51
|
Pinter R, Hindges R. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLoS One 2010; 5:e10021. [PMID: 20386732 PMCID: PMC2850387 DOI: 10.1371/journal.pone.0010021] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC) axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs) belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear. Methodology/Principal Findings We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype. Conclusions Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system.
Collapse
Affiliation(s)
- Rita Pinter
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, United Kingdom
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Abstract
Whole genome duplication events are thought to have substantially contributed to organismal complexity, largely via divergent transcriptional regulation. Members of the vertebrate PAX2, PAX5 and PAX8 gene subfamily derived from an ancient class of paired box genes and arose from such whole genome duplication events. These genes are critical in establishing the midbrain-hindbrain boundary, specifying interneuron populations and for eye, ear and kidney development. Also PAX2 has adopted a unique role in pancreas development, whilst PAX5 is essential for early B-cell differentiation. The contribution of PAX258 genes to their collective role has diverged across paralogues and the animal lineages, resulting in a complex wealth of literature. It is now timely to provide a comprehensive comparative overview of these genes and their ancient and divergent roles. We also discuss their fundamental place within gene regulatory networks and the likely influence of cis-regulatory elements over their differential roles during early animal development.
Collapse
Affiliation(s)
- Debbie K Goode
- Queen Mary, University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | | |
Collapse
|
53
|
Abstract
How neuronal connections are established during development is one of the most fascinating questions in the field of neurobiology. The zebrafish retinotectal system offers distinct advantages for studying axon guidance in an in vivo context. Its accessibility and the larva's transparency not only allow its direct visualization, but also facilitate experimental manipulations to address the mechanisms of its development. Here we describe methods for labeling and visualizing retinal axons in vivo, including transient expression of DNA constructs, injection of lipophilic dyes, and time-lapse imaging. We describe in detail the available transgenic lines for marking retinal ganglion cells (RGCs); a protocol for very precise lipophilic dye labeling; and a protocol for single cell electroporation of RGCs. We then describe several approaches for perturbing the retinotectal system, including morpholino or DNA injection; localized heat shock to induce misexpression of genes; a comprehensive list of known retinotectal mutants; and a detailed protocol for RGC transplants to test cell autonomy. These methods not only provide new ways for examining how retinal axons are guided by their environment, but also can be used to study other axonal tracts in the living embryo.
Collapse
|
54
|
Yun S, Saijoh Y, Hirokawa KE, Kopinke D, Murtaugh LC, Monuki ES, Levine EM. Lhx2 links the intrinsic and extrinsic factors that control optic cup formation. Development 2009; 136:3895-906. [PMID: 19906857 DOI: 10.1242/dev.041202] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A crucial step in eye organogenesis is the transition of the optic vesicle into the optic cup. Several transcription factors and extracellular signals mediate this transition, but whether a single factor links them into a common genetic network is unclear. Here, we provide evidence that the LIM homeobox gene Lhx2, which is expressed in the optic neuroepithelium, fulfils such a role. In Lhx2(-/-) mouse embryos, eye field specification and optic vesicle morphogenesis occur, but development arrests prior to optic cup formation in both the optic neuroepithelium and lens ectoderm. This is accompanied by failure to maintain or initiate the expression patterns of optic-vesicle-patterning and lens-inducing determinants. Of the signaling pathways examined, only BMP signaling is noticeably altered and Bmp4 and Bmp7 mRNAs are undetectable. Lhx2(-/-) optic vesicles and lens ectoderm upregulate Pax2, Fgf15 and Sox2 in response to BMP treatments, and Lhx2 genetic mosaics reveal that transcription factors, including Vsx2 and Mitf, require Lhx2 cell-autonomously for their expression. Our data indicate that Lhx2 is required for optic vesicle patterning and lens formation in part by regulating BMP signaling in an autocrine manner in the optic neuroepithelium and in a paracrine manner in the lens ectoderm. We propose a model in which Lhx2 is a central link in a genetic network that coordinates the multiple pathways leading to optic cup formation.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Qiu R, Liu K, Liu Y, Mo W, Flynt AS, Patton JG, Kar A, Wu JY, He R. The role of miR-124a in early development of the Xenopus eye. Mech Dev 2009; 126:804-16. [PMID: 19703558 DOI: 10.1016/j.mod.2009.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 07/27/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
It has been reported that miR-124a is abundant in the central nervous system including the eye, and is related to neurogenesis in several species. However, the role of miR-124a in the eye remains unclear. In this study, we show that the expression of miR-124a in Xenopus laevis begins along the neural fold, including the protruding eye anlagen, at a low level at around stage 18; its expression level gradually increases in the neural tube and the eye as embryos develop into later stages and then maintains at a high level in eye to adult stages. Microinjection of a miR-124a precursor at the 8-cell stage leads to malformation of the optic nerve and optic cup, indicating the importance of maintaining low levels of miR-124a during early embryonic development. In addition, miR-124a overexpression markedly down regulates the expression of its predicted targets Lhx2, Hairy2, Gli3, NeuroD1 and Otx2 in/around the eye anlagen, and the interaction of miR-124a with the 3' UTR of Lhx2 represses gene expression as shown by luciferase assays. Moreover, excess miR-124a inhibits cell proliferation in the eye of Xenopus embryos during retinogenesis. These results indicate that miR-124a acts as a post-transcriptional regulator in the genetic network controlling eye morphogenesis and neurogenesis. The mechanism of miR-124a's early interaction with the genetic network may also persist in its later role in the maturing and adult eye and brain.
Collapse
Affiliation(s)
- Rong Qiu
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Zebrafish mutant belladonna (bel) carries a mutation in the lhx2 gene (encoding a Lim domain homeobox transcription factor) that results in a defect in retinotectal axon pathfinding, which can lead to uncrossed optic nerves failing to form an optic chiasm. Here, we report on a novel swimming behavior of the bel mutants, best described as looping. Together with two previously reported oculomotor instabilities that have been related to achiasmatic bel mutants, reversed optokinetic response (OKR) and congenital nystagmus (CN, involuntary conjugate oscillations of both eyes), looping opens a door to study the influence of visual input and eye movements on postural balance. Our result shows that looping correlates perfectly with reversed OKR and CN and is vision-dependent and contrast sensitive. CN precedes looping and the direction of the CN slow phase is predictive of the looping direction, but is absent during looping. Therefore, looping may be triggered by CN in bel. Moreover, looping in wild-type fish can also be evoked by whole-field motion, suggesting that looping in a bel mutant larvae is a result of self-motion perception. In contrary to previous hypotheses, our findings indicate that postural control in vertebrates relies on both direct visual input (afference signal) and eye-movement-related signals (efference copy or reafference signal).
Collapse
|
57
|
Farfán C, Shigeno S, Nödl MT, de Couet HG. Developmental expression of apterous/Lhx2/9 in the sepiolid squid Euprymna scolopes supports an ancestral role in neural development. Evol Dev 2009; 11:354-62. [PMID: 19601969 DOI: 10.1111/j.1525-142x.2009.00342.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transcription factors Apterous/Lhx2/9 play many pivotal roles in the development of protostomes and deuterostomes, most notably limb patterning, eye morphogenesis, and brain development. Full-length apterous/lhx2/9 homologs have been isolated from several invertebrate species, but hitherto not from a lophotrochozoan. Here, we report the isolation, characterization, and spatio-temporal expression of apterous in the sepiolid squid Euprymna scolopes. The isolated composite cDNA encodes a hypothetical protein of 448 amino acid residues with a typical LIM-homeodomain (LIM-HD) structure and the greatest overall sequence similarity to vertebrate Lhx2/9 proteins. The Euprymna scolopes apterous (Es-ap) expression patterns provided no indication of a role in the early dorso/ventral patterning or growth of the arm crown that showed expression only in two ventral cords running in parallel inside the arms and tentacles and at the base of the suckers, a region rich in nerve endings and chemosensory neurons. The Es-ap hybridization signal was also conspicuous in the eyes, olfactory organs, optic lobes, and in several lobes of the supraesophageal mass, among these the olfactory and vertical lobes, and paravertical bodies. The observed expression patterns suggest gene involvement in eye morphogenesis and neural wiring of sensory structures, including those for olfaction and vision.
Collapse
Affiliation(s)
- Claudia Farfán
- Department of Zoology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
58
|
Atkinson-Leadbeater K, Bertolesi GE, Johnston JA, Hehr CL, McFarlane S. FGF receptor dependent regulation of Lhx9 expression in the developing nervous system. Dev Dyn 2009; 238:367-75. [PMID: 19161224 DOI: 10.1002/dvdy.21850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
LIM-homeodomain (LIM-hd) proteins form a multifunctional family of transcription factors that plays critical roles in the development of progenitor and post-mitotic cells. Considerable work has focused on what regulates their expression post-mitotically in the spinal cord. However, little is known about what regulates LIM-hd genes at earlier developmental stages. To address this question, we explored the role of fibroblast growth factor (FGF) signalling in regulating the expression of a Xenopus laevis Lhx9 orthologue (XLhx9). XLhx9 is first expressed in the eye field and hindbrain, and when FGF receptor (FGFR) activation was inhibited prior to its onset, both brain and eye field expression was diminished. However, when FGFRs were inhibited after XLhx9 onset, retinal expression remained strong and brain expression was again diminished. These data suggest that while FGF signalling initiates and maintains brain XLhx9 expression, in the eye primordium the requirement of FGFs for expression is rapidly lost.
Collapse
|
59
|
Nikolaou N, Watanabe-Asaka T, Gerety S, Distel M, Köster RW, Wilkinson DG. Lunatic fringe promotes the lateral inhibition of neurogenesis. Development 2009; 136:2523-33. [PMID: 19553285 DOI: 10.1242/dev.034736] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Previous studies have identified roles of the modulation of Notch activation by Fringe homologues in boundary formation and in regulating the differentiation of vertebrate thymocytes and Drosophila glial cells. We have investigated the role of Lunatic fringe (Lfng) expression during neurogenesis in the vertebrate neural tube. We find that in the zebrafish hindbrain, Lfng is expressed by progenitors in neurogenic regions and downregulated in cells that have initiated neuronal differentiation. Lfng is required cell autonomously in neural epithelial cells to limit the amount of neurogenesis and to maintain progenitors. By contrast, Lfng is not required for the role of Notch in interneuronal fate choice, which we show is mediated by Notch1a. The expression of Lfng does not require Notch activity, but rather is regulated downstream of proneural genes that are widely expressed by neural progenitors. These findings suggest that Lfng acts in a feedback loop downstream of proneural genes, which, by promoting Notch activation, maintains the sensitivity of progenitors to lateral inhibition and thus limits further proneural upregulation.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, London, UK
| | | | | | | | | | | |
Collapse
|
60
|
Mogi K, Misawa K, Utsunomiya K, Kawada Y, Yamazaki T, Takeuchi S, Toyoizumi R. Optic chiasm in the species of order Clupeiformes, family Clupeidae: optic chiasm of Spratelloides gracilis shows an opposite laterality to that of Etrumeus teres. Laterality 2009; 14:495-514. [PMID: 19229672 PMCID: PMC2661845 DOI: 10.1080/13576500802628160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In most teleost fishes, the optic nerves decussate completely as they project to the mesencephalic region. Examination of the decussation pattern of 25 species from 11 different orders in Pisces revealed that each species shows a specific chiasmic type. In 11 species out of the 25, laterality of the chiasmic pattern was not determined; in half of the individuals examined, the left optic nerve ran dorsally to the right optic nerve, while in the other half, the right optic nerve was dorsal. In eight other species the optic nerves from both eyes branched into several bundles at the chiasmic point, and intercalated to form a complicated decussation pattern. In the present study we report our findings that Spratelloides gracilis, of the order Clupeiformes, family Clupeidae, shows a particular laterality of decussation: the left optic nerve ran dorsally to the right (n = 200/202). In contrast, Etrumeus teres, of the same order and family, had a strong preference of the opposite (complementary) chiasmic pattern to that of S. gracilis (n = 59/59), revealing that these two species display opposite left–right optic chiasm patterning. As far as we investigated, other species of Clupeiformes have not shown left–right preference in the decussation pattern. We conclude that the opposite laterality of the optic chiasms of these two closely related species, S. gracilis and E. teres, enables investigation of species-specific laterality in fishes of symmetric shapes.
Collapse
Affiliation(s)
- Kazue Mogi
- Research Institute for Integrated Sciences, Kanagawa University, Hiratsuka City, Japan.
| | | | | | | | | | | | | |
Collapse
|
61
|
Bai Q, Wei X, Burton EA. Expression of a 12-kb promoter element derived from the zebrafish enolase-2 gene in the zebrafish visual system. Neurosci Lett 2009; 449:252-7. [PMID: 19007858 PMCID: PMC2922958 DOI: 10.1016/j.neulet.2008.10.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/25/2008] [Indexed: 11/26/2022]
Abstract
We recently cloned the zebrafish neuronal enolase-2 gene and showed that a 12-kb eno2 promoter element was sufficient to drive transgene expression widely in CNS neurons in vivo from 48h post-fertilization through adulthood. The aim of the present study was to establish the expression pattern of the 12-kb eno2 promoter element in the zebrafish visual system. Endogenous eno2 mRNA was detected in the developing retina from 2 days post-fertilization (dpf), and by 12dpf was localized to the retinal ganglion cell, inner and outer nuclear layers. Similar to endogenous eno2, GFP expression in the retina of Tg(eno2:GFP) larvae was first evident at 2dpf, and by 12dpf intense GFP expression was seen in the retinal ganglion cell and photoreceptor layers, with weaker expression in the inner nuclear layer. We identified cell types expressing the eno2 promoter element by using two complementary strategies: (i) double label immunofluorescence analysis of Tg(eno2:GFP) zebrafish, and (ii) generation of double transgenic zebrafish expressing red fluorescent protein under transcriptional control of the 12-kb eno2 promoter and GFP under a rod- or cone-specific promoter. The 12-kb eno2 promoter was expressed in retinal ganglion cells, amacrine cells, including a subset that co-expressed tyrosine hydroxylase, and rod photoreceptors. These data suggest that abnormalities of vision should be sought in transgenic models of diseases generated using this promoter. Owing to the specific expression of fluorescent reporters in neuronal subpopulations, Tg(eno2:GFP) and Tg(eno2:mRFP) zebrafish may be useful for studies of retinal lamination, neuronal differentiation and synapse formation in the visual system.
Collapse
Affiliation(s)
- Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Xiangyun Wei
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA
| | - Edward A. Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA
- Department of Neurology, Pittsburgh VA Healthcare System
- Division of Movement Disorders, Department of Neurology, University of Pittsburgh Medical Center
| |
Collapse
|
62
|
Fujimori KE, Kawasaki T, Deguchi T, Yuba S. Characterization of a nervous system-specific promoter for growth-associated protein 43 gene in Medaka (Oryzias latipes). Brain Res 2008; 1245:1-15. [PMID: 18951884 DOI: 10.1016/j.brainres.2008.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 12/29/2022]
Abstract
Genes expressed by neurons are controlled by specific, interacting cis-regulatory elements and trans-acting factors within their promoters. In the present study, we asked whether the transcriptional machinery regulating neuron-specific gene expression was conserved in evolution. We identified a GAP-43 homolog in Medaka (Oryzias latipes), and analyzed its expression during various stages of development. Compared with the amino acid sequences of GAP-43 homologs in other vertebrates, the amino-terminus of GAP-43 was highly conserved evolutionarily, but the carboxy-terminus exhibited significant variability. Expression of GAP-43 predominantly occurred in cells of the central and peripheral nervous systems as determined by in situ hybridization and by RT-PCR. Expression of GAP-43 increased throughout development and significant levels continued to be expressed into adulthood. We also showed that a proximal approximately 2.0 kbp fragment in the 5'-flanking region had promoter activity as determined by in vivo reporter assays. Furthermore, based upon computational analysis of transcription factor binding sites and an in vivo reporter analysis using sequentially deleted promoters, we demonstrated that cis-regulatory elements for neuronal expression were widely distributed in this region. In mammals, a TATA-box, E-box and neuronal repressive elements have been thought to contribute to neuronal expression. However, these features were not found in the orthologous region of the Medaka GAP-43 promoter. Our results suggest that the arrangement of cis-regulatory elements of the GAP-43 ortholog in Medaka is different from that in mammals, yet maintains neuron-specific regulation.
Collapse
Affiliation(s)
- Kazuhiro E Fujimori
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Nakoji 3-11-46, Amagasaki, Hyogo 661-0974, Japan.
| | | | | | | |
Collapse
|
63
|
Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 2008; 31:295-315. [PMID: 18558857 DOI: 10.1146/annurev.neuro.31.060407.125609] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the optic chiasm, retinal ganglion cell axons from each eye converge and segregate into crossed and uncrossed projections, a pattern critical for binocular vision. Here, we review recent findings on optic chiasm development, highlighting the specific transcription factors and guidance cues that implement retinal axon divergence into crossed and uncrossed pathways. Although mechanisms underlying the formation of the uncrossed projection have been identified, the means by which retinal axons are guided across the midline are still unclear. In addition to directives provided by transcription factors and receptors in the retina, gene expression in the ventral diencephalon influences chiasm formation. Throughout this review, we compare guidance mechanisms at the optic chiasm with those in other midline models and highlight unanswered questions both for retinal axon growth and axon guidance in general.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Pathology and Cell Biology, Department of Neuroscience, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
64
|
Wilson SI, Shafer B, Lee KJ, Dodd J. A molecular program for contralateral trajectory: Rig-1 control by LIM homeodomain transcription factors. Neuron 2008; 59:413-24. [PMID: 18701067 DOI: 10.1016/j.neuron.2008.07.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 06/03/2008] [Accepted: 07/14/2008] [Indexed: 12/21/2022]
Abstract
Despite increasing evidence for transcriptional control of neural connectivity, how transcription factors regulate discrete steps in axon guidance remains obscure. Projection neurons in the dorsal spinal cord relay sensory signals to higher brain centers. Some projection neurons send their axons ipsilaterally, whereas others, commissural neurons, send axons contralaterally. We show that two closely related LIM homeodomain proteins, Lhx2 and Lhx9, are expressed by a set of commissural relay neurons (dI1c neurons) and are required for the dI1c axon projection. Midline crossing by dI1c axons is lost in Lhx2/9 double mutants, a defect that results from loss of expression of Rig-1 from dI1c axons. Lhx2 binds to a conserved motif in the Rig-1 gene, suggesting that Lhx2/9 regulate directly the expression of Rig-1. Our findings reveal a link between the transcriptional programs that define neuronal subtype identity and the expression of receptors that guide distinctive aspects of their trajectory.
Collapse
Affiliation(s)
- Sara I Wilson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
65
|
Ekker SC, Stemple DL, Clark M, Chien CB, Rasooly RS, Javois LC. Zebrafish genome project: bringing new biology to the vertebrate genome field. Zebrafish 2008; 4:239-51. [PMID: 18284331 DOI: 10.1089/zeb.2007.9979] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 3:111-6. [PMID: 18248252 DOI: 10.1089/zeb.2006.3.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
67
|
Alunni A, Menuet A, Candal E, Pénigault JB, Jeffery WR, Rétaux S. Developmental mechanisms for retinal degeneration in the blind cavefish Astyanax mexicanus. J Comp Neurol 2008; 505:221-33. [PMID: 17853442 DOI: 10.1002/cne.21488] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sighted surface-dwelling (surface fish, SF) and the blind cave-living (cavefish, CF) forms of Astyanax mexicanus offer a unique opportunity to study the evolutionary changes in developmental mechanisms that lead to retinal degeneration. Previous data have shown the role of increased midline Sonic Hedgehog (Shh) signalling in cavefish eye degeneration (Yamamoto et al. [2004] Nature 431:844-847). Here, we have compared the major steps of eye development in SF and CF between 14 hours and 5 days of development. We have analyzed cell proliferation through PCNA and phospho-histone H3 staining and apoptosis through TUNEL and live LysoTracker analysis. We have assessed the expression of the major eye development signalling factors Shh and Fgf8, and the eye patterning genes Pax6, Lhx2, Lhx9, and Vax1, together with the differentiation marker GAD65. We show that eye development is retarded in CF and that cell proliferation in CF retina is proportionately similar to SF during early development, yet the retina degenerates after massive apoptosis in the lens and widespread cell death throughout the neuroretina. Moreover, and surprisingly, the signalling, patterning, and differentiation processes leading to the establishment of retinal layers and cell types happen almost normally in CF, although some signs of disorganization, slight heterochronies, and a lack of expression gradients are observable. Our data demonstrate that the evolutionary process of eye degeneration in the blind CF does not occur because of patterning defects of the retina and are consistent with the proposed scenario in which the trigger for eye degeneration in CF is lens apoptosis.
Collapse
Affiliation(s)
- Alessandro Alunni
- MSNC INRA Group, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
68
|
Plachez C, Lindwall C, Sunn N, Piper M, Moldrich RX, Campbell CE, Osinski JM, Gronostajski RM, Richards LJ. Nuclear factor I gene expression in the developing forebrain. J Comp Neurol 2008; 508:385-401. [DOI: 10.1002/cne.21645] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
69
|
Abstract
Over the last decade, the use of the zebrafish as a genetic model has moved beyond the proof-of-concept for the analysis of vertebrate embryonic development to demonstrated utility as a mainstream model organism for the understanding of human disease. The initial identification of a variety of zebrafish mutations affecting the eye and retina, and the subsequent cloning of mutated genes have revealed cellular, molecular and physiological processes fundamental to visual system development. With the increasing development of genetic manipulations, sophisticated techniques for phenotypic characterization, behavioral approaches and screening strategies, the identification of novel genes or novel gene functions will have important implications for our understanding of human eye diseases, pathogenesis, and treatment.
Collapse
Affiliation(s)
- James M Fadool
- Department of Biological Science, Graduate Program in Neuroscience, Florida State University, Tallahassee, FL 32312, USA.
| | | |
Collapse
|
70
|
Sassa T, Aizawa H, Okamoto H. Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems. Dev Dyn 2007; 236:706-18. [PMID: 17279576 DOI: 10.1002/dvdy.21084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dorsal hindbrain includes distinct classes of neurons for processing various sensory stimuli, but the developmental aspects of these neurons remain largely unknown. We identify here two distinct classes of neurons in the dorsal hindbrain of developing zebrafish: (1) neurons that express the inhibitory neuronal marker Gad1/2, and (2) neurons that express the zn-5 antigen and Lhx2/9 and require the basic helix-loop-helix transcription factor Atoh1a for development. Neurons were traced to their axon terminals by expressing green fluorescent protein using the Gal4VP16-UAS (UAS, upstream activating sequences) system in combination with the promoter/enhancer regions of gad2 for the Gad1/2(+) neurons and zic1 for the zn-5(+)Lhx2/9(+) neurons. The Gad1/2(+) neurons projected to the contralateral hindbrain, while the zn-5(+)Lhx2/9(+) neurons projected to the contralateral midbrain torus semicircularis, suggesting a role in auditory and lateral line sensory processing. Comparison of these projections with those from the cochlear nuclei to the inferior colliculus in mammals suggests similarities across vertebrate species.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
71
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
72
|
Lakhina V, Falnikar A, Bhatnagar L, Tole S. Early thalamocortical tract guidance and topographic sorting of thalamic projections requires LIM-homeodomain gene Lhx2. Dev Biol 2007; 306:703-13. [PMID: 17493606 DOI: 10.1016/j.ydbio.2007.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 04/06/2007] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
The thalamocortical tract is the primary source of sensory information to the cerebral cortex, but the mechanisms regulating its pathfinding are not completely understood. LIM-homeodomain (LIM-HD) gene Lhx2 has been proposed to participate in a combinatorial "code" to regulate dorsal thalamic patterning and also the topography of thalamocortical projections. Here, we report that Lhx2-/- embryos exhibit a gross disruption in the early development of the thalamocortical tract, such that thalamic axons are unable to enter the ventral telencephalon. A possible cause for this deficit is a severe reduction of "pioneer" cells in the mutant ventral telencephalon that constitutes a putative mechanism for guiding the entry of the thalamocortical tract into this structure in vivo. However, in vitro, the thalamocortical tract is able to enter the ventral telencephalon, and this permitted an examination of whether thalamocortical topography is normal in the Lhx2 mutant. Contrary to hypotheses that proposed a cell-autonomous role for Lhx2 in the thalamus, Lhx2-/- thalamic explants generate a normal topography of projections in control ventral telencephalic preparations. This is consistent with our findings of normal patterning of the Lhx2 mutant dorsal thalamus using a wide array of markers. In the reverse experiment, however, control thalamic explants display aberrant topography in Lhx2-/- telencephalic preparations. This perturbation is restricted to projections from caudal thalamic explants, while rostral and middle explants project normally. Thus Lhx2 is required for multiple steps in thalamocortical tract pathfinding, but these functions appear localized in the ventral telencephalon rather than in the dorsal thalamic neurons. Furthermore, the absence of Lhx2 in the ventral telencephalon selectively disrupts a subset of thalamic axon topography, indicating a specific rather than a general perturbation of cues in this structure.
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | |
Collapse
|
73
|
Lindwall C, Fothergill T, Richards LJ. Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 2007; 17:3-14. [PMID: 17275286 DOI: 10.1016/j.conb.2007.01.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/18/2007] [Indexed: 01/06/2023]
Abstract
Commissural formation in the mammalian brain is highly organised and regulated both by the cell-autonomous expression of transcription factors, and by non-cell-autonomous mechanisms including the formation of midline glial structures and their expression of specific axon guidance molecules. These mechanisms channel axons into the correct path and enable the subsequent connection of specific brain areas to their appropriate targets. Several key findings have been made over the past two years, including the discovery of novel mechanisms of action that 'classical' guidance factors such as the Slits, Netrins, and their receptors have in axon guidance. Moreover, novel guidance factors such as members of the Wnt family, and extracellular matrix components such as heparan sulphate proteoglycans, have been shown to be important for mammalian brain commissure formation. Additionally, there have been significant discoveries regarding the role of FGF signalling in the formation of midline glial structures. In this review, we discuss the most recent advances in the field that have contributed to our current understanding of commissural development in the telencephalon.
Collapse
Affiliation(s)
- Charlotta Lindwall
- The University of Queensland, School of Biomedical Sciences and The Queensland Brain Institute, St Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
74
|
Atkinson‐Leadbeater K, Hehr C, Webber C, Hocking J, McFarlane S. [P241]: FGF signalling is necessary for the correct development of retinal ganglion cell axons and the maintenance of late patterning events in the dorsal diencephalon of
xenopus laevis. Int J Dev Neurosci 2006. [DOI: 10.1016/j.ijdevneu.2006.09.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
75
|
Huang YY, Rinner O, Hedinger P, Liu SC, Neuhauss SCF. Oculomotor instabilities in zebrafish mutant belladonna: a behavioral model for congenital nystagmus caused by axonal misrouting. J Neurosci 2006; 26:9873-80. [PMID: 17005851 PMCID: PMC6674473 DOI: 10.1523/jneurosci.2886-06.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A large fraction of homozygous zebrafish mutant belladonna (bel) larvae display a reversed optokinetic response (OKR) that correlates with failure of the retinal ganglion cells to cross the midline and form the optic chiasm. Some of these achiasmatic mutants display strong spontaneous eye oscillations (SOs) in the absence of motion in the surround. The presentation of a stationary grating was necessary and sufficient to evoke SO. Both OKR reversal and SO depend on vision and are contrast sensitive. We built a quantitative model derived from bel fwd (forward) eye behaviors. To mimic the achiasmatic condition, we reversed the sign of the retinal slip velocity in the model, thereby successfully reproducing both reversed OKR and SO. On the basis of the OKR data, and with the support of the quantitative model, we hypothesize that the reversed OKR and the SO can be completely attributed to RGC misrouting. The strong resemblance between the SO and congenital nystagmus (CN) seen in humans with defective retinotectal projections implies that CN, of so far unknown etiology, may be directly caused by a projection defect.
Collapse
Affiliation(s)
- Ying-Yu Huang
- Institute of Zoology
- Swiss Federal Institute of Technology (ETH) Zurich, Department of Biology, and Brain Research Institute, and
| | - Oliver Rinner
- Swiss Federal Institute of Technology (ETH) Zurich, Department of Biology, and Brain Research Institute, and
| | | | - Shih-Chii Liu
- Institute of Neuroinformatics and ETH Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Stephan C. F. Neuhauss
- Institute of Zoology
- Swiss Federal Institute of Technology (ETH) Zurich, Department of Biology, and Brain Research Institute, and
| |
Collapse
|
76
|
Williams SE, Grumet M, Colman DR, Henkemeyer M, Mason CA, Sakurai T. A role for Nr-CAM in the patterning of binocular visual pathways. Neuron 2006; 50:535-47. [PMID: 16701205 DOI: 10.1016/j.neuron.2006.03.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/23/2006] [Accepted: 03/28/2006] [Indexed: 01/06/2023]
Abstract
Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.
Collapse
Affiliation(s)
- Scott E Williams
- Center for Neurobiology and Behavior and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|