, it remains unclear if exercise-induced amelioration of brain perfusion has any impact on cognition. We aimed to provide a state-of-the art review on this subject. A comprehensive search of the PubMed (MEDLINE) database was performed. On the basis of the inclusion and exclusion criteria, 14 studies were included in the analysis. Eleven of the studies conducted well-controlled exercise programs that lasted 12–19 weeks for 10–40 participants and two studies were conducted in much larger groups of subjects for more than 5 years, but the exercise loads were indirectly measured, and three of them were focused on acute exercise. Literature review does not show a direct link between exercise-induced augmentation of brain perfusion and better cognitive functioning. However, in none of the reviewed studies was such an association the primary study endpoint. Carefully designed clinical studies with focus on cognitive and perfusion variables are needed to provide a response to the question whether exercise-induced cerebral perfusion augmentation is of clinical importance.
Collapse
Affiliation(s)
- Maria B. Renke
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Maria B. Renke
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Physiology, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Paweł J. Winklewski
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
73
|
Erickson KI, Donofry SD, Sewell KR, Brown BM, Stillman CM. Cognitive Aging and the Promise of Physical Activity. Annu Rev Clin Psychol 2022; 18:417-442. [PMID: 35044793 DOI: 10.1146/annurev-clinpsy-072720-014213] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Is the field of cognitive aging irretrievably concerned with decline and deficits, or is it shifting to emphasize the hope of preservation and enhancement of cognitive function in late life? A fragment of an answer comes from research attempting to understand the reasons for individual variability in the extent and rate of cognitive decline. This body of work has created a sense of optimism based on evidence that there are some health behaviors that amplify cognitive performance or mitigate the rate of age-related cognitive decline. In this context, we discuss the role of physical activity on neurocognitive function in late adulthood and summarize how it can be conceptualized as a constructive approach both for the maintenance of cognitive function and as a therapeutic for enhancing or optimizing cognitive function in late life. In this way, physical activity research can be used to shape perceptions of cognitive aging. Expected final online publication date for the Annual Review of Clinical Psychology, Volume 18 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kirk I Erickson
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Shannon D Donofry
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,Psychiatry and Behavioral Health Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Chelsea M Stillman
- Department of Psychology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
74
|
Zhang Y, Huang Z, Xia H, Xiong J, Ma X, Liu C. The benefits of exercise for outcome improvement following traumatic brain injury: Evidence, pitfalls and future perspectives. Exp Neurol 2021; 349:113958. [PMID: 34951984 DOI: 10.1016/j.expneurol.2021.113958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI), also known as a silent epidemic, is currently a substantial public health problem worldwide. Given the increased energy demands following brain injury, relevant guidelines tend to recommend absolute physical and cognitive rest for patients post-TBI. Nevertheless, recent evidence suggests that strict rest does not provide additional benefits to patients' recovery. By contrast, as a cost-effective non-pharmacological therapy, exercise has shown promise for enhancing functional outcomes after injury. This article summarizes the most recent evidence supporting the beneficial effects of exercise on TBI outcomes, focusing on the efficacy of exercise for cognitive recovery after injury and its potential mechanisms. Available evidence demonstrates the potential of exercise in improving cognitive impairment, mood disorders, and post-concussion syndrome following TBI. However, the clinical application for exercise rehabilitation in TBI remains challenging, particularly due to the inadequacy of the existing clinical evaluation system. Also, a better understanding of the underlying mechanisms whereby exercise promotes its most beneficial effects post-TBI will aid in the development of new clinical strategies to best benefit of these patients.
Collapse
Affiliation(s)
- Yulan Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Zhihai Huang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Honglin Xia
- Laboratory of Regenerative Medicine in Sports Science, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chengyi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
75
|
Wang S, Liu HY, Cheng YC, Su CH. Exercise Dosage in Reducing the Risk of Dementia Development: Mode, Duration, and Intensity-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413331. [PMID: 34948942 PMCID: PMC8703896 DOI: 10.3390/ijerph182413331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022]
Abstract
Senile dementia, also known as dementia, is the mental deterioration which is associated with aging. It is characterized by a decrease in cognitive abilities, inability to concentrate, and especially the loss of higher cerebral cortex function, including memory, judgment, abstract thinking, and other loss of personality, even behavior changes. As a matter of fact, dementia is the deterioration of mental and intellectual functions caused by brain diseases in adults when they are mature, which affects the comprehensive performance of life and work ability. Most dementia cases are caused by Alzheimer’s disease (AD) and multiple infarct dementia (vascular dementia, multi-infarct dementia). Alzheimer’s disease is characterized by atrophy, shedding, and degenerative alterations in brain cells, and its occurrence is linked to age. The fraction of the population with dementia is smaller before the age of 65, and it increases after the age of 65. Since women live longer than men, the proportion of women with Alzheimer’s disease is higher. Multiple infarct dementia is caused by a cerebral infarction, which disrupts blood supply in multiple locations and impairs cerebral cortex function. Researchers worldwide are investigating ways to prevent Alzheimer’s disease; however, currently, there are no definitive answers for Alzheimer’s prevention. Even so, research has shown that we can take steps to reduce the risk of developing it. Prospective studies have found that even light to moderate physical activity can lower the risk of dementia and Alzheimer’s disease. Exercise has been proposed as a potential lifestyle intervention to help reduce the occurrence of dementia and Alzheimer’s disease. Various workout modes will be introduced based on various physical conditions. In general, frequent exercise for 6–8 weeks lessens the risk of dementia development.
Collapse
Affiliation(s)
- Sukai Wang
- College of Physical Education, Huaqiao University, Quanzhou 362021, China;
| | - Hong-Yu Liu
- Department of Exercise and Health Promotion, Chinese Culture University, Taipei 111369, Taiwan; (H.-Y.L.); (Y.-C.C.)
| | - Yi-Chen Cheng
- Department of Exercise and Health Promotion, Chinese Culture University, Taipei 111369, Taiwan; (H.-Y.L.); (Y.-C.C.)
| | - Chun-Hsien Su
- College of Kinesiology and Health, Chinese Culture University, Taipei 111369, Taiwan
- Correspondence: ; Tel.: +886-975159678
| |
Collapse
|
76
|
Thomas HJ, Marsh CE, Naylor LH, Ainslie PN, Smith KJ, Carter HH, Green DJ. Resistance, but not endurance exercise training, induces changes in cerebrovascular function in healthy young subjects. Am J Physiol Heart Circ Physiol 2021; 321:H881-H892. [PMID: 34559581 DOI: 10.1152/ajpheart.00230.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is generally considered that regular exercise maintains brain health and reduces the risk of cerebrovascular diseases such as stroke and dementia. Since the benefits of different "types" of exercise are unclear, we sought to compare the impacts of endurance and resistance training on cerebrovascular function. In a randomized and crossover design, 68 young healthy adults were recruited to participate in 3 mo of resistance and endurance training. Cerebral hemodynamics through the internal carotid, vertebral, middle and posterior cerebral arteries were measured using Duplex ultrasound and transcranial Doppler at rest and during acute exercise, dynamic autoregulation, and cerebrovascular reactivity (to hypercapnia). Following resistance, but not endurance training, middle cerebral artery velocity and pulsatility index significantly decreased (P < 0.01 and P = 0.02, respectively), whereas mean arterial pressure and indices of cerebrovascular resistance in the middle, posterior, and internal carotid arteries all increased (P < 0.05). Cerebrovascular resistance indices in response to acute exercise and hypercapnia also significantly increased following resistance (P = 0.02), but not endurance training. Our findings, which were consistent across multiple domains of cerebrovascular function, suggest that episodic increases in arterial pressure associated with resistance training may increase cerebrovascular resistance. The implications of long-term resistance training on brain health require future study, especially in populations with pre-existing cerebral hypoperfusion and/or hypotension.NEW & NOTEWORTHY Three months of endurance exercise did not elicit adaptation in any domain of cerebrovascular function in young healthy inactive volunteers. However, resistance training induced decreased pulsatility in the extracranial arteries and increased indices of cerebrovascular resistance in cerebral arteries. This increase in cerebrovascular resistance, apparent at baseline and in response to both hypercapnia and acute exercise, may reflect a protective response in the face of changes in arterial pressure during resistance exercise.
Collapse
Affiliation(s)
- Hannah J Thomas
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Channa E Marsh
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kurt J Smith
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois, Chicago, Illinois.,Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Howard H Carter
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
77
|
Hippocampal and non-hippocampal correlates of physically active lifestyle and their relation to episodic memory in older adults. Neurobiol Aging 2021; 109:100-112. [PMID: 34706317 DOI: 10.1016/j.neurobiolaging.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022]
Abstract
Aging is associated with compromised neurocognition. While aerobic exercise has been linked with cognitive resilience, findings regarding its relationship with brain morphology are inconsistent. Furthermore, the biological underpinnings of the relationship between aerobic activity and memory in the aging human brain are unclear. To investigate these issues, we examined hippocampal and non-hippocampal structural correlates of aerobically active lifestyle and cardiorespiratory fitness in older adults. We then examined structural pathways which may potentially mediate the association between active lifestyle and memory. Fifty participants (aged 65-80) underwent structural and diffusion MRI, memory evaluation, were examined for active lifestyle and cardiorespiratory fitness. Morphological features of the hippocampus and fornix, white matter lesions, and brain atrophy were assessed. Active lifestyle and cardiorespiratory fitness correlated with all neurocognitive measures. An exploratory mediation analysis revealed hippocampal and white matter lesions pathways linking active lifestyle and cardiorespiratory fitness with memory. Our results support a neuroprotective role of aerobic exercise on the aging brain and suggest plausible morphological pathways that may underlie the relationship between aerobic exercise and memory.
Collapse
|
78
|
Abstract
UNLABELLED Exercise is associated with higher cognitive function and is a promising intervention to reduce the risk of dementia. With advancing age, there are changes in the vasculature that have important clinical implications for brain health and cognition. Primary aging and vascular risk factors are associated with increases in arterial stiffness and pulse pressure, and reductions in peripheral vascular function. OBJECTIVE The purpose is to discuss the epidemiological, observational, and mechanistic evidence regarding the link between age-related changes in vascular health and brain health. METHODS We performed a literature review and integrated with our published data. RESULTS Epidemiological evidence suggests a link between age-related increases in arterial stiffness and lower cognitive function, which may be mediated by cerebral vascular function, including cerebral vasoreactivity and cerebral pulsatility. Age-associated impairments in central arterial stiffness and peripheral vascular function have been attenuated or reversed through lifestyle behaviors such as exercise. Greater volumes of habitual exercise and higher cardiorespiratory fitness are associated with beneficial effects on both peripheral vascular health and cognition. Yet, the extent to which exercise directly influences cerebral vascular function and brain health, as well as the associated mechanisms remains unclear. CONCLUSION Although there is evidence that exercise positively impacts cerebral vascular function, more research is necessary in humans to optimize experimental protocols and address methodological limitations and physiological considerations. Understanding the impact of exercise on cerebral vascular function is important for understanding the association between exercise and brain health and may inform future intervention studies that seek to improve cognition.
Collapse
|
79
|
Kaufman CS, Honea RA, Pleen J, Lepping RJ, Watts A, Morris JK, Billinger SA, Burns JM, Vidoni ED. Aerobic exercise improves hippocampal blood flow for hypertensive Apolipoprotein E4 carriers. J Cereb Blood Flow Metab 2021; 41:2026-2037. [PMID: 33509035 PMCID: PMC8327103 DOI: 10.1177/0271678x21990342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebrovascular dysfunction likely contributes causally to Alzheimer's disease (AD). The strongest genetic risk factor for late-onset AD, Apolipoprotein E4 (APOE4), may act synergistically with vascular risk to cause dementia. Therefore, interventions that improve vascular health, such as exercise, may be particularly beneficial for APOE4 carriers. We assigned cognitively normal adults (65-87 years) to an aerobic exercise intervention or education only. Arterial spin labeling MRI measured hippocampal blood flow (HBF) before and after the 52-week intervention. We selected participants with hypertension at enrollment (n = 44). For APOE4 carriers, change in HBF (ΔHBF) was significantly (p = 0.006) higher for participants in the exercise intervention (4.09 mL/100g/min) than the control group (-2.08 mL/100g/min). There was no difference in ΔHBF between the control (-0.32 mL/100g/min) and exercise (-0.54 mL/100g/min) groups for non-carriers (p = 0.918). Additionally, a multiple regression showed an interaction between change in systolic blood pressure (ΔSBP) and APOE4 carrier status on ΔHBF (p = 0.035), with reductions in SBP increasing HBF for APOE4 carriers only. Aerobic exercise improved HBF for hypertensive APOE4 carriers only. Additionally, only APOE4 carriers exhibited an inverse relationship between ΔSBP and ΔHBF. This suggests exercise interventions, particularly those that lower SBP, may be beneficial for individuals at highest genetic risk of AD.ClinicalTrials.gov Identifier: NCT02000583.
Collapse
Affiliation(s)
- Carolyn S Kaufman
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robyn A Honea
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, USA
| | - Joseph Pleen
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, USA
| | - Rebecca J Lepping
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Jill K Morris
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, USA
| | - Sandra A Billinger
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, USA
| | - Eric D Vidoni
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, USA
- Eric D Vidoni, KU Alzheimer's Disease Center, KU Clinical Research Center, 4350 Shawnee Mission Parkway, MS 6002, Fairway, KS 66205, USA.
| |
Collapse
|
80
|
Huang Z, Zhang Y, Zhou R, Yang L, Pan H. Lactate as Potential Mediators for Exercise-Induced Positive Effects on Neuroplasticity and Cerebrovascular Plasticity. Front Physiol 2021; 12:656455. [PMID: 34290615 PMCID: PMC8287254 DOI: 10.3389/fphys.2021.656455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
The accumulated evidence from animal and human studies supports that exercise is beneficial to physical health. Exercise can upregulate various neurotrophic factors, activate neuroplasticity, and play a positive role in improving and enhancing cerebrovascular function. Due to its economy, convenience, and ability to prevent or ameliorate various aging-related diseases, exercise, a healthy lifestyle, is increasingly popularized by people. However, the mechanism by which exercise performs this function and how it is transmitted from muscles to the brain remains incompletely understood. Here, we review the beneficial effects of exercise with different intensities on the brain with a focus on the positive effects of lactate on neuroplasticity and cerebrovascular plasticity. Based on these recent studies, we propose that lactate, a waste previously misunderstood as a by-product of glycolysis in the past, may be a key signal molecule that regulates the beneficial adaptation of the brain caused by exercise. Importantly, we speculate that a central protective mechanism may underlie the cognitive benefits induced by exercise.
Collapse
Affiliation(s)
| | | | | | - Luodan Yang
- Cognitive and Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Hongying Pan
- Cognitive and Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
81
|
Tomoto T, Tarumi T, Chen JN, Hynan LS, Cullum CM, Zhang R. One-year aerobic exercise altered cerebral vasomotor reactivity in mild cognitive impairment. J Appl Physiol (1985) 2021; 131:119-130. [PMID: 34013755 PMCID: PMC8325610 DOI: 10.1152/japplphysiol.00158.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
The purpose of this study was to test the hypothesis that changes in cerebral vasomotor reactivity (CVMR) after 1-yr aerobic exercise training (AET) are associated with cognitive performances in individuals with amnestic mild cognitive impairment (MCI). Seventy sedentary patients with amnestic MCI were randomized to 1-yr moderate-to-vigorous intensity AET or stretching and toning (SAT) interventions. Cerebral blood flow velocity (CBFV) with transcranial Doppler, mean arterial pressure (MAP) with finapres plethysmograph, and EtCO2 with capnography were measured during hyperventilation (hypocapnia) and a modified rebreathing protocol (hypercapnia) to assess CVMR. Cerebrovascular conductance index (CVCi) was calculated by CBFV/MAP, and CVMR by ΔCBFV/ΔEtCO2 and ΔCVCi/ΔEtCO2. Episodic memory and executive function were assessed using standard neuropsychological tests (CVLT-II and D-KEFS). Cardiorespiratory fitness was assessed by peak oxygen uptake (V̇o2peak). A total of 37 patients (19 in SAT and 18 in AET) completed 1-yr interventions and CVMR assessments. AET improved V̇o2peak, increased hypocapnic CVMR, but decreased hypercapnic CVMR. The effects of AET on cognitive performance were minimal when compared with SAT. Across both groups, there was a negative correlation between changes in hypocapnic and hypercapnic CVMRs in CBFV% and CVCi% (r = -0.741, r = -0.725, P < 0.001). Attenuated hypercapnic CVMR, but not increased hypocapnic CVMR, was associated with improved cognitive test scores in the AET group. In conclusion, 1-yr AET increased hypocapnic CVMR and attenuated hypercapnic CVMR which is associated cognitive performance in patients with amnestic MCI.NEW & NOTEWORTHY One-year moderate-to-vigorous intensity aerobic exercise training (AET) improved cardiorespiratory fitness (V̇o2peak), increased hypocapnic cerebral vasomotor reactivity (CVMR), whereas it decreased hypercapnic CVMR when compared with stretching and toning in patients with amnestic mild cognitive impairment (MCI). Furthermore, changes in hypercapnic CVMR with AET were correlated with improved memory and executive function. These findings indicate that AET has an impact on cerebrovascular function which may benefit cognitive performance in older adults who have high risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Jason N Chen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Linda S Hynan
- Department of Population and Data Sciences (Biostatistics), University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - C Munro Cullum
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
82
|
O'Brien MW, Kimmerly DS, Mekari S. Greater habitual moderate-to-vigorous physical activity is associated with better executive function and higher prefrontal oxygenation in older adults. GeroScience 2021; 43:2707-2718. [PMID: 34081258 DOI: 10.1007/s11357-021-00391-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
International physical activity guidelines recommend that older adults accumulate 150 min/week of moderate-vigorous physical activity (MVPA). It is unclear whether meeting this recommendation is associated with better higher-order cognitive functions and if so, what are the neurophysiological mechanisms responsible for such a relationship. We tested the hypothesis that meeting MVPA guidelines is associated with better executive function in older adults, and explored if greater increases in prefrontal cortex oxygenation are implicated. Older adults who did (active, n = 19; 251 ± 79 min/week) or who did not (inactive, n = 16; 89 ± 33 min/week) achieve activity guidelines were compared. Executive function was determined via a computerized Stroop task while changes in left prefrontal cortex oxygenation (ΔO2Hb) were measured with functional near-infrared spectroscopy. Aerobic fitness ([Formula: see text] 2peak) was determined using a graded, maximal cycle ergometry test. MVPA and sedentary time were objectively assessed over 5 days. Both groups had similar (both, P > 0.11) levels of aerobic fitness (24.9 ± 8.9 vs. 20.9 ± 5.6 ml/kg/min) and sedentary time (529 ± 60 vs. 571 ± 90 min/day). The active group had faster reaction times (1193 ± 230 vs. 1377 ± 239 ms, P < 0.001) and greater increases in prefrontal cortex ΔO2Hb (9.4 ± 5.6 a.u vs. 5.8 ± 3.4 a.u, P = 0.04) during the most executively demanding Stroop condition than the Inactive group. Weekly MVPA was negatively correlated to executive function reaction times (r = - 0.37, P = 0.03) but positively correlated to the ΔO2Hb responses (r = 0.39. P = 0.02) during the executive task. In older adults, meeting MVPA guidelines is associated with better executive function and larger increases in cerebral oxygenation among older adults.
Collapse
Affiliation(s)
- Myles W O'Brien
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek S Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Said Mekari
- School of Kinesiology, Acadia University, 550 Main Street, Wolfville, Nova Scotia, B4P 2R6, Canada.
| |
Collapse
|
83
|
Norling AM, Buford TW, Lazar RM. Exercise: primus inter pares of Life’s Simple 7. Aging (Albany NY) 2021; 13:12297-12298. [PMID: 33962396 PMCID: PMC8148501 DOI: 10.18632/aging.203041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Amani M. Norling
- The UAB Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Thomas W. Buford
- The University Center for Exercise Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ronald M. Lazar
- The UAB Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
84
|
Green DJ, Smith K, Maslen BA, Cox KL, Lautenschlager NT, Pestell CF, Naylor LH, Ainslie PN, Carter HH. The Impact of 6-Month Land versus Water Walking on Cerebrovascular Function in the Aging Brain. Med Sci Sports Exerc 2021; 53:2093-2100. [PMID: 33867500 DOI: 10.1249/mss.0000000000002685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To examine the hypothesis that exercise training induces adaptation in cerebrovascular function, we recruited 63 older adults (62 ± 7 yr, 46 females) to undertake 24 wk of either land walking or water walking, or participate in a nonexercise control group. This is the first multi-interventional study to perform a comprehensive assessment of cerebrovascular function in response to longer term (6-month) training interventions, including water-based exercise, in older healthy individuals. METHODS Intracranial blood flow velocities (middle cerebral artery (MCAv) and posterior cerebral artery) were assessed at rest and in response to neurovascular coupling, hypercapnic reactivity, and cerebral autoregulation. RESULTS We observed no change in resting MCAv in response to either training intervention (pre vs post, mean (95% confidence interval), land walking: 65 (59-70) to 63 (57-68) cm·s-1, P = 0.33; water walking: 63 (58-69) to 61 (55-67) cm·s-1, P = 0.92) compared with controls and no change in neurovascular coupling (land walking: P = 0.18, water walking: P = 0.17). There was a significant but modest improvement in autoregulatory normalized gain after the intervention in the water-walking compared with the land-walking group (P = 0.03). Hypercapnic MCAv reactivity was not different based on exercise group (land: P = 087, water: P = 0.83); however, when data were pooled from the exercise groups, increases in fitness were correlated with decreases in hypercapnic reactivity (r2 = 0.25, P = 0.003). CONCLUSIONS Although exercise was not associated with systematic changes across multiple domains of cerebrovascular function, our data indicate that exercise may induce modest changes in autoregulation and CO2 reactivity. These findings should encourage further studies of the longer-term implications of exercise training on cerebrovascular health.
Collapse
Affiliation(s)
- Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | - Kurt Smith
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | - Barbara A Maslen
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | | | | | - Carmela F Pestell
- School of Psychological Science, University of Western Australia, Perth, WA, AUSTRALIA
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, CANADA
| | - Howard H Carter
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, AUSTRALIA
| |
Collapse
|
85
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
86
|
Williams JS, Dunford EC, Cheng JL, Moncion K, Valentino SE, Droog CA, Cherubini JM, King TJ, Noguchi KS, Wiley E, Turner JR, Tang A, Al-Khazraji BK, MacDonald MJ. The impact of the 24-h movement spectrum on vascular remodeling in older men and women: a review. Am J Physiol Heart Circ Physiol 2021; 320:H1136-H1155. [PMID: 33449851 DOI: 10.1152/ajpheart.00754.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aging is associated with increased risk of cardiovascular and cerebrovascular events, which are preceded by early, negative remodeling of the vasculature. Low physical activity is a well-established risk factor associated with the incidence and development of disease. However, recent physical activity literature indicates the importance of considering the 24-h movement spectrum. Therefore, the purpose of this review was to examine the impact of the 24-h movement spectrum, specifically physical activity (aerobic and resistance training), sedentary behavior, and sleep, on cardiovascular and cerebrovascular outcomes in older adults, with a focus on recent evidence (<10 yr) and sex-based considerations. The review identifies that both aerobic training and being physically active (compared with sedentary) are associated with improvements in endothelial function, arterial stiffness, and cerebrovascular function. Additionally, there is evidence of sex-based differences in endothelial function: a blunted improvement in aerobic training in postmenopausal women compared with men. While minimal research has been conducted in older adults, resistance training does not appear to influence arterial stiffness. Poor sleep quantity or quality are associated with both impaired endothelial function and increased arterial stiffness. Finally, the review highlights mechanistic pathways involved in the regulation of vascular and cerebrovascular function, specifically the balance between pro- and antiatherogenic factors, which mediate the relationship between the 24-h movement spectrum and vascular outcomes. Finally, this review proposes future research directions: examining the role of duration and intensity of training, combining aerobic and resistance training, and exploration of sex-based differences in cardiovascular and cerebrovascular outcomes.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Emily C Dunford
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin Moncion
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sydney E Valentino
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Connor A Droog
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua M Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Trevor J King
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth S Noguchi
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elise Wiley
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joshua R Turner
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Ada Tang
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
87
|
Vidoni ED, Morris JK, Watts A, Perry M, Clutton J, Van Sciver A, Kamat AS, Mahnken J, Hunt SL, Townley R, Honea R, Shaw AR, Johnson DK, Vacek J, Burns JM. Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer's: A 1-year randomized controlled trial. PLoS One 2021; 16:e0244893. [PMID: 33444359 PMCID: PMC7808620 DOI: 10.1371/journal.pone.0244893] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer's-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging. METHODS AND FINDINGS This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 underactive older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control. CONCLUSIONS Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects. TRIAL REGISTRATION NCT02000583; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, KS, United States of America
| | - Mark Perry
- Department of Radiology, University of Kansas Health System, Kansas City, KS, United States of America
| | - Jon Clutton
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Angela Van Sciver
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Ashwini S. Kamat
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Jonathan Mahnken
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Suzanne L. Hunt
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Ryan Townley
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Robyn Honea
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - Ashley R. Shaw
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| | - David K. Johnson
- Department of Neurology, University of California–Davis, Sacramento, CA, United States of America
| | - James Vacek
- Department of Cardiovascular Medicine, University of Kansas Health System, Kansas City, KS, United States of America
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Center, Fairway, KS, United States of America
| |
Collapse
|
88
|
Di Raimondo D, Rizzo G, Musiari G, Tuttolomondo A, Pinto A. Role of Regular Physical Activity in Neuroprotection against Acute Ischemia. Int J Mol Sci 2020; 21:ijms21239086. [PMID: 33260365 PMCID: PMC7731306 DOI: 10.3390/ijms21239086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function following neurological diseases such as ischemic stroke or traumatic brain injury. Unfortunately, the efficacy of exogenous administration of these neurotrophins is limited by rapid degradation with subsequent poor half-life and a lack of blood-brain-barrier permeability. Regular exercise seems to be a therapeutic approach able to induce the activation of several pathways related to the neurotrophins release. Exercise, furthermore, reduces the infarct volume in the ischemic brain and ameliorates motor function in animal models increasing astrocyte proliferation, inducing angiogenesis and reducing neuronal apoptosis and oxidative stress. One of the most critical issues is to identify the relationship between neurotrophins and myokines, newly discovered skeletal muscle-derived factors released during and after exercise able to exert several biological functions. Various myokines (e.g., Insulin-Like Growth Factor 1, Irisin) have recently shown their ability to protects against neuronal injury in cerebral ischemia models, suggesting that these substances may influence the degree of neuronal damage in part via inhibiting inflammatory signaling pathways. The aim of this narrative review is to examine the main experimental data available to date on the neuroprotective and anti-ischemic role of regular exercise, analyzing also the possible role played by neurotrophins and myokines.
Collapse
|
89
|
Loprinzi PD, Moore D, Loenneke JP. Does Aerobic and Resistance Exercise Influence Episodic Memory through Unique Mechanisms? Brain Sci 2020; 10:E913. [PMID: 33260817 PMCID: PMC7761124 DOI: 10.3390/brainsci10120913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Aerobic and resistance exercise (acute and chronic) independently and collectively induce beneficial responses in the brain that may influence memory function, including an increase in cerebral blood flow, neurogenesis, neuroelectrical alterations, and protein production. However, whether aerobic and resistance exercise improve memory via similar or distinct mechanisms has yet to be fully explained. Here, we review the unique influence of aerobic and resistance exercise on neural modulation, proteins, receptors, and ultimately, episodic memory. Resistance training may optimize neural communication, information processing and memory encoding by affecting the allocation of attentional resources. Moreover, resistance exercise can reduce inflammatory markers associated with neural communication while increasing peripheral and central BDNF (brain-derived neurotrophic factor) production. Aerobic training increases hippocampal levels of BDNF and TrkB (Tropomyosin receptor kinase B), protein kinases and glutamatergic proteins. Likewise, both aerobic and anaerobic exercise can increase CREB (cAMP response element-binding protein) phosphorylation. Thus, we suggest that aerobic and resistance exercise may influence episodic memory via similar and, potentially, distinct mechanisms.
Collapse
Affiliation(s)
- Paul D. Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Damien Moore
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
90
|
Aerobic exercise improves cognition and cerebrovascular regulation in older adults. Neurology 2020; 95:890. [DOI: 10.1212/wnl.0000000000010637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
91
|
Mekari S, Neyedli HF, Fraser S, O’Brien MW, Martins R, Evans K, Earle M, Aucoin R, Chiekwe J, Hollohan Q, Kimmerly DS, Dupuy O. High-Intensity Interval Training Improves Cognitive Flexibility in Older Adults. Brain Sci 2020; 10:brainsci10110796. [PMID: 33137993 PMCID: PMC7693870 DOI: 10.3390/brainsci10110796] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Regular aerobic exercise is associated with better executive function in older adults. It is unclear if high-intensity-interval-training (HIIT) elicits moderate-intensity continuous training (MICT) or resistance training (RT). We hypothesized that HIIT would augment executive function more than MICT and RT. Methods: Sixty-nine older adults (age: 68 ± 7 years) performed six weeks (three days/week) of HIIT (2 × 20 min bouts alternating between 15 s intervals at 100% of peak power output (PPO) and passive recovery (0% PPO); n = 24), MICT (34 min at 60% PPO; n = 19), or whole-body RT (eight exercise superior improvements in executive function of older adults than moderate-intensity-continuous-training, 2 × 10 repetitions; n = 26). Cardiorespiratory fitness (i.e., V˙O2max) and executive function were assessed before and after each intervention via a progressive maximal cycle ergometer protocol and the Stroop Task, respectively. Results: The V˙O2max findings revealed a significant group by time interaction (p = 0.001) in which all groups improved following training, but HIIT and MICT improved more than RT. From pre- to post-training, no interaction in the naming condition of the Stroop Task was observed (p > 0.10). However, interaction from pre- to post-training by group was observed, and only the HIIT group exhibited a faster reaction time (from 1250 ± 50 to 1100 ± 50 ms; p < 0.001) in switching (cognitive flexibility). Conclusion: Despite similar improvements in cardiorespiratory fitness, HIIT, but not MICT nor RT, enhanced cognitive flexibility in older adults. Exercise programs should consider using HIIT protocols in an effort to combat cognitive decline in older adults.
Collapse
Affiliation(s)
- Said Mekari
- School of Kinesiology, Acadia University, 550. Main Street, Wolfville, NS B4P 2R6, Canada; (R.M.); (K.E.); (M.E.); (R.A.); (J.C.); (Q.H.)
- Correspondence: ; Tel.: +1-(902)-585-1566
| | - Heather F. Neyedli
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, NS B3H 1T8, Canada; (H.F.N.); (M.W.O.); (D.S.K.)
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 74K, Canada;
| | - Myles W. O’Brien
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, NS B3H 1T8, Canada; (H.F.N.); (M.W.O.); (D.S.K.)
| | - Ricardo Martins
- School of Kinesiology, Acadia University, 550. Main Street, Wolfville, NS B4P 2R6, Canada; (R.M.); (K.E.); (M.E.); (R.A.); (J.C.); (Q.H.)
| | - Kailey Evans
- School of Kinesiology, Acadia University, 550. Main Street, Wolfville, NS B4P 2R6, Canada; (R.M.); (K.E.); (M.E.); (R.A.); (J.C.); (Q.H.)
| | - Meghan Earle
- School of Kinesiology, Acadia University, 550. Main Street, Wolfville, NS B4P 2R6, Canada; (R.M.); (K.E.); (M.E.); (R.A.); (J.C.); (Q.H.)
| | - Rachelle Aucoin
- School of Kinesiology, Acadia University, 550. Main Street, Wolfville, NS B4P 2R6, Canada; (R.M.); (K.E.); (M.E.); (R.A.); (J.C.); (Q.H.)
| | - Joy Chiekwe
- School of Kinesiology, Acadia University, 550. Main Street, Wolfville, NS B4P 2R6, Canada; (R.M.); (K.E.); (M.E.); (R.A.); (J.C.); (Q.H.)
| | - Quinn Hollohan
- School of Kinesiology, Acadia University, 550. Main Street, Wolfville, NS B4P 2R6, Canada; (R.M.); (K.E.); (M.E.); (R.A.); (J.C.); (Q.H.)
| | - Derek S. Kimmerly
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, NS B3H 1T8, Canada; (H.F.N.); (M.W.O.); (D.S.K.)
| | - Olivier Dupuy
- Laboratory MOVE (EA 6314), Faculty of Sport Sciences, University of Poitiers, 86000 Poitiers, France;
| |
Collapse
|
92
|
Wilke J, Royé C. Exercise Intensity May Not Moderate the Acute Effects of Functional Circuit Training on Cognitive Function: A Randomized Crossover Trial. Brain Sci 2020; 10:E738. [PMID: 33066593 PMCID: PMC7602507 DOI: 10.3390/brainsci10100738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Functional circuit training (FCT) has been demonstrated to acutely enhance cognitive performance (CP). However, the moderators of this observation are unknown. This study aimed to elucidate the role of exercise intensity. According to an a priori sample size calculation, n = 24 healthy participants (26 ± 3 years, 13 females), in randomized order, performed a single 15-min bout of FCT with low (20-39% of the heart rate reserve/HRR), moderate (40-59% HRR) or high intensity (maximal effort). Immediately pre- and post-workout, CP was measured by use of the Digit Span test, Stroop test and Trail Making test. Non-parametric data analyses did not reveal significant differences between conditions (p > 0.05) although parameter-free 95% confidence intervals showed pre-post improvements in some outcomes at moderate and high intensity only. The effort level does not seem to be a major effect modifier regarding short-term increases in CP following HCT in young active adults.
Collapse
Affiliation(s)
- Jan Wilke
- Department of Sports Medicine, Goethe University Frankfurt, 60488 Frankfurt am Main, Germany;
| | | |
Collapse
|
93
|
Sugawara J, Tomoto T, Repshas J, Zhang R, Tarumi T. Middle-aged endurance athletes exhibit lower cerebrovascular impedance than sedentary peers. J Appl Physiol (1985) 2020; 129:335-342. [PMID: 32673159 DOI: 10.1152/japplphysiol.00239.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Because elevated hemodynamic pulsatility could be mechanical stress against the brain, the dampening function of central and cerebral arteries is crucial. Regular endurance exercise training favorably restores the deteriorated dampening function of the aorta and carotid arteries in older populations, yet its effect on cerebrovascular dampening function remains unknown. To address this question, we compared cerebrovascular impedance, a frequency-domain relationship of the cerebral pressure and flow, in 21 middle-aged masters athletes who have been engaged in endurance training and races for >10 yr (MA, 53 ± 4 yr) with sedentary 21 age-matched (MS, 53 ± 5 yr) and 21 young (YS, 29 ± 6 yr) individuals. Using transfer function analysis, cerebrovascular impedance was computed from the simultaneously recorded carotid artery pressure (CAP, via applanation tonometry) and middle cerebral artery blood flow velocity (CBFV, via transcranial Doppler). In the frequency range of 0.78-3.12 Hz, coherence between pulsatile changes in CAP and CBFV was higher than 0.90 in all groups. All subjects exhibited the highest impedance modulus in the range of the first harmonic oscillations (0.78-1.56 Hz) mainly originating from cardiac ejection. Impedance modulus in this range was significantly lower in the MA than MS groups (0.88 ± 0.24 vs. 1.15 ± 0.29 mmHg·s/cm, P = 0.011) and equivalent to the YS (0.92 ± 0.30 mmHg·s/cm). Among middle-aged subjects, higher impedance modulus was correlated with lower mean CBFV (r = -0.776, P < 0.001) and cerebral cortical perfusion evaluated by MRI (r = -0.371, P = 0.015). These results suggest that middle-aged endurance athletes exhibited the significantly lower modulus of cerebrovascular impedance, which is associated with higher CBFV and cerebral cortical perfusion.NEW & NOTEWORTHY Impedance modulus in the range of first harmonic oscillations (0.78-1.56 Hz), which reflects heart rate at rest, was lower in middle-aged endurance athletes than in age-matched sedentary peers and was similar to young individuals. Prolonged endurance training is associated with the improved cerebrovascular dampening function in middle-aged adults. Lower cerebrovascular impedance modulus may contribute to maintaining brain perfusion in midlife.
Collapse
Affiliation(s)
- Jun Sugawara
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Dallas, Texas
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Justin Repshas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Dallas, Texas
| |
Collapse
|