51
|
McLean DL, Fetcho JR. Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev Neurobiol 2008; 68:817-34. [PMID: 18383546 DOI: 10.1002/dneu.20617] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Imaging and molecular approaches are perfectly suited to young, transparent zebrafish (Danio rerio), where they have allowed novel functional studies of neural circuits and their links to behavior. Here, we review cutting-edge optical and genetic techniques used to dissect neural circuits in vivo and discuss their application to future studies of developing spinal circuits using living zebrafish. We anticipate that these experiments will reveal general principles governing the assembly of neural circuits that control movements.
Collapse
Affiliation(s)
- David L McLean
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
52
|
Fetcho JR. The utility of zebrafish for studies of the comparative biology of motor systems. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:550-62. [PMID: 17024661 DOI: 10.1002/jez.b.21127] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although zebrafish are best known as a model for studies of development, there is now a growing role for the model in studies of the functional organization of the nervous system, including studies of a variety of sensory systems, central processing, and motor output. The zebrafish has much to offer for such work because of the unique combination of genetics, optical methods, and physiology it allows. Here I illustrate, using three examples, the broad range of avenues along which zebrafish can inform us about motor systems. The examples include efforts to understand the functional organization and evolution of spinal interneurons, the role of mutants in informing us about motor dysfunction and human disease, and the ability to use the special features of zebrafish to explore strategies to restore function after injury. The most important aspects of these studies are evident only when they are placed in a comparative context, so they serve to highlight the power of zebrafish in studies of the comparative biology of motor control.
Collapse
Affiliation(s)
- Joseph R Fetcho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
53
|
Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, Cui WW, Zhou W, Kuwada JY. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 2007; 134:2771-81. [PMID: 17596281 DOI: 10.1242/dev.004531] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca2+ transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca2+ release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b(ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy,multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.
Collapse
Affiliation(s)
- Hiromi Hirata
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Fetcho JR, Higashijima SI, McLean DL. Zebrafish and motor control over the last decade. ACTA ACUST UNITED AC 2007; 57:86-93. [PMID: 17825423 PMCID: PMC2237884 DOI: 10.1016/j.brainresrev.2007.06.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 11/23/2022]
Abstract
The combination of transparency and accessible genetics is making zebrafish an increasingly important model in studies of motor control. Much of the work on the model has been done over the past decade. Here we review some of the highlights of this work that serve to reveal both the power of the model and its prospects for providing important future insights into the links between neural networks and behavior.
Collapse
Affiliation(s)
- Joseph R Fetcho
- W103 Mudd Hall, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
55
|
|
56
|
Lewis KE. How do genes regulate simple behaviours? Understanding how different neurons in the vertebrate spinal cord are genetically specified. Philos Trans R Soc Lond B Biol Sci 2006; 361:45-66. [PMID: 16553308 PMCID: PMC1626545 DOI: 10.1098/rstb.2005.1778] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how the vertebrate central nervous system develops and functions is a major goal of a large body of biological research. This research is driven both by intellectual curiosity about this amazing organ that coordinates our conscious and unconscious bodily processes, perceptions and actions and by the practical desire to develop effective treatments for people with spinal cord injuries or neurological diseases. In recent years, we have learnt an impressive amount about how the nerve cells that communicate with muscles, motoneurons, are made in a developing embryo and this knowledge has enabled researchers to grow motoneurons from stem cells. Building on the success of these studies, researchers have now started to unravel how most of the other nerve cells in the spinal cord are made and function. This review will describe what we currently know about spinal cord nerve cell development, concentrating on the largest category of nerve cells, which are called interneurons. I will then discuss how we can build and expand upon this knowledge base to elucidate the complete genetic programme that determines how different spinal cord nerve cells are made and connected up into neural circuits with particular functions.
Collapse
Affiliation(s)
- Katharine E Lewis
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
57
|
Stehr CM, Linbo TL, Incardona JP, Scholz NL. The Developmental Neurotoxicity of Fipronil: Notochord Degeneration and Locomotor Defects in Zebrafish Embryos and Larvae. Toxicol Sci 2006; 92:270-8. [PMID: 16611622 DOI: 10.1093/toxsci/kfj185] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fipronil is a phenylpyrazole insecticide designed to selectively inhibit insect gamma-aminobutyric acid (GABA) receptors. Although fipronil is often used in or near aquatic environments, few studies have assessed the effects of this neurotoxicant on aquatic vertebrates at sensitive life stages. We explored the toxicological effects of fipronil on embryos and larvae using the zebrafish (Danio rerio) experimental model system. Embryos exposed to fipronil at nominal concentrations at or above 0.7 microM (333 mug/l) displayed notochord degeneration, shortening along the rostral-caudal body axis, and ineffective tail flips and uncoordinated muscle contractions along the body axis in response to touch. This phenotype closely resembles zebrafish locomotor mutants of the accordion class and is consistent with loss of reciprocal inhibitory neurotransmission by glycinergic commissural interneurons in the spinal cord. Consistent with the hypothesis that notochord degeneration may be due to abnormal mechanical stress from muscle tetany, the expression patterns of gene and protein markers specific to notochord development were unaffected by fipronil. Moreover, the degenerative effects of fipronil (1.1 microM) were reversed by coexposure to the sodium channel blocker MS-222 (0.6mM). The notochord effects of fipronil were phenocopied by exposure to 70 microM strychnine, a glycinergic receptor antagonist. In contrast, exposure to gabazine, a potent vertebrate GABA(A) antagonist, resulted in a hyperactive touch response but did not cause notochord degeneration. Although specifically developed to target insect GABA receptors with low vertebrate toxicity, our results suggest that fipronil impairs the development of spinal locomotor pathways in fish by inhibiting a structurally related glycine receptor subtype. This represents an unanticipated and potentially novel mechanism for fipronil toxicity in vertebrates.
Collapse
Affiliation(s)
- Carla M Stehr
- Ecotoxicology and Environmental Fish Health Program, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration Fisheries, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | | | | | | |
Collapse
|
58
|
Cui WW, Low SE, Hirata H, Saint-Amant L, Geisler R, Hume RI, Kuwada JY. The zebrafish shocked gene encodes a glycine transporter and is essential for the function of early neural circuits in the CNS. J Neurosci 2006; 25:6610-20. [PMID: 16014722 PMCID: PMC6725421 DOI: 10.1523/jneurosci.5009-04.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
shocked (sho) is a zebrafish mutation that causes motor deficits attributable to CNS defects during the first2dof development. Mutant embryos display reduced spontaneous coiling of the trunk, diminished escape responses when touched, and an absence of swimming. A missense mutation in the slc6a9 gene that encodes a glycine transporter (GlyT1) was identified as the cause of the sho phenotype. Antisense knock-down of GlyT1 in wild-type embryos phenocopies sho, and injection of wild-type GlyT1 mRNA into mutants rescues them. A comparison of glycine-evoked inward currents in Xenopus oocytes expressing either the wild-type or mutant protein found that the missense mutation results in a nonfunctional transporter. glyt1 and the related glyt2 mRNAs are expressed in the hindbrain and spinal cord in nonoverlapping patterns. The fact that these regions are known to be required for generation of early locomotory behaviors suggests that the regulation of extracellular glycine levels in the CNS is important for proper function of neural networks. Furthermore, physiological analysis after manipulation of glycinergic activity in wild-type and sho embryos suggests that the mutant phenotype is attributable to elevated extracellular glycine within the CNS.
Collapse
Affiliation(s)
- Wilson W Cui
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
McDearmid JR, Drapeau P. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. J Neurophysiol 2005; 95:401-17. [PMID: 16207779 DOI: 10.1152/jn.00844.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the localization and activity of the neural circuitry that generates swimming behavior in developing zebrafish that were spinalized to isolate the spinal cord from descending brain inputs. We found that addition of the excitatory amino acid agonist N-methyl-d-aspartate (NMDA) to spinalized zebrafish at 3 days in development induced repeating episodes of rhythmic tail beating activity reminiscent of slow swimming behavior. The neural correlate of this activity, monitored by extracellular recording comprised repeating episodes of rhythmic, rostrocaudally progressing peripheral nerve discharges that alternated between the two sides of the body. Motoneuron recordings revealed an activity pattern comprising a slow oscillatory and a fast synaptic component that was consistent with fictive swimming behavior. Pharmacological and voltage-clamp analysis implicated glycine and glutamate in generation of motoneuron activity. Contralateral alternation of motor activity was disrupted with strychnine, indicating a role for glycine in coordinating left-right alternation during NMDA-induced locomotion. At embryonic stages, while rhythmic synaptic activity patterns could still be evoked in motoneurons, they were typically lower in frequency. Kinematic recordings revealed that prior to 3 days in development, NMDA was unable to reliably generate rhythmic tail beating behavior. We conclude that NMDA induces episodes of rhythmic motor activity in spinalized developing zebrafish that can be monitored physiologically in paralyzed preparations. Therefore as for other vertebrates, the zebrafish central pattern generator is intrinsic to the spinal cord and can operate in isolation provided a tonic source of excitation is given.
Collapse
Affiliation(s)
- Jonathan R McDearmid
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, MGH Neurology L7-132, 1650 Cedar Ave., Montreal, Qc, Canada H3G 1A4
| | | |
Collapse
|
60
|
Hirata H, Saint-Amant L, Downes GB, Cui WW, Zhou W, Granato M, Kuwada JY. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit. Proc Natl Acad Sci U S A 2005; 102:8345-50. [PMID: 15928085 PMCID: PMC1149420 DOI: 10.1073/pnas.0500862102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Indexed: 11/18/2022] Open
Abstract
Bilateral alternation of muscle contractions requires reciprocal inhibition between the two sides of the hindbrain and spinal cord, and disruption of this inhibition should lead to simultaneous activation of bilateral muscles. At 1 day after fertilization, wild-type zebrafish respond to mechanosensory stimulation with multiple fast alternating trunk contractions, whereas bandoneon (beo) mutants contract trunk muscles on both sides simultaneously. Similar simultaneous contractions are observed in wild-type embryos treated with strychnine, a blocker of the inhibitory glycine receptor (GlyR). This result suggests that glycinergic synaptic transmission is defective in beo mutants. Muscle voltage recordings confirmed that muscles on both sides of the trunk in beo are likely to receive simultaneous synaptic input from the CNS. Recordings from motor neurons revealed that glycinergic synaptic transmission was missing in beo mutants. Furthermore, immunostaining with an antibody against GlyR showed clusters in wild-type neurons but not in beo neurons. These data suggest that the failure of GlyRs to aggregate at synaptic sites causes impairment of glycinergic transmission and abnormal behavior in beo mutants. Indeed, mutations in the GlyR beta-subunit, which are thought to be required for proper localization of GlyRs, were identified as the basis for the beo mutation. These data demonstrate that GlyRbeta is essential for physiologically relevant clustering of GlyRs in vivo. Because GlyR mutations in humans lead to hyperekplexia, a motor disorder characterized by startle responses, the zebrafish beo mutant should be a useful animal model for this condition.
Collapse
Affiliation(s)
- Hiromi Hirata
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Neuronal circuits are essential components of the nervous system and determine various body functions. To understand how neuronal circuits operate it is necessary to identify the participating neuronal subpopulations and to dissect the function of the neurons at the molecular level. The locomotor central pattern generator that coordinates body movements is well suited for elucidating the assembly and identity of the participating neurons. Remarkable advances in the field of genetics are making studies in neuroscience more efficient and precise so that now, using nematode worms, fruit flies, zebrafish and mice as model organisms, a genetic approach can be used to identify molecules and neurons crucial for locomotor network functionality.
Collapse
Affiliation(s)
- Klas Kullander
- Department of Neuroscience, Uppsala University, Box 593, 75124 Uppsala, Sweden.
| |
Collapse
|