51
|
LGL Can Partition the Cortex of One-Cell Caenorhabditis elegans Embryos into Two Domains. Curr Biol 2010; 20:1296-303. [DOI: 10.1016/j.cub.2010.05.061] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 12/29/2022]
|
52
|
Franke JD, Montague RA, Kiehart DP. Nonmuscle myosin II is required for cell proliferation, cell sheet adhesion and wing hair morphology during wing morphogenesis. Dev Biol 2010; 345:117-32. [PMID: 20599890 DOI: 10.1016/j.ydbio.2010.06.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/19/2010] [Accepted: 06/21/2010] [Indexed: 01/22/2023]
Abstract
Metazoan development involves a myriad of dynamic cellular processes that require cytoskeletal function. Nonmuscle myosin II plays essential roles in embryonic development; however, knowledge of its role in post-embryonic development, even in model organisms such as Drosophila melanogaster, is only recently being revealed. In this study, truncation alleles were generated and enable the conditional perturbation, in a graded fashion, of nonmuscle myosin II function. During wing development they demonstrate novel roles for nonmuscle myosin II, including in adhesion between the dorsal and ventral wing epithelial sheets; in the formation of a single actin-based wing hair from the distal vertex of each cell; in forming unbranched wing hairs; and in the correct positioning of veins and crossveins. Many of these phenotypes overlap with those observed when clonal mosaic analysis was performed in the wing using loss of function alleles. Additional requirements for nonmuscle myosin II are in the correct formation of other actin-based cellular protrusions (microchaetae and macrochaetae). We confirm and extend genetic interaction studies to show that nonmuscle myosin II and an unconventional myosin, encoded by crinkled (ck/MyoVIIA), act antagonistically in multiple processes necessary for wing development. Lastly, we demonstrate that truncation alleles can perturb nonmuscle myosin II function via two distinct mechanisms--by titrating light chains away from endogenous heavy chains or by recruiting endogenous heavy chains into intracellular aggregates. By allowing myosin II function to be perturbed in a controlled manner, these novel tools enable the elucidation of post-embryonic roles for nonmuscle myosin II during targeted stages of fly development.
Collapse
Affiliation(s)
- Josef D Franke
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
53
|
Abstract
Cell polarity, the generation of cellular asymmetries, is necessary for diverse processes in animal cells, such as cell migration, asymmetric cell division, epithelial barrier function, and morphogenesis. Common mechanisms generate and transduce cell polarity in different cells, but cell type-specific processes are equally important. In this review, we highlight the similarities and differences between the polarity mechanisms in eggs and epithelia. We also highlight the prospects for future studies on how cortical polarity interfaces with other cellular processes, such as morphogenesis, exocytosis, and lipid signaling, and how defects in polarity contribute to tumor formation.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
54
|
Li B, Kim H, Beers M, Kemphues K. Different domains of C. elegans PAR-3 are required at different times in development. Dev Biol 2010; 344:745-57. [PMID: 20678977 DOI: 10.1016/j.ydbio.2010.05.506] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 01/26/2023]
Abstract
Polarity is a fundamental cellular feature that is critical for generating cell diversity and maintaining organ functions during development. In C. elegans, the one-cell embryo is polarized via asymmetric localization of the PAR proteins, which in turn are required to establish the future anterior-posterior axis of the embryo. PAR-3, a conserved PDZ domain-containing protein, acts with PAR-6 and PKC-3 (atypical protein kinase; aPKC) to regulate cell polarity and junction formation in a variety of cell types. To understand how PAR-3 localizes and functions during C. elegans development, we produced targeted mutations and deletions of conserved domains of PAR-3 and examined the localization and function of the GFP-tagged proteins in C. elegans embryos and larvae. We find that CR1, the PAR-3 self-oligomerization domain, is required for PAR-3 cortical distribution and function only during early embryogenesis and that PDZ2 is required for PAR-3 to accumulate stably at the cell periphery in early embryos and at the apical surface in pharyngeal and intestinal epithelial cells. We also show that phosphorylation at S863 by PKC-3 is not essential in early embryogenesis, but is important in later development. Surprisingly neither PDZ1 nor PDZ3 are essential for localization or function. Our results indicate that the different domains and phosphorylated forms of PAR-3 can have different roles during C. elegans development.
Collapse
Affiliation(s)
- Bingsi Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
55
|
Doerflinger H, Vogt N, Torres IL, Mirouse V, Koch I, Nüsslein-Volhard C, St Johnston D. Bazooka is required for polarisation of the Drosophila anterior-posterior axis. Development 2010; 137:1765-73. [PMID: 20430751 DOI: 10.1242/dev.045807] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila anterior-posterior (AP) axis is determined by the polarisation of the stage 9 oocyte and the subsequent localisation of bicoid and oskar mRNAs to opposite poles of the cell. Oocyte polarity has been proposed to depend on the same PAR proteins that generate AP polarity in C. elegans, with a complex of Bazooka (Baz; Par-3), Par-6 and aPKC marking the anterior and lateral cortex, and Par-1 defining the posterior. The function of the Baz complex in oocyte polarity has remained unclear, however, because although baz-null mutants block oocyte determination, egg chambers that escape this early arrest usually develop normal polarity at stage 9. Here, we characterise a baz allele that produces a penetrant polarity phenotype at stage 9 without affecting oocyte determination, demonstrating that Baz is essential for axis formation. The dynamics of Baz, Par-6 and Par-1 localisation in the oocyte indicate that the axis is not polarised by a cortical contraction as in C. elegans, and instead suggest that repolarisation of the oocyte is triggered by posterior inactivation of aPKC or activation of Par-1. This initial asymmetry is then reinforced by mutual inhibition between the anterior Baz complex and posterior Par-1 and Lgl. Finally, we show that mutation of the aPKC phosphorylation site in Par-1 results in the uniform cortical localisation of Par-1 and the loss of cortical microtubules. Since non-phosphorylatable Par-1 is epistatic to uninhibitable Baz, Par-1 seems to function downstream of the other PAR proteins to polarize the oocyte microtubule cytoskeleton.
Collapse
Affiliation(s)
- Hélène Doerflinger
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
56
|
Schenk C, Bringmann H, Hyman AA, Cowan CR. Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos. Development 2010; 137:1743-53. [PMID: 20430749 DOI: 10.1242/dev.040436] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In asymmetrically dividing cells, a failure to coordinate cell polarity with the site of cell division can lead to cell fate transformations and tumorigenesis. Cell polarity in C. elegans embryos is defined by PAR proteins, which occupy reciprocal halves of the cell cortex. During asymmetric division, the boundary between the anterior and posterior PAR domains precisely matches the site of cell division, ensuring exclusive segregation of cell fate. The PAR domains determine the site of cell division by positioning the mitotic spindle, suggesting one means by which cell polarity and cell division might be coordinated. Here, we report that cell polarity and cell division are coordinated through an additional mechanism: the site of cell division repositions the PAR-2 boundary. Galpha-mediated microtubule-cortex interactions appear to direct cortical flows of PAR-2 and myosin toward the site of cell division, which acts as a PAR-2 and myosin sink. Embryos with defects in PAR-2 boundary correction undergo mis-segregation of cortical polarity and cytoplasmic determinants, suggesting that PAR domain correction might help prevent cell fate transformation.
Collapse
Affiliation(s)
- Christian Schenk
- Research Institute of Molecular Pathology, Dr Bohr Gasse 7, Vienna, Austria
| | | | | | | |
Collapse
|
57
|
Hwang SY, Rose LS. Control of asymmetric cell division in early C. elegans embryogenesis: teaming-up translational repression and protein degradation. BMB Rep 2010; 43:69-78. [PMID: 20193124 DOI: 10.5483/bmbrep.2010.43.2.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asymmetric cell division is a fundamental mechanism for the generation of body axes and cell diversity during early embryogenesis in many organisms. During intrinsically asymmetric divisions, an axis of polarity is established within the cell and the division plane is oriented to ensure the differential segregation of developmental determinants to the daughter cells. Studies in the nematode Caenorhabditis elegans have contributed greatly to our understanding of the regulatory mechanisms underlying cell polarity and asymmetric division. However, much remains to be elucidated about the molecular machinery controlling the spatiotemporal distribution of key components. In this review we discuss recent findings that reveal intricate interactions between translational control and targeted proteolysis. These two mechanisms of regulation serve to carefully modulate protein levels and reinforce asymmetries, or to eliminate proteins from certain cells.
Collapse
Affiliation(s)
- Sue-Yun Hwang
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
58
|
Krueger LE, Wu JC, Tsou MFB, Rose LS. LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos. ACTA ACUST UNITED AC 2010; 189:481-95. [PMID: 20421425 PMCID: PMC2867312 DOI: 10.1083/jcb.201001115] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Galpha and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.
Collapse
Affiliation(s)
- Lori E Krueger
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
59
|
David DJV, Tishkina A, Harris TJC. The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila. Development 2010; 137:1645-55. [PMID: 20392741 DOI: 10.1242/dev.044107] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apical constriction is a major mechanism underlying tissue internalization during development. This cell constriction typically requires actomyosin contractility. Thus, understanding apical constriction requires characterization of the mechanics and regulation of actomyosin assemblies. We have analyzed the relationship between myosin and the polarity regulators Par-6, aPKC and Bazooka (Par-3) (the PAR complex) during amnioserosa apical constriction at Drosophila dorsal closure. The PAR complex and myosin accumulate at the apical surface domain of amnioserosa cells at dorsal closure, the PAR complex forming a patch of puncta and myosin forming an associated network. Genetic interactions indicate that the PAR complex supports myosin activity during dorsal closure, as well as during other steps of embryogenesis. We find that actomyosin contractility in amnioserosa cells is based on the repeated assembly and disassembly of apical actomyosin networks, with each assembly event driving constriction of the apical domain. As the networks assemble they translocate across the apical patch of PAR proteins, which persist at the apical domain. Through loss- and gain-of-function studies, we find that different PAR complex components regulate distinct phases of the actomyosin assembly/disassembly cycle: Bazooka promotes the duration of actomyosin pulses and Par-6/aPKC promotes the lull time between pulses. These results identify the mechanics of actomyosin contractility that drive amnioserosa apical constriction and how specific steps of the contractile mechanism are regulated by the PAR complex.
Collapse
Affiliation(s)
- Daryl J V David
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
60
|
Yang Y, Qin W, Tian G, Jian W. Expression and functional characterization of a Rho-family small GTPase CDC42 from Trichinella spiralis. Parasitol Res 2010; 107:153-62. [PMID: 20369253 DOI: 10.1007/s00436-010-1851-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/12/2010] [Indexed: 12/31/2022]
Abstract
A full-length cDNA encoding a Rho-family small GTPase gene cdc42 of Trichinella spiralis was expressed in E. coli. The recombinant protein of TsCDC42 was purified and used to raise the polyclonal antibodies. The expression of TsCDC42 in different stages of parasite was investigated. The western blot showed that TsCDC42 was expressed in all stages of T. spiralis, including newborn larvae, muscle larvae and adult worms. The immuno-localization revealed that TsCDC42 was ubiquitously distributed in the newborn larvae, muscle larvae and adult worm. Cross-species RNAi was done by knockdown Tscdc42 RNAi in C. elegans. The results revealed that endogenous expression level of CDC42 was decreased by knockdown Tscdc42 RNAi in C. elegans, and this knockdown reduced the progeny of C. elegans. It suggested that Tscdc42 might play the same roles in the early development of T. spiralis.
Collapse
Affiliation(s)
- Yurong Yang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.
| | | | | | | |
Collapse
|
61
|
Yang Y, Jian W, Qin W. Molecular cloning and phylogenetic analysis of small GTPase protein Tscdc42 from Trichinella spiralis. Parasitol Res 2010; 106:801-8. [DOI: 10.1007/s00436-010-1735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/04/2010] [Indexed: 11/24/2022]
|
62
|
Afshar K, Werner ME, Tse YC, Glotzer M, Gönczy P. Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos. Development 2010; 137:237-47. [PMID: 20040490 DOI: 10.1242/dev.042754] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modulation of the microtubule and the actin cytoskeleton is crucial for proper cell division. Protein phosphorylation is known to be an important regulatory mechanism modulating these cytoskeletal networks. By contrast, there is a relative paucity of information regarding how protein phosphatases contribute to such modulation. Here, we characterize the requirements for protein phosphatase PPH-6 and its associated subunit SAPS-1 in one-cell stage C. elegans embryos. We establish that the complex of PPH-6 and SAPS-1 (PPH-6/SAPS-1) is required for contractility of the actomyosin network and proper spindle positioning. Our analysis demonstrates that PPH-6/SAPS-1 regulates the organization of cortical non-muscle myosin II (NMY-2). Accordingly, we uncover that PPH-6/SAPS-1 contributes to cytokinesis by stimulating actomyosin contractility. Furthermore, we demonstrate that PPH-6/SAPS-1 is required for the proper generation of pulling forces on spindle poles during anaphase. Our results indicate that this requirement is distinct from the role in organizing the cortical actomyosin network. Instead, we uncover that PPH-6/SAPS-1 contributes to the cortical localization of two positive regulators of pulling forces, GPR-1/2 and LIN-5. Our findings provide the first insights into the role of a member of the PP6 family of phosphatases in metazoan development.
Collapse
Affiliation(s)
- Katayoun Afshar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | | | | | | | | |
Collapse
|
63
|
Kumfer KT, Cook SJ, Squirrell JM, Eliceiri KW, Peel N, O'Connell KF, White JG. CGEF-1 and CHIN-1 regulate CDC-42 activity during asymmetric division in the Caenorhabditis elegans embryo. Mol Biol Cell 2009; 21:266-77. [PMID: 19923324 PMCID: PMC2808230 DOI: 10.1091/mbc.e09-01-0060] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A fluorescent biosensor reports the localization of CDC-42 activity in the C. elegans embryo and was used to identify regulators of CDC-42 activity, one of which is involved in a novel regulatory loop that maintains cortical PAR polarity. CDC-42 activity regulates myosin II recruitment during the maintenance phase via the kinase MRCK-1. The anterior–posterior axis of the Caenorhabditis elegans embryo is elaborated at the one-cell stage by the polarization of the partitioning (PAR) proteins at the cell cortex. Polarization is established under the control of the Rho GTPase RHO-1 and is maintained by the Rho GTPase CDC-42. To understand more clearly the role of the Rho family GTPases in polarization and division of the early embryo, we constructed a fluorescent biosensor to determine the localization of CDC-42 activity in the living embryo. A genetic screen using this biosensor identified one positive (putative guanine nucleotide exchange factor [GEF]) and one negative (putative GTPase activating protein [GAP]) regulator of CDC-42 activity: CGEF-1 and CHIN-1. CGEF-1 was required for robust activation, whereas CHIN-1 restricted the spatial extent of CDC-42 activity. Genetic studies placed CHIN-1 in a novel regulatory loop, parallel to loop described previously, that maintains cortical PAR polarity. We found that polarized distributions of the nonmuscle myosin NMY-2 at the cell cortex are independently produced by the actions of RHO-1, and its effector kinase LET-502, during establishment phase and CDC-42, and its effector kinase MRCK-1, during maintenance phase. CHIN-1 restricted NMY-2 recruitment to the anterior during maintenance phase, consistent with its role in polarizing CDC-42 activity during this phase.
Collapse
Affiliation(s)
- Kraig T Kumfer
- Laboratorie of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
64
|
A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans. Genetics 2009; 183:1397-419. [PMID: 19805813 DOI: 10.1534/genetics.109.110171] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their "germ granule" counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells.
Collapse
|
65
|
Estecha A, Sánchez-Martín L, Puig-Kröger A, Bartolomé RA, Teixidó J, Samaniego R, Sánchez-Mateos P. Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci 2009; 122:3492-501. [DOI: 10.1242/jcs.053157] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumour cell dissemination through corporal fluids (blood, lymph and body cavity fluids) is a distinctive feature of the metastatic process. Tumour cell transition from fluid to adhesive conditions involves an early polarization event and major rearrangements of the submembrane cytoskeleton that remain poorly understood. As regulation of cortical actin-membrane binding might be important in this process, we investigated the role of ezrin and moesin, which are key crosslinking proteins of the ERM (ezrin, radixin, moesin) family. We used short interfering RNA (siRNA) to show that moesin is crucial for invasion by melanoma cells in 3D matrices and in early lung colonization. Using live imaging, we show that following initial adhesion to the endothelium or 3D matrices, moesin is redistributed away from the region of adhesion, thereby generating a polarized cortex: a stable cortical actin dome enriched in moesin and an invasive membrane domain full of blebs. Using Lifeact-GFP, a 17-amino-acid peptide that binds F-actin, we show the initial symmetry breaking of cortical actin cytoskeleton during early attachment of round cells. We also demonstrated that ezrin and moesin are differentially distributed during initial invasion of 3D matrices, and, specifically, that moesin controls adhesion-dependent activation of Rho and subsequent myosin II contractility. Our results reveal that polarized moesin plays a role in orienting Rho activation, myosin II contractility, and cortical actin stability, which is crucial for driving directional vertical migration instead of superficial spreading on the fluid-to-solid tissue interface. We propose that this mechanism of cortical polarization could sustain extravasation of fluid-borne tumour cells during the process of metastasis.
Collapse
Affiliation(s)
- Ana Estecha
- Laboratorio de Inmuno-oncología, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Lorena Sánchez-Martín
- Laboratorio de Inmuno-oncología, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Amaya Puig-Kröger
- Laboratorio de Inmuno-oncología, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Rubén A. Bartolomé
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | - Joaquín Teixidó
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Unidad de Microscopía Confocal, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| |
Collapse
|
66
|
Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 2009; 89:777-98. [PMID: 19584313 DOI: 10.1152/physrev.00026.2008] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers patients has continued at a feverish pace following exciting developments linking energy metabolism and cancer development. This review summarizes the current state of research on the LKB1 tumor suppressor. The weight of the evidence currently indicates an evolutionary conserved role for the protein in the regulation of various aspects of cellular polarity and energy metabolism. We focus on studies examining the concept that both cellular polarity and energy metabolism are regulated through the conserved LKB1-AMPK signal transduction pathway. Recent studies from a variety of model organisms have given new insight into the mechanism of polyp development and cancer formation in Peutz-Jeghers patients and the role of LKB1 mutation in sporadic tumorigenesis. Conditional LKB1 mouse models have outlined a tissue-dependent context for pathway activation and suggest that LKB1 may affect different AMPK isoforms independently. Elucidation of the molecular mechanism responsible for Peutz-Jeghers syndrome will undoubtedly reveal important insight into cancer development in the larger population.
Collapse
Affiliation(s)
- Marnix Jansen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
67
|
Nakayama Y, Shivas JM, Poole DS, Squirrell JM, Kulkoski JM, Schleede JB, Skop AR. Dynamin participates in the maintenance of anterior polarity in the Caenorhabditis elegans embryo. Dev Cell 2009; 16:889-900. [PMID: 19531359 DOI: 10.1016/j.devcel.2009.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 03/24/2009] [Accepted: 04/21/2009] [Indexed: 01/10/2023]
Abstract
Cell polarity is crucial for the generation of cell diversity. Recent evidence suggests that the actin cytoskeleton plays a key role in establishment of embryonic polarity, yet the mechanisms that maintain polarity cues in particular membrane domains during development remain unclear. Dynamin, a large GTPase, functions in both endocytosis and actin dynamics. Here, the Caenorhabditis elegans dynamin ortholog, DYN-1, maintains anterior polarity cues. DYN-1-GFP foci are enriched in the anterior cortex in a manner dependent on the anterior polarity proteins, PAR-6 and PKC-3. Membrane internalization and actin comet formation are enriched in the anterior, and are dependent on DYN-1. PAR-6-labeled puncta are also internalized from cortical accumulations of DYN-1-GFP. Our results demonstrate a mechanism for the spatial and temporal regulation of endocytosis in the anterior of the embryo, contributing to the precise localization and maintenance of polarity factors within a dynamic plasma membrane.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Rohrschneider MR, Nance J. Polarity and cell fate specification in the control of Caenorhabditis elegans gastrulation. Dev Dyn 2009; 238:789-96. [PMID: 19253398 DOI: 10.1002/dvdy.21893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gastrulation is a time during development when cells destined to produce internal tissues and organs move from the surface of the embryo into the interior. It is critical that the cell movements of gastrulation be precisely controlled, and coordinated with cell specification, in order for the embryo to develop normally. Caenorhabditis elegans gastrulation is relatively simple, can be observed easily in the transparent embryo, and can be manipulated genetically to uncover important regulatory mechanisms. Many of these cellular and molecular mechanisms, including cell shape, cytoskeletal, and cell cycle changes, appear to be conserved from flies to vertebrates. Here we review gastrulation in C. elegans, with an emphasis on recent data linking contact-induced cell polarity, PAR proteins, and cell fate specification to gastrulation control.
Collapse
Affiliation(s)
- Monica R Rohrschneider
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine and Helen and Martin Kimmel Center for Biology and Medicine, NYU School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
69
|
Alford LM, Ng MM, Burgess DR. Cell polarity emerges at first cleavage in sea urchin embryos. Dev Biol 2009; 330:12-20. [PMID: 19298809 DOI: 10.1016/j.ydbio.2009.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 12/26/2022]
Abstract
In protostomes, cell polarity is present after fertilization whereas most deuterostome embryos show minimal polarity during the early cleavages. We now show establishment of cell polarity as early as the first cleavage division in sea urchin embryos. We find, using the apical markers G(M1), integrins, and the aPKC-PAR6 complex, that cells are polarized upon insertion of distinct basolateral membrane at the first division. This early apical-basolateral polarity, similar to that found in much larger cleaving amphibian zygotes, reflects precocious functional epithelial cell polarity. Isolated cleavage blastomeres exhibit polarized actin-dependent fluid phase endocytosis only on the G(M1), integrin, microvillus-containing apical surface. A role for a functional PAR complex in cleavage plane determination was shown with experiments interfering with aPKC activity, which results in several spindle defects and compromised blastula development. These studies suggest that cell and embryonic polarity is established at the first cleavage, mediated in part by the Par complex of proteins, and is achieved by directed insertion of basolateral membrane in the cleavage furrow.
Collapse
Affiliation(s)
- Lea M Alford
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
70
|
Kunda P, Baum B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol 2009; 19:174-9. [PMID: 19285869 DOI: 10.1016/j.tcb.2009.01.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 12/30/2022]
Abstract
The most dramatic changes in eukaryotic cytoskeletal organization and dynamics occur during passage through mitosis. Although both spindle self-organization and actin-dependent cytokinesis have long been the subject of intense investigation, it has only recently become apparent that the actin cortex also has a key role during early mitosis. This is most striking in animal cells, in which changes in the actin cytoskeleton drive mitotic cell rounding and cortical stiffening. This mitotic cortex then functions as a foundation for spindle assembly and to guide spindle orientation with respect to extracellular chemical and mechanical cues. Here, we discuss this recent work and the possible role of crosstalk between the mitotic actin cortex and the plus ends of astral microtubules in this process.
Collapse
Affiliation(s)
- Patricia Kunda
- Department of Cell and Developmental Biology, University College London, UK.
| | | |
Collapse
|
71
|
Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev 2009; 23:265-77. [PMID: 19204114 DOI: 10.1101/gad.1760809] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wnt ligands and their receptors orchestrate many essential cellular and physiological processes. During development they control differentiation, proliferation, migration, and patterning, while in the adult, they regulate tissue homeostasis, primarily through their effects on stem cell proliferation and differentiation. Underpinning these diverse biological activities is a complex set of intracellular signaling pathways that are still poorly understood. Rho GTPases have emerged as key mediators of Wnt signals, most notably in the noncanonical pathways that involve polarized cell shape changes and migrations, but also more recently in the canonical pathway leading to beta-catenin-dependent transcription. It appears that Rho GTPases integrate Wnt-induced signals spatially and temporally to promote morphological and transcriptional changes affecting cell behavior.
Collapse
Affiliation(s)
- Karni Schlessinger
- Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
72
|
Abstract
Cells split in two at the final step of each division cycle. This division normally bisects through the middle of the cell and generates two equal daughters. However, developmental signals can change the plane of cell cleavage to facilitate asymmetric segregation of fate determinants and control the position and relative sizes of daughter cells. The anaphase spindle instructs the site of cell cleavage in animal cells, hence its position is critical in the regulation of symmetric vs asymmetric cell division. Studies in a variety of models identified evolutionarily conserved mechanisms that control spindle positioning. However, how the spindle determines the cleavage site is poorly understood. Recent results in Caenorhabditis elegans indicate dual functions for a Galpha pathway in positioning the spindle and cleavage furrow. We review asymmetric division of the C. elegans zygote, with a focus on microtubule-cortex interactions that position the spindle and cleavage plane.
Collapse
Affiliation(s)
- Matilde Galli
- Developmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
73
|
Abstract
The digestive tracts of many animals are epithelial tubes with specialized compartments to break down food, remove wastes, combat infection, and signal nutrient availability. C. elegans possesses a linear, epithelial gut tube with foregut, midgut, and hindgut sections. The simple anatomy belies the developmental complexity that is involved in forming the gut from a pool of heterogeneous precursor cells. Here, I focus on the processes that specify cell fates and control morphogenesis within the embryonic foregut (pharynx) and the developmental roles of the pharynx after birth. Maternally donated factors in the pregastrula embryo converge on pha-4, a FoxA transcription factor that specifies organ identity for pharyngeal precursors. Positive feedback loops between PHA-4 and other transcription factors ensure commitment to pharyngeal fate. Binding-site affinity of PHA-4 for its target promoters contributes to the progression of the pharyngeal precursors towards differentiation. During morphogenesis, the pharyngeal precursors form an epithelial tube in a process that is independent of cadherins, catenins, and integrins but requires the kinesin zen-4/MKLP1. After birth, the pharynx and/or pha-4 are involved in repelling pathogens and controlling aging.
Collapse
Affiliation(s)
- Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
74
|
Abstract
Cleavage divisions in many animals form a blastula made up of a simple polarized epithelium. This simple embryonic epithelium possesses an apical surface covered with microvilli and primary cilia separated from the basolateral surfaces by cell-cell junctions. The apical membrane proteins and lipids differ from those of the basolateral on these embryonic epithelial cells, as is found in adult epithelial cells. Formation of cell polarity in embryos at fertilization, including those from both protostomes and deuterostomes, uses the same molecules and signalling machinery as do polarizing epithelial cells that polarize upon cell-cell contact. In addition, the actin-myosin cytoskeleton plays an integral role in establishment and maintenance of this early cell polarity. However, early cleaving blastomeres from higher organisms including echinoderms and vertebrates have not been considered to exhibit cell polarity until formation of junctions at the third through to the fifth cleavage divisions. The role of new membrane addition into the late cleavage furrow during the early rounds of cytokinesis may play a key role in the early establishment of cell polarity in all animal embryos.
Collapse
|
75
|
Abstract
Cleavage furrow formation in animal cells results from a local increase in cortical contractility. During anaphase, the spindle contains, in addition to astral arrays of microtubules, a set of bundled microtubules known as the central spindle. Each of these populations of microtubules, the astral arrays and the central spindle bundles, is sufficient to direct cleavage furrow formation, yet in wild-type situations these sets of microtubules co-operate to induce furrow formation at the same site, between the segregating chromosomes. These pathways have distinct genetic requirements that reflect their differential control of cortical actomyosin. We review our current understanding of the molecular mechanisms of furrow formation, with particular emphasis on the central spindle-independent pathway.
Collapse
|
76
|
Tenlen JR, Molk JN, London N, Page BD, Priess JR. MEX-5 asymmetry in one-cell C. elegans embryos requires PAR-4- and PAR-1-dependent phosphorylation. Development 2008; 135:3665-75. [PMID: 18842813 DOI: 10.1242/dev.027060] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anteroposterior polarity in early C. elegans embryos is required for the specification of somatic and germline lineages, and is initiated by a sperm-induced reorganization of the cortical cytoskeleton and PAR polarity proteins. Through mechanisms that are not understood, the kinases PAR-1 and PAR-4, and other PAR proteins cause the cytoplasmic zinc finger protein MEX-5 to accumulate asymmetrically in the anterior half of the one-cell embryo. We show that MEX-5 asymmetry requires neither vectorial transport to the anterior, nor protein degradation in the posterior. MEX-5 has a restricted mobility before fertilization and in the anterior of one-cell embryos. However, MEX-5 mobility in the posterior increases as asymmetry develops, presumably allowing accumulation in the anterior. The MEX-5 zinc fingers and a small, C-terminal domain are essential for asymmetry; the zinc fingers restrict MEX-5 mobility, and the C-terminal domain is required for the increase in posterior mobility. We show that a crucial residue in the C-terminus, Ser 458, is phosphorylated in vivo. PAR-1 and PAR-4 kinase activities are required for the phosphorylation of S458, providing a link between PAR polarity proteins and the cytoplasmic asymmetry of MEX-5.
Collapse
Affiliation(s)
- Jennifer R Tenlen
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
77
|
Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 2008; 9:846-59. [PMID: 18946474 DOI: 10.1038/nrm2521] [Citation(s) in RCA: 342] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarization is crucial for the development of multicellular organisms, and aberrant cell polarization contributes to various diseases, including cancer. How cell polarity is established and how it is maintained remain fascinating questions. Conserved proteins of the partitioning defective (PAR), Scribble and Crumbs complexes guide the establishment of cell polarity in various organisms. Moreover, GTPases that regulate actin cytoskeletal dynamics have been implicated in cell polarization. Recent findings provide insights into polarization mechanisms and show intriguing crosstalk between small GTPases and members of polarity complexes in regulating cell polarization in different cellular contexts and cell types.
Collapse
|
78
|
Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 2008; 95:5476-86. [PMID: 18805921 DOI: 10.1529/biophysj.108.135152] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development and differentiation of complex organisms from the single fertilized egg is regulated by a variety of processes that all rely on the distribution and interaction of proteins. Despite the tight regulation of these processes with respect to temporal and spatial protein localization, exact quantification of the underlying parameters, such as concentrations and distribution coefficients, has so far been problematic. Recent experiments suggest that fluorescence correlation spectroscopy on a single molecule level in living cells has great promise in revealing these parameters with high precision. The optically challenging situation in multicellular systems such as embryos can be ameliorated by two-photon excitation, where scattering background and cumulative photobleaching is limited. A more severe problem is posed by the large range of molecular mobilities observed at the same time, as standard FCS relies strongly on the presence of mobility-induced fluctuations. In this study, we overcame the limitations of standard FCS. We analyzed in vivo polarity protein PAR-2 from eggs of Caenorhabditis elegans by beam-scanning FCS in the cytosol and on the cortex of C. elegans before asymmetric cell division. The surprising result is that the distribution of PAR-2 is largely uncoupled from the movement of cytoskeletal components of the cortex. These results call for a more systematic future investigation of the different cortical elements, and show that the FCS technique can contribute to answering these questions, by providing a complementary approach that can reveal insights not obtainable by other techniques.
Collapse
|
79
|
Panbianco C, Weinkove D, Zanin E, Jones D, Divecha N, Gotta M, Ahringer J. A casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning. Dev Cell 2008; 15:198-208. [PMID: 18694560 PMCID: PMC2686839 DOI: 10.1016/j.devcel.2008.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 03/21/2008] [Accepted: 06/04/2008] [Indexed: 01/19/2023]
Abstract
Spindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Gα regulators GPR-1/2. Here, we establish that the casein kinase 1 gamma CSNK-1 and a PIP2 synthesis enzyme (PPK-1) transduce PAR polarity to asymmetric Gα regulation. PPK-1 is posteriorly enriched in the one-celled embryo through PAR and CSNK-1 activities. Loss of CSNK-1 causes uniformly high PPK-1 levels, high symmetric cortical levels of GPR-1/2 and LIN-5, and increased spindle pulling forces. In contrast, knockdown of ppk-1 leads to low GPR-1/2 levels and decreased spindle forces. Furthermore, loss of CSNK-1 leads to increased levels of PIP2. We propose that asymmetric generation of PIP2 by PPK-1 directs the posterior enrichment of GPR-1/2 and LIN-5, leading to posterior spindle displacement.
Collapse
Affiliation(s)
- Costanza Panbianco
- The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB21QN, UK
| | | | | | | | | | | | | |
Collapse
|
80
|
Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity. EMBO Rep 2008; 9:923-9. [PMID: 18660750 DOI: 10.1038/embor.2008.135] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/08/2022] Open
Abstract
In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin-Darby canine kidney cells in three-dimensional collagen gel culture, blockade of beta1-integrin by the AIIB2 antibody or expression of dominant-negative Rac1N17 led to an inversion of polarity, such that the apical surfaces of the cells were misorientated towards the extracellular matrix. Here, we show that this process results from the activation of RhoA. Knockdown of RhoA by short hairpin RNA reverses the inverted orientation of polarity, resulting in normal cysts. Inhibition of RhoA downstream effectors, Rho kinase (ROCK I) and myosin II, has similar effects. We conclude that the RhoA-ROCK I-myosin II pathway controls the inversion of orientation of epithelial polarity caused by AIIB2 or Rac1N17. These results might be relevant to the hyperactivation of RhoA and disruption of normal polarity frequently observed in human epithelial cancers.
Collapse
|
81
|
Zallen JA, Blankenship JT. Multicellular dynamics during epithelial elongation. Semin Cell Dev Biol 2008; 19:263-70. [PMID: 18343171 PMCID: PMC2699999 DOI: 10.1016/j.semcdb.2008.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/21/2007] [Accepted: 01/23/2008] [Indexed: 12/24/2022]
Abstract
The reorganization of multicellular populations to produce an elongated tissue structure is a conserved mechanism for shaping the body axis and several organ systems. In the Drosophila germband epithelium, this process is accompanied by the formation of a planar polarized network of junctional and cytoskeletal proteins in response to striped patterns of gene expression. Actomyosin cables and adherens junctions are dynamically remodeled during intercalation, providing the basis for polarized cell behavior. Quantitative analysis of cell behavior in living embryos reveals unexpected cell population dynamics that include the formation of multicellular rosette structures as well as local neighbor exchange.
Collapse
Affiliation(s)
- Jennifer A Zallen
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA.
| | | |
Collapse
|
82
|
Pacquelet A, Zanin E, Ashiono C, Gotta M. PAR-6 levels are regulated by NOS-3 in a CUL-2 dependent manner in Caenorhabditiselegans. Dev Biol 2008; 319:267-72. [PMID: 18502413 DOI: 10.1016/j.ydbio.2008.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/28/2008] [Accepted: 04/14/2008] [Indexed: 11/15/2022]
Abstract
The PAR proteins have an essential and conserved function in establishing polarity in many cell types and organisms. However, their key upstream regulators remain to be identified. In C. elegans, regulators of the PAR proteins can be identified by their ability to suppress the lethality of par-2 mutant embryos. Here we show that a nos-3 loss of function mutant suppresses the lethality of par-2 mutants by regulating PAR-6 protein levels. The suppression requires the activity of the sex determination genes fem-1/2/3 and of the cullin cul-2. FEM-1 is a substrate-specific adaptor for a CUL-2-based ubiquitin ligase (CBC(FEM-1)). Interestingly, we find that CUL-2 is required for the regulation of PAR-6 levels and that PAR-6 physically interacts with FEM-1. Our data strongly suggest that PAR-6 levels are regulated by the CBC(FEM-1) ubiquitin ligase thereby uncovering a novel role for the FEM proteins and cullin-dependent degradation in regulating PAR proteins and polarity processes.
Collapse
Affiliation(s)
- A Pacquelet
- ETH Zurich, Institute of Biochemistry, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
83
|
Kachur TM, Audhya A, Pilgrim DB. UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans. Dev Biol 2007; 314:287-99. [PMID: 18190904 DOI: 10.1016/j.ydbio.2007.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 01/07/2023]
Abstract
The Caenorhabditis elegans UNC-45 protein is required for proper body wall muscle assembly and acts as a molecular co-chaperone for type II myosins. In contrast to other body wall muscle components, UNC-45 is also abundant in the germline and embryo. We show that maternally provided UNC-45 acts with non-muscle myosin II (NMY-2) during embryonic polarity establishment, cytokinesis and germline cellularization. In embryos depleted for UNC-45, myosin contractility is eliminated resulting in embryonic defects in polar body extrusion, cytokinesis and establishment of polarity. Despite a lack of contractility in an unc-45(RNAi) embryo, NMY-2::GFP localizes to the cortex and accumulates at the presumptive cytokinetic furrow indicating that UNC-45 is not required for cortical localization. UNC-45 and NMY-2 are also required for fertility since the lack of either component results in complete sterility due to failed initiation of the cellularization furrows that separate syncytial nuclei into germ cells. In the absence of UNC-45, the actomyosin cytoskeleton does not contract despite non-functional myosin still directly binding actin. UNC-45 has been previously suggested to be required for the folding of the myosin head, and our results refine this hypothesis suggesting that UNC-45 is not required to fold or maintain the actin binding domain but is still required for myosin function.
Collapse
Affiliation(s)
- Torah M Kachur
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | | | | |
Collapse
|
84
|
Tsai MC, Ahringer J. Microtubules are involved in anterior-posterior axis formation in C. elegans embryos. J Cell Biol 2007; 179:397-402. [PMID: 17967950 PMCID: PMC2064787 DOI: 10.1083/jcb.200708101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/01/2007] [Indexed: 11/22/2022] Open
Abstract
Microtubules deliver positional signals and are required for establishing polarity in many different organisms and cell types. In Caenorhabditis elegans embryos, posterior polarity is induced by an unknown centrosome-dependent signal. Whether microtubules are involved in this signaling process has been the subject of controversy. Although early studies supported such an involvement (O'Connell, K.F., K.N. Maxwell, and J.G. White. 2000. Dev. Biol. 222:55-70; Wallenfang, M.R., and G. Seydoux. 2000. Nature. 408:89-92; Hamill, D.R., A.F. Severson, J.C. Carter, and B. Bowerman. 2002. Dev. Cell. 3:673-684), recent work involving RNA interference knockdown of tubulin led to the conclusion that centrosomes induce polarity independently of microtubules (Cowan, C.R., and A.A. Hyman. 2004. Nature. 431:92-96; Sonneville, R., and P. Gonczy. 2004. Development. 131: 3527-3543). In this study, we investigate the consequences of tubulin knockdown on polarity signaling. We find that tubulin depletion delays polarity induction relative to wild type and that polarity only occurs when a small, late-growing microtubule aster is visible at the centrosome. We also show that the process of a normal meiosis produces a microtubule-dependent polarity signal and that the relative levels of anterior and posterior PAR (partitioning defective) polarity proteins influence the response to polarity signaling. Our results support a role for microtubules in the induction of embryonic polarity in C. elegans.
Collapse
Affiliation(s)
- Miao-Chih Tsai
- Gurdon Institute and 2Department of Genetics, University of Cambridge, Cambridge CB2 1QN, England, UK
| | | |
Collapse
|
85
|
Abstract
The par genes were discovered in genetic screens for regulators of cytoplasmic partitioning in the early embryo of C. elegans, and encode six different proteins required for asymmetric cell division by the worm zygote. Some of the PAR proteins are localized asymmetrically and form physical complexes with one another. Strikingly, the PAR proteins have been found to regulate cell polarization in many different contexts in diverse animals, suggesting they form part of an ancient and fundamental mechanism for cell polarization. Although the picture of how the PAR proteins function remains incomplete, cell biology and biochemistry are beginning to explain how PAR proteins polarize cells.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ian G Macara
- Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
86
|
Schonegg S, Constantinescu AT, Hoege C, Hyman AA. The Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos. Proc Natl Acad Sci U S A 2007; 104:14976-81. [PMID: 17848508 PMCID: PMC1986598 DOI: 10.1073/pnas.0706941104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caenorhabditis elegans embryos establish cortical domains of PAR proteins of reproducible size before asymmetric cell division. The ways in which the size of these domains is set remain unknown. Here we identify the GTPase-activating proteins (GAPs) RGA-3 and RGA-4, which regulate the activity of the small GTPase RHO-1. rga-3/4(RNAi) embryos have a hypercontractile cortex, and the initial relative size of their anterior and posterior PAR domains is altered. Thus, RHO-1 activity appears to control the level of cortical contractility and concomitantly the size of cortical domains. These data support the idea that in C. elegans embryos the initial size of the PAR domains is set by regulating the contractile activity of the acto-myosin cytoskeleton through the activity of RHO-1. RGA-3/4 have functions different from CYK-4, the other known GAP required for the first cell division, showing that different GAPs cooperate to control the activity of the acto-myosin cytoskeleton in the first cell division of C. elegans embryos.
Collapse
Affiliation(s)
- Stephanie Schonegg
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | | | |
Collapse
|
87
|
Balklava Z, Pant S, Fares H, Grant BD. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 2007; 9:1066-73. [PMID: 17704769 DOI: 10.1038/ncb1627] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/16/2007] [Indexed: 12/12/2022]
Abstract
In a genome-wide RNA-mediated interference screen for genes required in membrane traffic - including endocytic uptake, recycling from endosomes to the plasma membrane, and secretion - we identified 168 candidate endocytosis regulators and 100 candidate secretion regulators. Many of these candidates are highly conserved among metazoans but have not been previously implicated in these processes. Among the positives from the screen, we identified PAR-3, PAR-6, PKC-3 and CDC-42, proteins that are well known for their importance in the generation of embryonic and epithelial-cell polarity. Further analysis showed that endocytic transport in Caenorhabditis elegans coelomocytes and human HeLa cells was also compromised after perturbation of CDC-42/Cdc42 or PAR-6/Par6 function, indicating a general requirement for these proteins in regulating endocytic traffic. Consistent with these results, we found that tagged CDC-42/Cdc42 is enriched on recycling endosomes in C. elegans and mammalian cells, suggesting a direct function in the regulation of transport.
Collapse
Affiliation(s)
- Zita Balklava
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|