51
|
Vacas S, Canales C, Deiner SG, Cole DJ. Perioperative Brain Health in the Older Adult: A Patient Safety Imperative. Anesth Analg 2022; 135:316-328. [PMID: 35584550 PMCID: PMC9288500 DOI: 10.1213/ane.0000000000006090] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
While people 65 years of age and older represent 16% of the population in the United States, they account for >40% of surgical procedures performed each year. Maintaining brain health after anesthesia and surgery is not only important to our patients, but it is also an increasingly important patient safety imperative for the specialty of anesthesiology. Aging is a complex process that diminishes the reserve of every organ system and often results in a patient who is vulnerable to the stress of surgery. The brain is no exception, and many older patients present with preoperative cognitive impairment that is undiagnosed. As we age, a number of changes occur in the human brain, resulting in a patient who is less resilient to perioperative stress, making older adults more susceptible to the phenotypic expression of perioperative neurocognitive disorders. This review summarizes the current scientific and clinical understanding of perioperative neurocognitive disorders and recommends patient-centered, age-focused interventions that can better mitigate risk, prevent harm, and improve outcomes for our patients. Finally, it discusses the emerging topic of sleep and cognitive health and other future frontiers of scientific inquiry that might inform clinical best practices.
Collapse
Affiliation(s)
- Susana Vacas
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Cecilia Canales
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Stacie G Deiner
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Daniel J Cole
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
52
|
Roy B, Nunez A, Aysola RS, Kang DW, Vacas S, Kumar R. Impaired Glymphatic System Actions in Obstructive Sleep Apnea Adults. Front Neurosci 2022; 16:884234. [PMID: 35600625 PMCID: PMC9120580 DOI: 10.3389/fnins.2022.884234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Study Objectives Obstructive sleep apnea (OSA) is accompanied by sleep fragmentation and altered sleep architecture, which can potentially hinder the glymphatic system, increasing risks for Alzheimer's disease (AD), but the status is unclear in OSA. Our aim was to investigate the glymphatic system in OSA subjects and examine the relationships between OSA disease severity, sleep symptoms, and glymphatic system indices in OSA using diffusion tensor imaging (DTI). Methods We acquired DTI data from 59 OSA and 62 controls using a 3.0-Tesla MRI and examined OSA disease severity and sleep symptoms with the Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS). Diffusivity maps in the x-axis (Dxx), y-axis (Dyy), and z-axis (Dzz), as well as in x-y axis (Dxy), y-z axis (Dyz), and x-z axis (Dxz) were calculated, diffusion values for the projection and association fibers extracted, and the DTI analyses along the perivascular space (DTI-ALPS index) were performed. The glymphatic system indices were compared between groups and correlated with disease severity and sleep symptoms in OSA subjects. Results Dzz values, derived from projection fiber areas, Dyy and Dzz values from association fiber areas, as well as ALPS and Dyzmean values were significantly reduced in OSA over controls. Significant correlations emerged between disease severity, sleep symptoms, and Dxy, Dxx, and Dzz values in OSA subjects. Conclusion OSA patients show abnormal glymphatic system function that may contribute to increased risks for AD. The findings suggest that the APLS method can be used to assess the glymphatic system in OSA patients.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alba Nunez
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ravi S. Aysola
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel W. Kang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susana Vacas
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rajesh Kumar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
53
|
Eshtiaghi A, Eapen-John D, Zaslavsky K, Vosoughi R, Murray BJ, Margolin E. Sleep Quality in Neuromyelitis Optica Spectrum Disorder: A Systematic Review. Int J MS Care 2022; 24:124-131. [PMID: 35645625 PMCID: PMC9135364 DOI: 10.7224/1537-2073.2021-019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND This review summarizes the literature on sleep quality in neuromyelitis optica spectrum disorder (NMOSD) and discusses these findings in the context of current knowledge of sleep physiology. METHODS A literature search was performed using Ovid MEDLINE, Embase, and Scopus from inception to September 3, 2020. All included studies reported at least 1 measure of sleep quality in individuals with NMOSD. Pittsburgh Sleep Quality Index (PSQI) scores of individuals from 4 studies were compared with those from a data set of controls. RESULTS Thirteen studies (1041 individuals with NMOSD) were included in the review. Disturbed sleep was demonstrated across subjective metrics based on patient surveys and objective metrics such as polysomnography. An estimated 70% of individuals with NMOSD can be classified as poor sleepers. Standardized mean difference between PSQI scores of 183 individuals with NMOSD and those of 9284 controls was 0.72 (95% CI, 0.57-0.86; P < .001). Decreased sleep quality was significantly associated with decreased quality of life and increased anxiety, depression, and disability status. Sleep disturbances in NMOSD were similar in severity to those in multiple sclerosis. CONCLUSIONS Sleep disturbances are a major contributor to NMOSD disease burden and may arise from the disruption of sleep circuitry, in addition to physical and psychological complications. Multiple processes involved in sleep regulation may be affected, such as, but not limited to, neural circadian circuit disruption, direct effects of inflammation, aminergic projecting system abnormalities, glymphatic system impairment, and development of sleep disorders such as restless legs syndrome/sleep apnea. A better understanding of these mechanisms is necessary for developing effective therapies for NMOSD-associated sleep disturbances.
Collapse
Affiliation(s)
- Arshia Eshtiaghi
- From the Faculty of Medicine (AE, DE-J), University of Toronto, Toronto, ON, Canada
| | - David Eapen-John
- From the Faculty of Medicine (AE, DE-J), University of Toronto, Toronto, ON, Canada
| | - Kirill Zaslavsky
- From the Department of Ophthalmology and Vision Sciences (KZ, EM), University of Toronto, Toronto, ON, Canada
| | - Reza Vosoughi
- From the Division of Neurology, Department of Medicine (RV, BJM), University of Toronto, Toronto, ON, Canada
- From the St Michael’s Hospital, Toronto, ON, Canada (RV)
| | - Brian J. Murray
- From the Division of Neurology, Department of Medicine (RV, BJM), University of Toronto, Toronto, ON, Canada
- From the Sunnybrook Health Science Centre, Toronto, ON, Canada (BJM)
| | - Edward Margolin
- From the Department of Ophthalmology and Vision Sciences (KZ, EM), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
54
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
55
|
Li L, Ding G, Zhang L, Davoodi-Bojd E, Chopp M, Li Q, Zhang ZG, Jiang Q. Aging-Related Alterations of Glymphatic Transport in Rat: In vivo Magnetic Resonance Imaging and Kinetic Study. Front Aging Neurosci 2022; 14:841798. [PMID: 35360203 PMCID: PMC8960847 DOI: 10.3389/fnagi.2022.841798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Impaired glymphatic waste clearance function during brain aging leads to the accumulation of metabolic waste and neurotoxic proteins (e.g., amyloid-β, tau) which contribute to neurological disorders. However, how the age-related glymphatic dysfunction exerts its effects on different cerebral regions and affects brain waste clearance remain unclear. Methods We investigated alterations of glymphatic transport in the aged rat brain using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and advanced kinetic modeling. Healthy young (3-4 months) and aged (18-20 months) male rats (n = 12/group) underwent the identical MRI protocol, including T2-weighted imaging and 3D T1-weighted imaging with intracisternal administration of contrast agent (Gd-DTPA). Model-derived parameters of infusion rate and clearance rate, characterizing the kinetics of cerebrospinal fluid (CSF) tracer transport via the glymphatic system, were evaluated in multiple representative brain regions. Changes in the CSF-filled cerebral ventricles were measured using contrast-induced time signal curves (TSCs) in conjunction with structural imaging. Results Compared to the young brain, an overall impairment of glymphatic transport function was detected in the aged brain, evidenced by the decrease in both infusion and clearance rates throughout the brain. Enlarged ventricles in parallel with reduced efficiency in CSF transport through the ventricular regions were present in the aged brain. While the age-related glymphatic dysfunction was widespread, our kinetic quantification demonstrated that its impact differed considerably among cerebral regions with the most severe effect found in olfactory bulb, indicating the heterogeneous and regional preferential alterations of glymphatic function. Conclusion The robust suppression of glymphatic activity in the olfactory bulb, which serves as one of major efflux routes for brain waste clearance, may underlie, in part, age-related neurodegenerative diseases associated with neurotoxic substance accumulation. Our data provide new insight into the cerebral regional vulnerability to brain functional change with aging.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
56
|
Salehpour F, Khademi M, Bragin DE, DiDuro JO. Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System. Int J Mol Sci 2022; 23:ijms23062975. [PMID: 35328396 PMCID: PMC8950470 DOI: 10.3390/ijms23062975] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
The glymphatic system is a glial-dependent waste clearance pathway in the central nervous system, devoted to drain away waste metabolic products and soluble proteins such as amyloid-beta. An impaired brain glymphatic system can increase the incidence of neurovascular, neuroinflammatory, and neurodegenerative diseases. Photobiomodulation (PBM) therapy can serve as a non-invasive neuroprotective strategy for maintaining and optimizing effective brain waste clearance. In this review, we discuss the crucial role of the glymphatic drainage system in removing toxins and waste metabolites from the brain. We review recent animal research on the neurotherapeutic benefits of PBM therapy on glymphatic drainage and clearance. We also highlight cellular mechanisms of PBM on the cerebral glymphatic system. Animal research has shed light on the beneficial effects of PBM on the cerebral drainage system through the clearance of amyloid-beta via meningeal lymphatic vessels. Finally, PBM-mediated increase in the blood–brain barrier permeability with a subsequent rise in Aβ clearance from PBM-induced relaxation of lymphatic vessels via a vasodilation process will be discussed. We conclude that PBM promotion of cranial and extracranial lymphatic system function might be a promising strategy for the treatment of brain diseases associated with cerebrospinal fluid outflow abnormality.
Collapse
Affiliation(s)
- Farzad Salehpour
- College for Light Medicine and Photobiomodulation, D-82319 Starnberg, Germany;
- ProNeuroLIGHT LLC, Phoenix, AZ 85041, USA
| | - Mahsa Khademi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51666, Iran;
| | - Denis E. Bragin
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Joseph O. DiDuro
- ProNeuroLIGHT LLC, Phoenix, AZ 85041, USA
- Correspondence: ; Tel.: +1-(845)-203-9204
| |
Collapse
|
57
|
Siow TY, Toh CH, Hsu JL, Liu GH, Lee SH, Chen NH, Fu CJ, Castillo M, Fang JT. Association of Sleep, Neuropsychological Performance, and Gray Matter Volume With Glymphatic Function in Community-Dwelling Older Adults. Neurology 2022; 98:e829-e838. [PMID: 34906982 DOI: 10.1212/wnl.0000000000013215] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The glymphatic system, which is robustly enabled during some stages of sleep, is a fluid-transport pathway that clears cerebral waste products. Most contemporary knowledge regarding the glymphatic system is inferred from rodent experiments and human research is limited. Our objective is to explore the associations between human glymphatic function, sleep, neuropsychological performance, and cerebral gray matter volumes. METHODS This cross-sectional study included individuals 60 years or older who had participated in the Integrating Systemic Data of Geriatric Medicine to Explore the Solution for Health Aging study between September 2019 and October 2020. Community-dwelling older adults were enrolled at 2 different sites. Participants with dementia, major depressive disorders, and other major organ system abnormalities were excluded. Sleep profile was accessed using questionnaires and polysomnography. Administered neuropsychological test batteries included Everyday Cognition (ECog) and the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery (CERAD-NB). Gray matter volumes were estimated based on MRI. Diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index was used as the MRI marker of glymphatic function. RESULTS A total of 84 participants (mean [SD] age 73.3 [7.1] years, 47 [56.0%] women) were analyzed. Multivariate linear regression model determined that age (unstandardized β, -0.0025 [SE 0.0001]; p = 0.02), N2 sleep duration (unstandardized β, 0.0002 [SE 0.0001]; p = 0.04), and the apnea-hypopnea index (unstandardized β, -0.0011 [SE 0.0005]; p = 0.03) were independently associated with DTI-ALPS. Higher DTI-ALPS was associated with better ECog language scores (unstandardized β, -0.59 [SE 0.28]; p = 0.04) and better CERAD-NB word list learning delayed recall subtest scores (unstandardized β, 6.17 [SE 2.31]; p = 0.009) after covarying for age and education. Higher DTI-ALPS was also associated with higher gray matter volume (unstandardized β, 107.00 [SE 43.65]; p = 0.02) after controlling for age, sex, and total intracranial volume. DISCUSSION Significant associations were identified between glymphatic function and sleep, stressing the importance of sleep for brain health. This study also revealed associations between DTI-ALPS, neuropsychological performance, and cerebral gray matter volumes, suggesting the potential of DTI-ALPS as a biomarker for cognitive disorders.
Collapse
Affiliation(s)
- Tiing Yee Siow
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| | - Cheng Hong Toh
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill.
| | - Jung-Lung Hsu
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| | - Geng-Hao Liu
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| | - Shwu-Hua Lee
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| | - Ning-Hung Chen
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| | - Changjui James Fu
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| | - Mauricio Castillo
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| | - Ji-Tseng Fang
- From the Department of Medical Imaging and Intervention (T.Y.S., C.H.T.) and Neuroscience Research Center, Department of Neurology, Medical Center and College of Medicine (J.-L.H.), Chang Gung University College of Medicine, and Division of Acupuncture and Moxibustion, Department of Traditional Chinese Medicine (G.-H.L.), Department of Psychiatry (S.-H.L.), Department of Pulmonary and Critical Care Medicine (N.-H.C.), Biomedical Informatics Unit, Clinical Trial Center (C.J.F.), and Department of Nephrology (J.-T.F.), Chang Gung Memorial Hospital at Linkou, Taoyuan; Graduate Institute of Mind, Brain, & Consciousness (J.-L.H.), Taipei Medical University; Brain & Consciousness Research Center (J.-L.H.), Shuang Ho Hospital, New Taipei City; School of Traditional Chinese Medicine (G.-H.L., N.-H.C.) and School of Medicine (J.-T.F.), College of Medicine (S.-H.L.), Chang Gung University; Sleep Center (G.-H.L., N.-H.C.), Chang Gung Memorial Hospital, Taoyuan, Taiwan; and Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
58
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
59
|
Chong PLH, Garic D, Shen MD, Lundgaard I, Schwichtenberg AJ. Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review. Sleep Med Rev 2022; 61:101572. [PMID: 34902819 PMCID: PMC8821419 DOI: 10.1016/j.smrv.2021.101572] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Current theories of the glymphatic system (GS) hypothesize that it relies on cerebrospinal fluid (CSF) circulation to disseminate growth factors and remove metabolic waste from the brain with increased CSF production and circulation during sleep; thereby, linking sleep disturbance with elements of CSF circulation and GS exchange. However, our growing knowledge of the relations between sleep, CSF, and the GS are plagued by variability in sleep and CSF measures across a wide array of pathologies. Hence, this review aims to summarize the dynamic relationships between sleep, CSF-, and GS-related features in samples of typically developing individuals and those with autoimmune/inflammatory, neurodegenerative, neurodevelopmental, sleep-related, neurotraumatic, neuropsychiatric, and skull atypicalities. One hundred and ninety articles (total n = 19,129 participants) were identified and reviewed for pathology, CSF circulation and related metrics, GS function, and sleep. Numerous associations were documented between sleep problems and CSF metabolite concentrations (e.g., amyloid-beta, orexin, tau proteins) and increased CSF volumes or pressure. However, these relations were not universal, with marked differences across pathologies. It is clear that elements of CSF circulation/composition and GS exchange represent pathways influenced by sleep; however, carefully designed studies and advances in GS measurement are needed to delineate the nuanced relationships.
Collapse
Affiliation(s)
| | - D. Garic
- University of North Carolina, Chapel Hill, NC
| | - M. D. Shen
- University of North Carolina, Chapel Hill, NC
| | - I. Lundgaard
- Department of Experimental Medicine Science, Lund University, Lund, Sweden,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
60
|
Albayram MS, Smith G, Tufan F, Tuna IS, Bostancıklıoğlu M, Zile M, Albayram O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun 2022; 13:203. [PMID: 35017525 PMCID: PMC8752739 DOI: 10.1038/s41467-021-27887-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Meningeal lymphatic vessels have been described in animal studies, but limited comparable data is available in human studies. Here we show dural lymphatic structures along the dural venous sinuses in dorsal regions and along cranial nerves in the ventral regions in the human brain. 3D T2-Fluid Attenuated Inversion Recovery magnetic resonance imaging relies on internal signals of protein rich lymphatic fluid rather than contrast media and is used in the present study to visualize the major human dural lymphatic structures. Moreover we detect direct connections between lymphatic fluid channels along the cranial nerves and vascular structures and the cervical lymph nodes. We also identify age-related cervical lymph node atrophy and thickening of lymphatics channels in both dorsal and ventral regions, findings which reflect the reduced lymphatic output of the aged brain.
Collapse
Affiliation(s)
- Mehmet Sait Albayram
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
| | - Garrett Smith
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Fatih Tufan
- Geriatrician (PP), Silivrikapi Mh. Hisaralti Cd, Istanbul, 34093, Turkey
| | - Ibrahim Sacit Tuna
- Department of Radiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | | | - Michael Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Division of Cardiology, Department of Medicine, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, 29425, USA
| | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
61
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
62
|
Ray LA, Pike M, Simon M, Iliff JJ, Heys JJ. Quantitative analysis of macroscopic solute transport in the murine brain. Fluids Barriers CNS 2021; 18:55. [PMID: 34876169 PMCID: PMC8650464 DOI: 10.1186/s12987-021-00290-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Understanding molecular transport in the brain is critical to care and prevention of neurological disease and injury. A key question is whether transport occurs primarily by diffusion, or also by convection or dispersion. Dynamic contrast-enhanced (DCE-MRI) experiments have long reported solute transport in the brain that appears to be faster than diffusion alone, but this transport rate has not been quantified to a physically relevant value that can be compared to known diffusive rates of tracers. METHODS In this work, DCE-MRI experimental data is analyzed using subject-specific finite-element models to quantify transport in different anatomical regions across the whole mouse brain. The set of regional effective diffusivities ([Formula: see text]), a transport parameter combining all mechanisms of transport, that best represent the experimental data are determined and compared to apparent diffusivity ([Formula: see text]), the known rate of diffusion through brain tissue, to draw conclusions about dominant transport mechanisms in each region. RESULTS In the perivascular regions of major arteries, [Formula: see text] for gadoteridol (550 Da) was over 10,000 times greater than [Formula: see text]. In the brain tissue, constituting interstitial space and the perivascular space of smaller blood vessels, [Formula: see text] was 10-25 times greater than [Formula: see text]. CONCLUSIONS The analysis concludes that convection is present throughout the brain. Convection is dominant in the perivascular space of major surface and branching arteries (Pe > 1000) and significant to large molecules (> 1 kDa) in the combined interstitial space and perivascular space of smaller vessels (not resolved by DCE-MRI). Importantly, this work supports perivascular convection along penetrating blood vessels.
Collapse
Affiliation(s)
- Lori A Ray
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
| | - Martin Pike
- Advanced Imaging Research Center, Oregon Health and Sciences University, Portland, USA
| | - Matthew Simon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, USA
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, USA
- Denali Therapeutics, San Francisco, USA
| | - Jeffrey J Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, USA
| | - Jeffrey J Heys
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
63
|
Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP, terBrugge KG, Mikulis DJ. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part I-Anatomy and Physiology. Radiology 2021; 301:502-514. [PMID: 34665028 DOI: 10.1148/radiol.2021202043] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Normal physiologic function of organs requires a circulation of interstitial fluid to deliver nutrients and clear cellular waste products. Lymphatic vessels serve as collectors of this fluid in most organs; however, these vessels are absent in the central nervous system. How the central nervous system maintains tight control of extracellular conditions has been a fundamental question in neuroscience until recent discovery of the glial-lymphatic, or glymphatic, system was made this past decade. Networks of paravascular channels surrounding pial and parenchymal arteries and veins were found that extend into the walls of capillaries to allow fluid transport and exchange between the interstitial and cerebrospinal fluid spaces. The currently understood anatomy and physiology of the glymphatic system is reviewed, with the paravascular space presented as an intrinsic component of healthy pial and parenchymal cerebral blood vessels. Glymphatic system behavior in animal models of health and disease, and its enhanced function during sleep, are discussed. The evolving understanding of glymphatic system characteristics is then used to provide a current interpretation of its physiology that can be helpful for radiologists when interpreting neuroimaging investigations.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Diana Vucevic
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Kartik D Bhatia
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Hans G J Kortman
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Timo Krings
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Kieran P Murphy
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - Karel G terBrugge
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| | - David J Mikulis
- From the Montreal Neurologic Institute and Hospital, Department of Diagnostic and Interventional Neuroradiology, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging, University of Toronto, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montreal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montreal, Montréal, Canada (J.M.K.); Department of Materials Science & Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Canada (D.V.); Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.); and Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada (T.K., K.G.t.B.)
| |
Collapse
|
64
|
Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021; 11:158-173. [PMID: 34213499 PMCID: PMC8374456 DOI: 10.4103/2045-9912.318862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 11/04/2022] Open
Abstract
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
65
|
Abstract
Optic nerve health is essential for proper function of the visual system. However, the pathophysiology of certain neurodegenerative disease processes affecting the optic nerve, such as glaucoma, is not fully understood. Recently, it was hypothesized that a lack of proper clearance of neurotoxins contributes to neurodegenerative diseases. The ability to clear metabolic waste is essential for tissue homeostasis in mammals, including humans. While the brain lacks the traditional lymphatic drainage system identified in other anatomical regions, there is growing evidence of a glymphatic system in the central nervous system, which structurally includes the optic nerve. Named to acknowledge the supportive role of astroglial cells, this perivascular fluid drainage system is essential to remove toxic metabolites from the central nervous system. Herein, we review existing literature describing the physiology and dysfunction of the glymphatic system specifically as it relates to the optic nerve. We summarize key imaging studies demonstrating the existence of a glymphatic system in the optic nerves of wild-type rodents, aquaporin 4-null rodents, and humans; glymphatic imaging studies in diseases where the optic nerve is impaired; and current evidence regarding pharmacological and lifestyle interventions that may help promote glymphatic function to improve optic nerve health. We conclude by highlighting future research directions that could be applied to improve imaging detection and guide therapeutic interventions for diseases affecting the optic nerve.
Collapse
Affiliation(s)
- Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology; Department of Radiology; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
66
|
Bèchet NB, Shanbhag NC, Lundgaard I. Glymphatic pathways in the gyrencephalic brain. J Cereb Blood Flow Metab 2021; 41:2264-2279. [PMID: 33641515 PMCID: PMC8393296 DOI: 10.1177/0271678x21996175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023]
Abstract
Identification of the perivascular compartment as the point of exchange between cerebrospinal fluid (CSF) and interstitial fluid mediating solute clearance in the brain, named the glymphatic system, has emerged as an important clearance pathway for neurotoxic peptides such as amyloid-beta. However, the foundational science of the glymphatic system is based on rodent studies. Here we investigated whether the glymphatic system exists in a large mammal with a highly gyrified brain. CSF penetration into the brain via perivascular pathways, a hallmark of glymphatic function, was seen throughout the gyrencephalic cortex and subcortical structures, validating the conservation of the glymphatic system in a large mammal. Macroscopic CSF tracer distribution followed the sulci and fissures showing that these folds enhance CSF dispersion. Three-dimensional renditions from light sheet microscopy showed a PVS influx density 4-fold larger in the pig brain than in mice. This demonstrates the existence of an advanced solute transport system in the gyrencephalic brain that could be utilised therapeutically for enhancing waste clearance.
Collapse
Affiliation(s)
- Nicholas Burdon Bèchet
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
67
|
Meyerhoff J, Chakraborty N, Hammamieh R. Glymphatics: A Transformative Development in Medical Neuroscience Relevant to Injuries in Military Central Nervous System. Mil Med 2021; 187:e1086-e1090. [PMID: 34453167 DOI: 10.1093/milmed/usab344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The glia-operated glymphatic system, analogous to but separate from the lymphatics in the periphery, is unique to brain and retina, where it is very closely aligned with the arteriolar system. This intimate relationship leads to a "blood vessel like" distribution pattern of glymphatic vessels in the brain. The spatial relationship of glymphatics, including their essential component aquaporin-4 with vascular pericytes of brain arterioles is critical to functionality and is termed "polarization". MATERIALS AND METHODS We review the available literature on the factors affecting the resting state of glymphatics under normal conditions, including the important role of sleep in supporting normal glymphatic function (including waste removal) as well as the critical role of "polarization" under normal conditions. We then examine the effects of traumatic brain injury (TBI) or seizures on the glymphatic system and its state of "polarization". RESULTS Injury, such as TBI, can disrupt polarization resulting in "depolarization" leading to brain edema. CONCLUSION Damage to the glymphatic system might explain the brain edema so often seen following TBI or other insult. Moreover, similar damage should be expected in response to seizures, which can often be associated with chemical exposures as well as with TBI. Military operations, whether night operations or continuous operations, quite often impose limitations on sleep. As glymphatic function is sleep-dependent, sleep deprivation alone could compromise glymphatic function, as well, and might in addition, explain some of the well-known performance deficits associated with sleep deprivation. Possible effects of submarine and diving operations, chemical agents (including seizures), as well as high altitude exposure and other threats should be considered. In addition to the brain, the retina is also served and protected by the glymphatic system. Accordingly, the effect of military-related risks (e.g., exposure to laser or other threats) to retinal glymphatic function should also be considered. An intact glymphatic system is absolutely essential to support normal central nervous system functionality, including cognition. This effects a broad range of military threats on brain and retinal glymphatics should be explored. Possible preventive and therapeutic measures should be proposed and evaluated, as well.
Collapse
Affiliation(s)
- James Meyerhoff
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
68
|
Zhou X, Li Y, Lenahan C, Ou Y, Wang M, He Y. Glymphatic System in the Central Nervous System, a Novel Therapeutic Direction Against Brain Edema After Stroke. Front Aging Neurosci 2021; 13:698036. [PMID: 34421575 PMCID: PMC8372556 DOI: 10.3389/fnagi.2021.698036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.
Collapse
Affiliation(s)
- Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
69
|
Wang X, Hua D, Tang X, Li S, Sun R, Xie Z, Zhou Z, Zhao Y, Wang J, Li S, Luo A. The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders. Nat Sci Sleep 2021; 13:1395-1410. [PMID: 34393534 PMCID: PMC8354730 DOI: 10.2147/nss.s320745] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Postoperative neurocognitive disorder (PND) increases the length of hospital stay, mortality, and risk of long-term cognitive impairment. Perioperative sleep disturbance is prevalent and commonly ignored and may increase the risk of PND. However, the role of perioperative sleep disturbances in PND remains unclear. Nocturnal sleep plays an indispensable role in learning, memory, and maintenance of cerebral microenvironmental homeostasis. Hospitalized sleep disturbances also increase the incidence of postoperative delirium and cognitive dysfunction. This review summarizes the role of perioperative sleep disturbances in PND and elucidates the potential mechanisms underlying sleep-deprivation-mediated PND. Activated neuroinflammation and oxidative stress; impaired function of the blood-brain barrier and glymphatic pathway; decreased hippocampal brain-derived neurotrophic factor, adult neurogenesis, and sirtuin1 expression; and accumulated amyloid-beta proteins are associated with PND in individuals with perioperative sleep disorders. These findings suggest that the improvement of perioperative sleep might reduce the incidence of postoperative delirium and postoperative cognitive dysfunction. Future studies should further investigate the role of perioperative sleep disturbance in PND.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Jintao Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| |
Collapse
|
70
|
Cumulative Damage: Cell Death in Posthemorrhagic Hydrocephalus of Prematurity. Cells 2021; 10:cells10081911. [PMID: 34440681 PMCID: PMC8393895 DOI: 10.3390/cells10081911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
Globally, approximately 11% of all infants are born preterm, prior to 37 weeks’ gestation. In these high-risk neonates, encephalopathy of prematurity (EoP) is a major cause of both morbidity and mortality, especially for neonates who are born very preterm (<32 weeks gestation). EoP encompasses numerous types of preterm birth-related brain abnormalities and injuries, and can culminate in a diverse array of neurodevelopmental impairments. Of note, posthemorrhagic hydrocephalus of prematurity (PHHP) can be conceptualized as a severe manifestation of EoP. PHHP impacts the immature neonatal brain at a crucial timepoint during neurodevelopment, and can result in permanent, detrimental consequences to not only cerebrospinal fluid (CSF) dynamics, but also to white and gray matter development. In this review, the relevant literature related to the diverse mechanisms of cell death in the setting of PHHP will be thoroughly discussed. Loss of the epithelial cells of the choroid plexus, ependymal cells and their motile cilia, and cellular structures within the glymphatic system are of particular interest. Greater insights into the injuries, initiating targets, and downstream signaling pathways involved in excess cell death shed light on promising areas for therapeutic intervention. This will bolster current efforts to prevent, mitigate, and reverse the consequential brain remodeling that occurs as a result of hydrocephalus and other components of EoP.
Collapse
|
71
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
72
|
Lee JK, Santos PT, Chen MW, O'Brien CE, Kulikowicz E, Adams S, Hardart H, Koehler RC, Martin LJ. Combining Hypothermia and Oleuropein Subacutely Protects Subcortical White Matter in a Swine Model of Neonatal Hypoxic-Ischemic Encephalopathy. J Neuropathol Exp Neurol 2021; 80:182-198. [PMID: 33212486 DOI: 10.1093/jnen/nlaa132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) causes white matter injury that is not fully prevented by therapeutic hypothermia. Adjuvant treatments are needed. We compared myelination in different piglet white matter regions. We then tested whether oleuropein (OLE) improves neuroprotection in 2- to 4-day-old piglets randomized to undergo HI or sham procedure and OLE or vehicle administration beginning at 15 minutes. All groups received overnight hypothermia and rewarming. Injury in the subcortical white matter, corpus callosum, internal capsule, putamen, and motor cortex gray matter was assessed 1 day later. At baseline, piglets had greater subcortical myelination than in corpus callosum. Hypothermic HI piglets had scant injury in putamen and cerebral cortex. However, hypothermia alone did not prevent the loss of subcortical myelinating oligodendrocytes or the reduction in subcortical myelin density after HI. Combining OLE with hypothermia improved post-HI subcortical white matter protection by preserving myelinating oligodendrocytes, myelin density, and oligodendrocyte markers. Corpus callosum and internal capsule showed little HI injury after hypothermia, and OLE accordingly had minimal effect. OLE did not affect putamen or motor cortex neuron counts. Thus, OLE combined with hypothermia protected subcortical white matter after HI. As an adjuvant to hypothermia, OLE may subacutely improve regional white matter protection after HI.
Collapse
Affiliation(s)
- Jennifer K Lee
- From the Department of Anesthesiology and Critical Care Medicine
| | - Polan T Santos
- From the Department of Anesthesiology and Critical Care Medicine
| | - May W Chen
- Division of Neonatology, Department of Pediatrics
| | | | - Ewa Kulikowicz
- From the Department of Anesthesiology and Critical Care Medicine
| | - Shawn Adams
- From the Department of Anesthesiology and Critical Care Medicine
| | - Henry Hardart
- From the Department of Anesthesiology and Critical Care Medicine
| | | | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
73
|
Ren X, Liu S, Lian C, Li H, Li K, Li L, Zhao G. Dysfunction of the Glymphatic System as a Potential Mechanism of Perioperative Neurocognitive Disorders. Front Aging Neurosci 2021; 13:659457. [PMID: 34163349 PMCID: PMC8215113 DOI: 10.3389/fnagi.2021.659457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Perioperative neurocognitive disorder (PND) frequently occurs in the elderly as a severe postoperative complication and is characterized by a decline in cognitive function that impairs memory, attention, and other cognitive domains. Currently, the exact pathogenic mechanism of PND is multifaceted and remains unclear. The glymphatic system is a newly discovered glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Recent studies have highlighted the significant role of the glymphatic system in the removal of harmful metabolites in the brain. Dysfunction of the glymphatic system can reduce metabolic waste removal, leading to neuroinflammation and neurological disorders. We speculate that there is a causal relationship between the glymphatic system and symptomatic progression in PND. This paper reviews the current literature on the glymphatic system and some perioperative factors to discuss the role of the glymphatic system in PND.
Collapse
Affiliation(s)
- Xuli Ren
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Chuang Lian
- Department of Anaesthesiology, Jilin City People's Hospital, Jilin, China
| | - Haixia Li
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Kai Li
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Longyun Li
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guoqing Zhao
- Department of Anaesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China.,Jilin University, Changchun, China
| |
Collapse
|
74
|
Sipilä RM, Kalso EA. Sleep Well and Recover Faster with Less Pain-A Narrative Review on Sleep in the Perioperative Period. J Clin Med 2021; 10:jcm10092000. [PMID: 34066965 PMCID: PMC8124518 DOI: 10.3390/jcm10092000] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 01/02/2023] Open
Abstract
Sleep disturbance, pain, and having a surgical procedure of some kind are all very likely to occur during the average lifespan. Postoperative pain continues to be a prevalent problem and growing evidence supports the association between pain and sleep disturbances. The bidirectional nature of sleep and pain is widely acknowledged. A decline in sleep quality adds a risk for the onset of pain and also exacerbates existing pain. The risk factors for developing insomnia and experiencing severe pain after surgery are quite similar. The main aim of this narrative review is to discuss why it is important to be aware of sleep disturbances both before and after surgery, to know how sleep disturbances should be assessed and monitored, and to understand how better sleep can be supported by both pharmacological and non-pharmacological interventions.
Collapse
Affiliation(s)
- Reetta M. Sipilä
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
- Sleep Well Research Programme, University of Helsinki, 00016 Helsinki, Finland
- Correspondence:
| | - Eija A. Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
- Sleep Well Research Programme, University of Helsinki, 00016 Helsinki, Finland
- Department of Pharmacology, University of Helsinki, 00016 Helsinki, Finland
| |
Collapse
|
75
|
MRI-visible perivascular space volumes, sleep duration and daytime dysfunction in adults with cerebrovascular disease. Sleep Med 2021; 83:83-88. [PMID: 33991894 DOI: 10.1016/j.sleep.2021.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Recent studies suggest that interindividual genetic differences in glial-dependent CSF flow through the brain parenchyma, known as glymphatic flow, may trigger compensatory changes in human sleep physiology. In animal models, brain perivascular spaces are a critical conduit for glymphatic flow. We tested the hypothesis that MRI-visible PVS volumes, a putative marker of perivascular dysfunction, are associated with compensatory differences in real-world human sleep behavior. METHODS We analyzed data from 152 cerebrovascular disease patients from the Ontario Neurodegenerative Disease Research Initiative (ONDRI). PVS volumes were measured using 3T-MRI. Self-reported total sleep time, time in bed, and daytime dysfunction were extracted from the Pittsburgh Sleep Quality Index. RESULTS Individuals with greater PVS volumes reported longer time in bed (+0.85 h per log10 proportion of intracranial volume (ICV) occupied by PVS, SE = 0.30, p = 0.006) and longer total sleep times (+0.70 h per log10 proportion of ICV occupied by PVS volume, SE = 0.33, p = 0.04), independent of vascular risk factors, sleep apnea, nocturnal sleep disturbance, depression, and global cognitive status. Further analyses suggested that the positive association between PVS volumes and total sleep time was mediated by greater time in bed. Moreover, despite having on average greater total sleep times, individuals with greater basal ganglia PVS volumes were more likely to report daytime dysfunction (OR 5.63 per log10 proportion of ICV occupied by PVS, 95% CI: 1.38-22.26, p = 0.018). CONCLUSIONS Individuals with greater PVS volumes spend more time in bed, resulting in greater total sleep time, which may represent a behavioral compensatory response to perivascular space dysfunction.
Collapse
|
76
|
Ferris CF. Rethinking the Conditions and Mechanism for Glymphatic Clearance. Front Neurosci 2021; 15:624690. [PMID: 33897347 PMCID: PMC8060639 DOI: 10.3389/fnins.2021.624690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Critical studies that form the foundation of the glymphatic system and the clearance of metabolic by-products of unwanted proteins from the brain are reviewed. Concerns are raised about studying glymphatic flow in anesthetized animals and making assumptions about the whole brain based upon data collected from a cranial window on the cortex. A new model is proposed arguing that the flow of cerebral spinal fluid and parenchymal clearance in the perivascular system of unwanted proteins is regulated by circadian changes in brain temperature and blood flow at the level of the microvasculature.
Collapse
Affiliation(s)
- Craig F Ferris
- Department Psychology and Pharmaceutical Sciences, Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| |
Collapse
|
77
|
Transient changes in white matter microstructure during general anesthesia. PLoS One 2021; 16:e0247678. [PMID: 33770816 PMCID: PMC7997710 DOI: 10.1371/journal.pone.0247678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Cognitive dysfunction after surgery under general anesthesia is a well-recognized clinical phenomenon in the elderly. Physiological effects of various anesthetic agents have been studied at length. Very little is known about potential effects of anesthesia on brain structure. In this study we used Diffusion Tensor Imaging to compare the white matter microstructure of healthy control subjects under sevoflurane anesthesia with their awake state. Fractional Anisotropy, a white mater integrity index, transiently decreases throughout the brain during sevoflurane anesthesia and then returns back to baseline. Other DTI metrics such as mean diffusivity, axial diffusivity and radial diffusivity were increased under sevoflurane anesthesia. Although DTI metrics are age dependent, the transient changes due to sevoflurane were independent of age and sex. Volumetric analysis shows various white matter volumes decreased whereas some gray matter volumes increased during sevoflurane anesthesia. These results suggest that sevoflurane anesthesia has a significant, but transient, effect on white matter microstructure. In spite of the transient effects of sevoflurane anesthesia there were no measurable effects on brain white matter as determined by the DTI metrics at 2 days and 7 days following anesthesia. The role of white matter in the loss of consciousness under anesthesia will need to be studied and MRI studies with subjects under anesthesia will need to take these results into account.
Collapse
|
78
|
Ji C, Yu X, Xu W, Lenahan C, Tu S, Shao A. The role of glymphatic system in the cerebral edema formation after ischemic stroke. Exp Neurol 2021; 340:113685. [PMID: 33676917 DOI: 10.1016/j.expneurol.2021.113685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Cerebral edema following ischemic stroke is predictive of the severity of the eventual stroke related damage, however the effective treatment is limited. The glymphatic system is a recently identified waste clearance pathway in the brain, found in the paravascular space and mainly composed of astrocytes and their aquaporin-4 (AQP4) water channels. In this review, we primarily focus on the role of the glymphatic system in the formation of cerebral edema after ischemic stroke. There is still no definite conclusion whether the influx of cerebrospinal fluid (CSF) in the glymphatic system is increased or not after ischemic stroke. However, the reduced interstitial fluid (ISF) clearance after ischemic stroke is definite. Additionally, AQP4 as the most important part of glymphatic system plays a complex bimodal in cerebral edema after ischemic stroke. Most of the research has found that AQP4 deletion in animals reduces cerebral edema after acute ischemic stroke compared with wild type animal models. The mislocalization of astrocytic AQP4 was also presented after ischemic stroke. As the cerebral edema after ischemic stroke is difficult to treat, we discuss several potential treatment targets related to glymphatic system. More studies are needed to explore the role of glymphatic system in the formation of cerebral edema after ischemic stroke and develop probable treatment strategies.
Collapse
Affiliation(s)
- Caihong Ji
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Yu
- Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
79
|
Ozturk BO, Monte B, Koundal S, Dai F, Benveniste H, Lee H. Disparate volumetric fluid shifts across cerebral tissue compartments with two different anesthetics. Fluids Barriers CNS 2021; 18:1. [PMID: 33407650 PMCID: PMC7788828 DOI: 10.1186/s12987-020-00236-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background Large differences in glymphatic system transport—similar in magnitude to those of the sleep/wake cycle—have been observed during anesthesia with dexmedetomidine supplemented with low dose isoflurane (DEXM-I) in comparison to isoflurane (ISO). However, the biophysical and bioenergetic tissue status underlying glymphatic transport differences between anesthetics remains undefined. To further understand biophysical characteristics underlying these differences we investigated volume status across cerebral tissue compartments, water diffusivity, and T2* values in rats anesthetized with DEXM-I in comparison to ISO. Methods Using a crossover study design, a group of 12 Sprague Dawley female rats underwent repetitive magnetic resonance imaging (MRI) under ISO and DEXM-I. Physiological parameters were continuously measured. MRI included a proton density weighted (PDW) scan to investigate cerebrospinal fluid (CSF) and parenchymal volumetric changes, a multigradient echo scan (MGE) to calculate T2* maps as a measure of ‘bioenergetics’, and a diffusion scan to quantify the apparent diffusion coefficient (ADC). Results The heart rate was lower with DEXM-I in comparison to ISO, but all other physiological variables were similar across scans and groups. The PDW images revealed a 1% parenchymal volume increase with ISO compared to DEXM-I comprising multiple focal tissue areas scattered across the forebrain. In contrast, with DEXM-I the CSF compartment was enlarged by ~ 6% in comparison to ISO at the level of the basal cisterns and peri-arterial conduits which are main CSF influx routes for glymphatic transport. The T2* maps showed brain-wide increases in T2* in ISO compared to DEXM-I rats. Diffusion-weighted images yielded no significant differences in ADCs across the two anesthesia groups. Conclusions We demonstrated CSF volume expansion with DEXM-I (in comparison to ISO) and parenchymal (GM) expansion with ISO (in comparison to DEXM-I), which may explain the differences in glymphatic transport. The T2* changes in ISO are suggestive of an increased bioenergetic state associated with excess cellular firing/bursting when compared to DEXM-I.
Collapse
Affiliation(s)
- Burhan O Ozturk
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Brittany Monte
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA. .,Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA.
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| |
Collapse
|
80
|
The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sci 2020; 10:brainsci10110868. [PMID: 33212927 PMCID: PMC7698404 DOI: 10.3390/brainsci10110868] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
The glymphatic system is a "pseudo-lymphatic" perivascular network distributed throughout the brain, responsible for replenishing as well as cleansing the brain. Glymphatic clearance is the macroscopic process of convective fluid transport in which harmful interstitial metabolic waste products are removed from the brain intima. This paper addresses the glymphatic system, its dysfunction and the major consequences of impaired clearance in order to link neurodegeneration and glymphatic activity with lifestyle choices. Glymphatic clearance can be manipulated by sleep deprivation, cisterna magna puncture, acetazolamide or genetic deletion of AQP4 channels, but how lifestyle choices affect this brain-wide clearance system remains to be resolved. This paper will synthesize existing literature on glymphatic clearance, sleep, Alzheimer's disease and lifestyle choices, in order to harness the power of this mass transport system, promote healthy brain ageing and possibly prevent neurodegenerative processes. This paper concludes that 1. glymphatic clearance plays a major role in Alzheimer's pathology; 2. the vast majority of waste clearance occurs during sleep; 3. dementias are associated with sleep disruption, alongside an age-related decline in AQP4 polarization; and 4. lifestyle choices such as sleep position, alcohol intake, exercise, omega-3 consumption, intermittent fasting and chronic stress all modulate glymphatic clearance. Lifestyle choices could therefore alter Alzheimer's disease risk through improved glymphatic clearance, and could be used as a preventative lifestyle intervention for both healthy brain ageing and Alzheimer's disease.
Collapse
|
81
|
Stringer MS, Lee H, Huuskonen MT, MacIntosh BJ, Brown R, Montagne A, Atwi S, Ramirez J, Jansen MA, Marshall I, Black SE, Zlokovic BV, Benveniste H, Wardlaw JM. A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease. Transl Stroke Res 2020; 12:15-30. [PMID: 32936435 PMCID: PMC7803876 DOI: 10.1007/s12975-020-00843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination. Here, we critically review the MRI methods pertaining to salient rodent models and evaluate synergies with human SVD MRI methods. We found few relevant publications, but argue there is considerable scope for greater use of MRI in rodent models, and opportunities for harmonisation of the rodent-human methods to increase the translational potential of models to understand SVD in humans. We summarise current MR techniques used in SVD research, provide recommendations and examples and highlight practicalities for use of MRI SVD imaging protocols in pre-selected, relevant rodent models.
Collapse
Affiliation(s)
- Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mikko T Huuskonen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rosalind Brown
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maurits A Jansen
- Edinburgh Preclinical Imaging, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
82
|
Xue Y, Liu X, Koundal S, Constantinou S, Dai F, Santambrogio L, Lee H, Benveniste H. In vivo T1 mapping for quantifying glymphatic system transport and cervical lymph node drainage. Sci Rep 2020; 10:14592. [PMID: 32884041 PMCID: PMC7471332 DOI: 10.1038/s41598-020-71582-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (MRI) for tracking glymphatic system transport with paramagnetic contrast such as gadoteric acid (Gd-DOTA) administration into cerebrospinal fluid (CSF) requires pre-contrast data for proper quantification. Here we introduce an alternative approach for glymphatic system quantification in the mouse brain via T1 mapping which also captures drainage of Gd-DOTA to the cervical lymph nodes. The Gd-DOTA injection into CSF was performed on the bench after which the mice underwent T1 mapping using a 3D spoiled gradient echo sequence on a 9.4 T MRI. In Ketamine/Xylazine (KX) anesthetized mice, glymphatic transport and drainage of Gd-DOTA to submandibular and deep cervical lymph nodes was demonstrated as 25–50% T1 reductions in comparison to control mice receiving CSF saline. To further validate the T1 mapping approach we also verified increased glymphatic transport of Gd-DOTA transport in mice anesthetized with KX in comparison with ISO. The novel T1 mapping method allows for quantification of glymphatic transport as well as drainage to the deep and superficial cervical lymph nodes. The ability to measure glymphatic transport and cervical lymph node drainage in the same animal longitudinally is advantageous and time efficient and the coupling between the two systems can be studied and translated to human studies.
Collapse
Affiliation(s)
- Yuechuan Xue
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA.,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaodan Liu
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Stefan Constantinou
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laura Santambrogio
- Englander Institute of Precision Medicine, Department of Radiation Oncology, Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA.
| |
Collapse
|
83
|
Brain Glymphatic/Lymphatic Imaging by MRI and PET. Nucl Med Mol Imaging 2020; 54:207-223. [PMID: 33088350 DOI: 10.1007/s13139-020-00665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023] Open
Abstract
Since glymphatic was proposed and meningeal lymphatic was discovered, MRI and even PET were introduced to investigate brain parenchymal interstitial fluid (ISF), cerebrospinal fluid (CSF), and lymphatic outflow in rodents and humans. Previous findings by ex vivo fluorescent microscopic, and in vivo two-photon imaging in rodents were reproduced using intrathecal contrast (gadobutrol and the similar)-enhanced MRI in rodents and further in humans. On dynamic MRI of meningeal lymphatics, in contrast to rodents, humans use mainly dorsal meningeal lymphatic pathways of ISF-CSF-lymphatic efflux. In mice, ISF-CSF exchange was examined thoroughly using an intra-cistern injection of fluorescent tracers during sleep, aging, and neurodegeneration yielding many details. CSF to lymphatic efflux is across arachnoid barrier cells over the dorsal dura in rodents and in humans. Meningeal lymphatic efflux to cervical lymph nodes and systemic circulation is also well-delineated especially in humans onintrathecal contrast MRI. Sleep- or anesthesia-related changes of glymphatic-lymphatic flow and the coupling of ISF-CSF-lymphatic drainage are major confounders ininterpreting brain glymphatic/lymphatic outflow in rodents. PET imaging in humans should be interpreted based on human anatomy and physiology, different in some aspects, using MRI recently. Based on the summary in this review, we propose non-invasive and longer-term intrathecal SPECT/PET or MRI studies to unravel the roles of brain glymphatic/lymphatic in diseases.
Collapse
|
84
|
Hu Z, Zhang F, Liao Q, Ouyang W. The Glymphatic System: A Potential Pathophysiological Focus for Perioperative Neurocognitive Disorder. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-4. [DOI: 10.14218/erhm.2020.00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
85
|
Velásquez-Torres A, Díaz-Forero A, Talero-Gutiérrez C. The Insomnia Plague in Fictional Macondo. Perm J 2020; 24:19.192. [PMID: 32663127 DOI: 10.7812/tpp/19.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disease and medicine are found throughout Gabriel García Márquez's work. This article examines the insomnia plague described in the novel One Hundred Years of Solitude and performs a differential diagnosis exercise with conditions that affect both sleep and memory. The main finding is that the insomnia plague narrated by García Márquez, with its clinical manifestations, the sequence of symptoms, and its resolution, cannot be associated with any specific diagnosis. However, similarities to and differences from several clinical conditions are discussed, as well as the relation between the neurophysiologic phenomena of sleep and memory.
Collapse
Affiliation(s)
- Alejandro Velásquez-Torres
- Neuroscience Research Group Neuros, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| | - Andrés Díaz-Forero
- Undergraduate Neuroscience Research Group Semineuros, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| | - Claudia Talero-Gutiérrez
- Neuroscience Research Group Neuros, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
86
|
Clinically-derived vagus nerve stimulation enhances cerebrospinal fluid penetrance. Brain Stimul 2020; 13:1024-1030. [DOI: 10.1016/j.brs.2020.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
|
87
|
Deiner S, Baxter MG, Mincer JS, Sano M, Hall J, Mohammed I, O'Bryant S, Zetterberg H, Blennow K, Eckenhoff R. Human plasma biomarker responses to inhalational general anaesthesia without surgery. Br J Anaesth 2020; 125:282-290. [PMID: 32536445 DOI: 10.1016/j.bja.2020.04.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/07/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Postoperative neurocognitive disorders may arise in part from adverse effects of general anaesthetics on the CNS, especially in older patients or individuals otherwise vulnerable to neurotoxicity because of systemic disease or the presence of pre-existing neuropathology. Previous studies have documented cytokine and injury biomarker responses to surgical procedures that included general anaesthesia, but it is not clear to what degree anaesthetics contribute to these responses. METHODS We performed a prospective cohort study of 59 healthy volunteers aged 40-80 yr who did not undergo surgery. Plasma markers of neurological injury and inflammation were measured immediately before and 5 h after induction of general anaesthesia with 1 minimum alveolar concentration of sevoflurane. Biomarkers included interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α), C-reactive protein (CRP), and neural injury (tau, neurofilament light [NF-L], and glial fibrillary acidic protein [GFAP]). RESULTS Baseline biomarkers were in the normal range, although NF-L and GFAP were elevated as a function of age. At 5 h after induction of anaesthesia, plasma tau, NF-L, and GFAP were significantly decreased relative to baseline. Plasma IL-6 was significantly increased after anaesthesia, but by a biologically insignificant degree (<1 pg ml-1); plasma TNF-α and CRP were unchanged. CONCLUSIONS Sevoflurane general anaesthesia without surgery, even in older adults, did not provoke an inflammatory state or neuronal injury at a concentration that is detectable by an acute elevation of measured plasma biomarkers in the early hours after exposure. CLINICAL TRIAL REGISTRATION NCT02275026.
Collapse
Affiliation(s)
- Stacie Deiner
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mark G Baxter
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua S Mincer
- Department of Anesthesiology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
| | - James Hall
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ismail Mohammed
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sid O'Bryant
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roderic Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
88
|
Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, Luo Z, Sun J, Jiang Q, Lou M. Impairment of the Glymphatic Pathway and Putative Meningeal Lymphatic Vessels in the Aging Human. Ann Neurol 2020; 87:357-369. [PMID: 31916277 DOI: 10.1002/ana.25670] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Aging is a major risk factor for numerous neurological disorders, and the mechanisms underlying brain aging remain elusive. Recent animal studies demonstrated a tight relationship between impairment of the glymphatic pathway, meningeal lymphatic vessels, and aging. However, the relationship in the human brain remains uncertain. METHODS In this observational cohort study, patients underwent magnetic resonance imaging before and at multiple time points after intrathecal administration of a contrast agent. Head T1-weighted imaging was performed to assess the function of the glymphatic pathway and head high-resolution T2-fluid attenuated inversion recovery imaging to visualize putative meningeal lymphatic vessels (pMLVs). We measured the signal unit ratio (SUR) of 6 locations in the glymphatic pathway and pMLVs, defined the percentage change in SUR from baseline to 39 hours as the clearance of the glymphatic pathway and pMLVs, and then analyzed their relationships with aging. RESULTS In all patients (N = 35), the SUR of the glymphatic pathway and pMLVs changed significantly after intrathecal injection of the contrast agent. The clearance of both the glymphatic pathway and pMLVs was related to aging (all p < 0.05). The clearance of pMLVs was significantly related to the clearance of the glymphatic pathway (all p < 0.05), and the clearance of the glymphatic pathway was significantly faster in patients with early filling of pMLVs than those with late filling (all p < 0.05). INTERPRETATION We revealed that both the glymphatic pathway and pMLVs might be impaired in the aging human brain through the novel, clinically available method to simultaneously visualize their clearance. Our findings also support that in humans, pMLVs are the downstream of the glymphatic pathway. Ann Neurol 2020;87:357-369.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jinsong Cai
- Department of Radiology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wenhua Zhang
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoxian Gong
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shenqiang Yan
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Kemeng Zhang
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zhongyu Luo
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI
| | - Min Lou
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
89
|
Deng W, Liu C, Parra C, Sims JR, Faiq MA, Sainulabdeen A, Song H, Chan KC. Quantitative imaging of the clearance systems in the eye and the brain. Quant Imaging Med Surg 2020; 10:1-14. [PMID: 31956524 DOI: 10.21037/qims.2019.11.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenyu Deng
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Carlos Parra
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jeffrey R Sims
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Anoop Sainulabdeen
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Hana Song
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Neuroscience Institute, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
90
|
Naganawa S, Taoka T. The Glymphatic System: A Review of the Challenges in Visualizing its Structure and Function with MR Imaging. Magn Reson Med Sci 2020; 21:182-194. [PMID: 33250472 PMCID: PMC9199971 DOI: 10.2463/mrms.rev.2020-0122] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The central nervous system (CNS) was previously thought to be the only organ system lacking lymphatic vessels to remove waste products from the interstitial space. Recently, based on the results from animal experiments, the glymphatic system was hypothesized. In this hypothesis, cerebrospinal fluid (CSF) enters the periarterial spaces, enters the interstitial space of the brain parenchyma via aquaporin-4 (AQP4) channels in the astrocyte end feet, and then exits through the perivenous space, thereby clearing waste products. From the perivenous space, the interstitial fluid drains into the subarachnoid space and meningeal lymphatics of the parasagittal dura. It has been reported that the glymphatic system is particularly active during sleep. Impairment of glymphatic system function might be a cause of various neurodegenerative diseases such as Alzheimer’s disease, normal pressure hydrocephalus, glaucoma, and others. Meningeal lymphatics regulate immunity in the CNS. Many researchers have attempted to visualize the function and structure of the glymphatic system and meningeal lymphatics in vivo using MR imaging. In this review, we aim to summarize these in vivo MR imaging studies and discuss the significance, current limitations, and future directions. We also discuss the significance of the perivenous cyst formation along the superior sagittal sinus, which is recently discovered in the downstream of the glymphatic system.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine
| |
Collapse
|
91
|
Collapsibility of the internal jugular veins in the lateral decubitus body position: A potential protective role of the cerebral venous outflow against neurodegeneration. Med Hypotheses 2019; 133:109397. [DOI: 10.1016/j.mehy.2019.109397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 01/26/2023]
|
92
|
Abstract
Despite its small size, the brain consumes 25% of the body’s energy, generating its own weight in potentially toxic proteins and biological debris each year. The brain is also the only organ lacking lymph vessels to assist in removal of interstitial waste. Over the past 50 years, a picture has been developing of the brain’s unique waste removal system. Experimental observations show cerebrospinal fluid, which surrounds the brain, enters the brain along discrete pathways, crosses a barrier into the spaces between brain cells, and flushes the tissue, carrying wastes to routes exiting the brain. Dysfunction of this cerebral waste clearance system has been demonstrated in Alzheimer’s disease, traumatic brain injury, diabetes, and stroke. The activity of the system is observed to increase during sleep. In addition to waste clearance, this circuit of flow may also deliver nutrients and neurotransmitters. Here, we review the relevant literature with a focus on transport processes, especially the potential role of diffusion and advective flows.
Collapse
|
93
|
Martinac AD, Bilston LE. Computational modelling of fluid and solute transport in the brain. Biomech Model Mechanobiol 2019; 19:781-800. [DOI: 10.1007/s10237-019-01253-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023]
|
94
|
Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics 2019; 11:pharmaceutics11110598. [PMID: 31726721 PMCID: PMC6921024 DOI: 10.3390/pharmaceutics11110598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood–brain barrier (BBB) under physiological conditions, and this observation has prompted investigation into the routes of administration that may potentially bypass the BBB and deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms regulating the delivery of therapeutics following IN administration are not fully understood, current evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain distribution. Here, we review evidence for these delivery and distribution pathways, and we address questions that should be resolved in order to optimize the IN route of administration as a viable strategy to treat CNS disease states.
Collapse
|
95
|
Crosby G. To Changing Your Mind. Anesth Analg 2019; 128:615-616. [PMID: 30883413 DOI: 10.1213/ane.0000000000004078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gregory Crosby
- From the Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|