51
|
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-beta superfamily of signal molecules that mediate many diverse biological processes ranging from early embryonic tissue patterning to postnatal tissue homeostasis. BMPs trigger cell responses mainly through the canonical signaling pathway where intracellular Smads play central roles in delivering the extracellular signals to the nucleus. While the same Smads are used by BMPs in all types of cells, different transcription factors account in part for the functional diversity of BMPs. These transcription factors are recruited by Smads to regulate the expression of specific subsets of target genes depending on the cell types. Among the transcription factors are Hox proteins. Experimental gain and loss-of-function studies as well as naturally occurring mutations in Hox genes demonstrate their central roles in embryonic skeletal patterning. In addition to the interactions with Smads observed for several Hox proteins, there is also evidence that the expression of a number of Hox genes is regulated by BMPs. It is suggested that Hox proteins play an important role in the BMP pathway.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Pathology, University of Alabama at Birmingham, 1670 University Blvd., VHG003, Birmingham, AL 35294, USA
| | | |
Collapse
|
52
|
Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2006; 16:251-63. [PMID: 15871923 DOI: 10.1016/j.cytogfr.2005.01.009] [Citation(s) in RCA: 665] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 01/20/2005] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, bind to two different serine/threonine kinase receptors, and mediate their signals through Smad-dependent and Smad-independent pathways. Receptor regulated-Smad (R-Smad) proteins specific for the BMP pathways interact with various proteins, including transcription factor Runx, and transmit specific signals in target cells. The recent development of DNA microarray techniques has allowed us to identify many BMP target genes. BMP signaling is modulated by various molecules, including inhibitory Smads (I-Smads). Moreover, recent findings have revealed that BMP pathways interact with other signaling pathways, and such signaling cross-talk plays pivotal roles in growth and differentiation of target cells.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
53
|
Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 2006; 25:1125-42. [PMID: 16314846 DOI: 10.1038/sj.onc.1209080] [Citation(s) in RCA: 580] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitous transcription factor Yin Yang 1 (YY1) is known to have a fundamental role in normal biologic processes such as embryogenesis, differentiation, replication, and cellular proliferation. YY1 exerts its effects on genes involved in these processes via its ability to initiate, activate, or repress transcription depending upon the context in which it binds. Mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes. YY1 activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression; however, these mechanisms have not yet been fully elucidated. Since expression and function of YY1 are known to be intimately associated with progression through phases of the cell cycle, the physiologic significance of YY1 activity has recently been applied to models of tumor biology. The majority of the data are consistent with the hypothesis that YY1 overexpression and/or activation is associated with unchecked cellular proliferation, resistance to apoptotic stimuli, tumorigenesis and metastatic potential. Studies involving hematopoetic tumors, epithelial-based tumors, endocrine organ malignancies, hepatocellular carcinoma, and retinoblastoma support this hypothesis. Molecular mechanisms that have been investigated include YY1-mediated downregulation of p53 activity, interference with poly-ADP-ribose polymerase, alteration in c-myc and nuclear factor-kappa B (NF-kappaB) expression, regulation of death genes and gene products, and differential YY1 binding in the presence of inflammatory mediators. Further, recent findings implicate YY1 in the regulation of tumor cell resistance to chemotherapeutics and immune-mediated apoptotic stimuli. Taken together, these findings provide strong support of the hypothesis that YY1, in addition to its regulatory roles in normal biologic processes, may possess the potential to act as an initiator of tumorigenesis and may thus serve as both a diagnostic and prognostic tumor marker; furthermore, it may provide an effective target for antitumor chemotherapy and/or immunotherapy.
Collapse
Affiliation(s)
- S Gordon
- Department of Surgery Division of Transplantation, Dumont-UCLA Transplant Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
54
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part III): transcription factors. ACTA ACUST UNITED AC 2005; 5:327-38. [PMID: 16196502 DOI: 10.2165/00129785-200505050-00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third paper in a four-part serial review on potential therapeutic targeting of oncogenes. The previous parts described the involvement of oncogenes in different aspects of cancer growth and development, and considered the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes that we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part one discussed growth factors and tyrosine kinases and part two discussed intermediate signaling molecules. This portion of the review covers transcription factors and the various strategies being used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
55
|
Abstract
Bone morphogenetic proteins (BMPs) play important roles in cardiovascular development. However, how BMP-signaling pathways regulate cardiac gene expression is less clear. We have previously identified myocardin as a cardiac and smooth muscle-specific transcriptional cofactor for serum response factor (SRF). Myocardin potently activates target gene expression by tethering with SRF bound to SRF-responsive elements, the CArG box. Here, we show that Smad1, an effector of the BMP-signaling pathway, synergistically activates myocardin-dependent cardiac gene expression. Interestingly, the CArG box is necessary and sufficient to mediate such synergy, whereas no obvious Smad-binding element appears to be involved. Consistent with their functional interaction, we find that myocardin and Smad1 proteins interact directly. Furthermore, myocardin protein levels were dramatically increased by BMP-2 treatment in cardiomyocytes. These findings suggest myocardin participates in a BMP signaling-dependent cardiac gene transcriptional program.
Collapse
Affiliation(s)
- Thomas E Callis
- Department of Cell and Developmental Biology, Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
56
|
Abstract
The TGF-beta family comprises many structurally related differentiation factors that act through a heteromeric receptor complex at the cell surface and an intracellular signal transducing Smad complex. The receptor complex consists of two type II and two type I transmembrane serine/threonine kinases. Upon phosphorylation by the receptors, Smad complexes translocate into the nucleus, where they cooperate with sequence-specific transcription factors to regulate gene expression. The vertebrate genome encodes many ligands, fewer type II and type I receptors, and only a few Smads. In contrast to the perceived simplicity of the signal transduction mechanism with few Smads, the cellular responses to TGF-beta ligands are complex and context dependent. This raises the question of how the specificity of the ligand-induced signaling is achieved. We review the molecular basis for the specificity and versatility of signaling by the many ligands through this conceptually simple signal transduction mechanism.
Collapse
Affiliation(s)
- Xin-Hua Feng
- Department of Molecular and Cellular Biology, Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
57
|
Akazawa H, Komuro I. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol Ther 2005; 107:252-68. [PMID: 15925411 DOI: 10.1016/j.pharmthera.2005.03.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2005] [Indexed: 11/20/2022]
Abstract
During the past decade, an emerging body of evidence has accumulated that cardiac transcription factors control a cardiac gene program and play a critical role in transcriptional regulation during cardiogenesis and during the adaptive process in adult hearts. Especially, an evolutionally conserved homeobox transcription factor Csx/Nkx2-5 has been in the forefront in the field of cardiac biology, providing molecular insights into the mechanisms of cardiac development and diseases. Csx/Nkx2-5 is indispensable for normal cardiac development, and mutations of the gene are associated with human congenital heart diseases (CHD). In the present review, the regulation of a cardiac gene program by Csx/Nkx2-5 is summarized, with an emphasis on its role in the cardiac development and diseases.
Collapse
Affiliation(s)
- Hiroshi Akazawa
- Division of Cardiovascular Pathophysiology and Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | |
Collapse
|
58
|
van Grunsven LA, Verstappen G, Huylebroeck D, Verschueren K. Smads and chromatin modulation. Cytokine Growth Factor Rev 2005; 16:495-512. [PMID: 15979924 DOI: 10.1016/j.cytogfr.2005.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/11/2005] [Indexed: 12/29/2022]
Abstract
Smad proteins are critical intracellular effector proteins and regulators of transforming growth factor type beta (TGFbeta) modulated gene transcription. They directly convey signals that initiate at ligand-bound receptor complexes and end in the nucleus with changes in programs of gene expression. Activated Smad proteins seem to recruit chromatin modifying proteins to target genes besides cooperating with DNA-bound transcription factors. We survey here the current and still emerging knowledge on Smad-binding factors, and their different mechanisms of chromatin modification in particular, in Smad-dependent TGFbeta signaling.
Collapse
Affiliation(s)
- Leo A van Grunsven
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, Belgium
| | | | | | | |
Collapse
|
59
|
Chi X, Chatterjee PK, Wilson W, Zhang SX, Demayo FJ, Schwartz RJ. Complex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules. Proc Natl Acad Sci U S A 2005; 102:13490-5. [PMID: 16150722 PMCID: PMC1224629 DOI: 10.1073/pnas.0504295102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that an Nkx2-5-GFP bacterial artificial chromosome in transgenic mice recapitulated the endogenous gene activity in the heart. Here, we identified three additional previously uncharacterized distal enhancer modules of Nkx2-5: UH6, which directed transgene expression in the right ventricle, interventricular septum, and atrial ventricular canal; UH5, which directed expression in both atria; and UH4, which directed transgene expression in tongue muscle. Nkx2-5 enhancers drive cardiogenic gene activity from the earliest progenitors to the late-stage embryonic heart, reside within its 27 kb of 5' flanking sequences, organized in a tandem array. Nkx2-5 enhancers involved with stomach-, tongue-, and chamber-restricted expression displayed lacZ transgene activity and chromatin histone acetylation patterns consistent with tissue-specific expression. An examination of Nkx2-5 gene activity in murine embryonic stem cells converted to beating embryoid bodies showed that only the proximal active region 2 and GATA-Smad enhancers were chromatin-remodeled. Chromatin remodeling of active region 2 and GATA-Smad enhancers were blunted by noggin coexpression, which indicated dependence on bone morphogenetic protein signaling for their chromatin activation during activation of Nkx2-5 expression.
Collapse
Affiliation(s)
- Xuan Chi
- Graduate Program in Cardiovascular Sciences and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
60
|
Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y, Lee AS. Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol 2005; 25:4529-40. [PMID: 15899857 PMCID: PMC1140640 DOI: 10.1128/mcb.25.11.4529-4540.2005] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The unfolded protein response is an evolutionarily conserved mechanism whereby cells respond to stress conditions that target the endoplasmic reticulum (ER). The transcriptional activation of the promoter of GRP78/BiP, a prosurvival ER chaperone, has been used extensively as an indicator of the onset of the UPR. YY1, a constitutively expressed multifunctional transcription factor, activates the Grp78 promoter only under ER stress conditions. Previously, in vivo footprinting analysis revealed that the YY1 binding site of the ER stress response element of the Grp78 promoter exhibits ER stress-induced changes in occupancy. Toward understanding the underlying mechanisms of these unique phenomena, we performed chromatin immunoprecipitation analyses, revealing that YY1 only occupies the Grp78 promoter upon ER stress and is mediated in part by the nuclear form of ATF6. We show that YY1 is an essential coactivator of ATF6 and uncover their specific interactive domains. Using small interfering RNA against YY1 and insertional mutation of the gene encoding ATF6alpha, we provide direct evidence that YY1 and ATF6 are required for optimal stress induction of Grp78. We also discovered enhancement of the ER-stressed induction of the Grp78 promoter through the interaction of YY1 with the arginine methyltransferase PRMT1 and evidence of its action through methylation of the arginine 3 residue on histone H4. Furthermore, we detected ER stress-induced binding of the histone acetyltransferase p300 to the Grp78 promoter and histone H4 acetylation. A model for the ER stress-mediated transcription factor binding and chromatin modifications at the Grp78 promoter leading to its activation is proposed.
Collapse
Affiliation(s)
- Peter Baumeister
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, 1441 Eastlake Ave., Room 5308, MC-9176, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
In 2001, three research groups described a previously unrecognized population of progenitor cells in pharyngeal mesoderm that gives rise to myocardium at the arterial pole of the heart. In the last 4 years, the major importance of the cellular contribution of pharyngeal mesoderm to normal and pathologic heart development has become apparent. Lineage-tracing experiments have defined the extent to which pharyngeal progenitor cells colonize the heart, revealing a contribution to venous, as well as arterial, pole myocardium; in addition, major molecular inroads have been made into understanding gene regulation in pharyngeal myocardial progenitor cells, implicating forkhead, Gata, LIM homeodomain, MEF2, SMAD, and T-box transcription factors. The key role of the anterior heart field during normal heart development is underscored by the demonstration that both direct and indirect perturbation of myocardial progenitor cells in pharyngeal mesoderm result in congenital heart disease.
Collapse
Affiliation(s)
- Robert G Kelly
- Developmental Biology Institute of Marseilles, Marseille, France.
| |
Collapse
|