51
|
Hosseinpour B, Bakhtiarizadeh MR, Khosravi P, Ebrahimie E. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network. Gene 2013; 531:212-9. [DOI: 10.1016/j.gene.2013.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/23/2022]
|
52
|
Ibrahim EE, Babaei-Jadidi R, Nateri AS. The streptavidin/biotinylated DNA/protein bound complex protocol for determining the association of c-JUN protein with NANOG promoter. ACTA ACUST UNITED AC 2013; Chapter 1:Unit 1B.10. [PMID: 23661244 DOI: 10.1002/9780470151808.sc01b10s25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chromatin immunoprecipitation (ChIP) is a widely used and pre-eminent technique for detecting the association of an individual protein or a particular protein complex with its specific DNA sequence(s) in vivo. Herein we introduce a novel and simple biotinylated-oligonucleotide-mediated ChIP method for testing specific binding of the c-JUN protein to the M1-DNA-regulatory element in the NANOG promoter. We prepared a 260-bp DNA PCR amplicon containing -300 bp to -59 bp, relative to the transcriptional start site of the human NANOG gene, which was transfected into mouse embryonic fibroblasts (MEF) containing wild-type (c-jun(+/+)) or knockout c-jun (c-jun(-/-)) alleles. Whole cells that were cross-linked using formaldehyde and protein-DNA interactions were immunoprecipitated using streptavidin-coupled Dynabeads. Protein-DNA cross-links were reversed during incubation at 95°C, and protein samples were visualized using SDS-PAGE electrophoresis and western blotting. This streptavidin/biotinylated DNA/protein-bound complex protocol can be used for detecting the interactions between multiple transcription factors and their DNA binding sites.
Collapse
Affiliation(s)
- Elsayed E Ibrahim
- Cancer Genetics and Stem Cell Group, Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
53
|
Ben-Yosef D, Boscolo FS, Amir H, Malcov M, Amit A, Laurent LC. Genomic analysis of hESC pedigrees identifies de novo mutations and enables determination of the timing and origin of mutational events. Cell Rep 2013; 4:1288-302. [PMID: 24035391 PMCID: PMC3894204 DOI: 10.1016/j.celrep.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/11/2013] [Accepted: 08/05/2013] [Indexed: 01/05/2023] Open
Abstract
Given the association between mutational load and cancer, the observation
that genetic aberrations are frequently found in human pluripotent stem cells
(hPSCs) is of concern. Prior studies in human induced pluripotent stem cells
(hiPSCs) have shown that deletions and regions of loss of heterozygosity (LOH)
tend to arise during reprogramming and early culture, whereas duplications more
frequently occur during long-term culture. For the corresponding experiments in
human embryonic stem cells (hESCs), we studied two sets of hESC lines: one
including the corresponding parental DNA and the other generated from single
blastomeres from four sibling embryos. Here, we show that genetic aberrations
observed in hESCs can originate during preimplantation embryo development and/or
early derivation. These early aberrations are mainly deletions and LOH, whereas
aberrations arising during long-term culture of hESCs are more frequently
duplications. Our results highlight the importance of close monitoring of
genomic integrity and the development of improved methods for derivation and
culture of hPSCs.
Collapse
Affiliation(s)
- Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Medical
School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Francesca S. Boscolo
- University of California, San Diego, Department of Reproductive
Medicine, Division of Maternal Fetal Medicine, The Sanford Consortium for
Regenerative Medicine, 7880 Torrey Pines Scenic Drive, La Jolla, CA 92037-0695,
USA
- The Scripps Research Institute Center for Regenerative Medicine,
Department of Chemical Physiology, 10550 North Torrey Pines Road SP30-3021, La
Jolla, CA 92037, USA
| | - Hadar Amir
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- University of California, San Diego, Department of Reproductive
Medicine, Division of Maternal Fetal Medicine, The Sanford Consortium for
Regenerative Medicine, 7880 Torrey Pines Scenic Drive, La Jolla, CA 92037-0695,
USA
| | - Mira Malcov
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Ami Amit
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Louise C. Laurent
- University of California, San Diego, Department of Reproductive
Medicine, Division of Maternal Fetal Medicine, The Sanford Consortium for
Regenerative Medicine, 7880 Torrey Pines Scenic Drive, La Jolla, CA 92037-0695,
USA
- The Scripps Research Institute Center for Regenerative Medicine,
Department of Chemical Physiology, 10550 North Torrey Pines Road SP30-3021, La
Jolla, CA 92037, USA
- Correspondence: http://dx.doi.org/10.1016/j.celrep.2013.08.009
| |
Collapse
|
54
|
Han J, Mistriotis P, Lei P, Wang D, Liu S, Andreadis ST. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential. Stem Cells 2013; 30:2746-59. [PMID: 22949105 DOI: 10.1002/stem.1223] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/05/2012] [Indexed: 12/15/2022]
Abstract
Although the therapeutic potential of mesenchymal stem cells (MSCs) is widely accepted, loss of cell function due to donor aging or culture senescence are major limiting factors hampering their clinical application. Our laboratory recently showed that MSCs originating from older donors suffer from limited proliferative capacity and significantly reduced myogenic differentiation potential. This is a major concern, as the patients most likely to suffer from cardiovascular disease are elderly. Here we tested the hypothesis that a single pluripotency-associated transcription factor, namely Nanog, may reverse the proliferation and differentiation potential of bone marrow-derived MSC (BM-MSC) from adult donors. Microarray analysis showed that adult (a)BM-MSC expressing Nanog clustered close to Nanog-expressing neonatal cells. Nanog markedly upregulated genes involved in cell cycle, DNA replication, and DNA damage repair and enhanced the proliferation rate and clonogenic capacity of aBM-MSC. Notably, Nanog reversed the myogenic differentiation potential and restored the contractile function of aBM-MSC to a similar level as that of neonatal (n)BM-MSC. The effect of Nanog on contractility was mediated--at least in part--through activation of the TGF-β pathway by diffusible factors secreted in the conditioned medium of Nanog-expressing BM-MSC. Overall, our results suggest that Nanog may be used to overcome the effects of organismal aging on aBM-MSC, thereby increasing the potential of MSC from aged donors for cellular therapy and tissue regeneration.
Collapse
Affiliation(s)
- Juhee Han
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York 14260-4200, USA
| | | | | | | | | | | |
Collapse
|
55
|
Sakaki-Yumoto M, Liu J, Ramalho-Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem 2013; 288:18546-60. [PMID: 23649632 DOI: 10.1074/jbc.m112.446591] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However, the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2, but not Smad3, is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells, in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm, mesoderm, and germ cell lineages. Additionally, induction of Cdx2 expression, as a result of decreased Smad2 expression, leads to repression of Oct4 expression, which, together with the decreased Nanog expression, accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.
Collapse
Affiliation(s)
- Masayo Sakaki-Yumoto
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Program in Cell Biology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
56
|
Giakoumopoulos M, Golos TG. Embryonic stem cell-derived trophoblast differentiation: a comparative review of the biology, function, and signaling mechanisms. J Endocrinol 2013; 216:R33-45. [PMID: 23291503 PMCID: PMC3809013 DOI: 10.1530/joe-12-0433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of the placenta is imperative for successful pregnancy establishment, yet the earliest differentiation events of the blastocyst-derived trophectoderm that forms the placenta remain difficult to study in humans. Human embryonic stem cells (hESC) display a unique ability to form trophoblast cells when induced to differentiate either by the addition of exogenous BMP4 or by the formation of cellular aggregates called embryoid bodies. While mouse trophoblast stem cells (TSC) have been isolated from blastocyst outgrowths, mouse ESC do not spontaneously differentiate into trophoblast cells. In this review, we focus on addressing the similarities and differences between mouse TSC differentiation and hESC-derived trophoblast differentiation. We discuss the functional and mechanistic diversity that is found in different species models. Of central importance are the unique signaling events that trigger downstream gene expression that create specific cellular fate decisions. We support the idea that we must understand the nuances that hESC differentiation models display so that investigators can choose the appropriate model system to fit experimental needs.
Collapse
Affiliation(s)
- M Giakoumopoulos
- Wisconsin National Primate Research Center, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 1223 Capitol Court, Madison, Wisconsin 53715-1299, USA
| | | |
Collapse
|
57
|
Lei L, Li L, Du F, Chen CH, Wang H, Keefer CL. Monitoring bovine fetal fibroblast reprogramming utilizing a bovine NANOG promoter-driven EGFP reporter system. Mol Reprod Dev 2013; 80:193-203. [PMID: 23280629 DOI: 10.1002/mrd.22147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/17/2012] [Indexed: 01/23/2023]
Abstract
NANOG is an essential transcription factor involved in the proliferation and maintenance of embryonic stem cells (ESC) and reprogramming of somatic cells to a pluripotent state. Oct4 and Nanog promoter-driven enhanced green fluorescent protein (EGFP) reporters have been employed for establishing lines of induced pluripotent stem cells (iPSC) from mouse, human, and pig. In ruminants, including cattle, in which no fully validated ESC lines have been established, iPSC generated by reprogramming somatic cells to an ESC-like state may prove useful in the production of genetically modified livestock. In this study, utility of the bovine NANOG reporter was tested for use with cattle. Seven proximal bovine NANOG promoter fragments of different size were fused to the LUC gene, and were tested in mouse ESC lines using a dual-luciferase assay. Three of the bovine NANOG promoters, 315 bp (-134/+181), 446 bp (-265/+181), and 1,100 bp (-919/+181), were fused to a nuclear localized signal EGFP reporter gene. The fidelity of these constructs was analyzed by transfection into mouse ESC and bovine fetal fibroblasts (bFFs), and subsequent reprogramming of the bFF. Fusion of the transgenic bFF with human teratocarcinoma (NTERA2) cells induced nuclear expression of the EGFP reporter. Similarly, bFF-derived somatic cell nuclear transfer (SCNT) embryos expressed EGFP in a stage- and location-appropriate manner. Following reprogramming of transgenic bFFs for 10 days with an Oct4-Sox2-Klf4-cMyc vector, iPSC expressed EGFP and alkaline phosphatase. These results indicate that NANOG reporters can be used to monitor nuclear reprogramming of bFFs and to distinguish cell allocation in SCNT-derived embryos.
Collapse
Affiliation(s)
- Lei Lei
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, P.R. China
| | | | | | | | | | | |
Collapse
|
58
|
Substrates and supplements for hESCs: a critical review. J Assist Reprod Genet 2013; 30:315-23. [PMID: 23288664 DOI: 10.1007/s10815-012-9914-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Different laboratories around the world have succeeded in establishing human embryonic stem cell (hESC) lines. However, culture conditions vary considerably among the protocols used and the vast majority of the lines at some stage of their creation have been in contact with an animal derived component. One of the main problems to be overcome for the generation of a clinical-grade hESC line is the choice of a substrate and medium that allows derivation and culture, where animal derived components are kept to a minimum or completely excluded. MATERIALS AND METHODS The following review describes past and more recent achievements in the creation and culturing of hESC. It describes protocols, giving special attention to the matrices and supplements used for derivation, maintainance and cryostorage, considering whether they included defined, undefined and/or animal-derived components in their formulations. CONCLUSION This information shall be useful for the creation and choice of new substrates and supplements for future research in the field of hESC for therapeutic purposes.
Collapse
|
59
|
Sela Y, Molotski N, Golan S, Itskovitz-Eldor J, Soen Y. Human embryonic stem cells exhibit increased propensity to differentiate during the G1 phase prior to phosphorylation of retinoblastoma protein. Stem Cells 2012; 30:1097-108. [PMID: 22415928 DOI: 10.1002/stem.1078] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While experimentally induced arrest of human embryonic stem cells (hESCs) in G1 has been shown to stimulate differentiation, it remains unclear whether the unperturbed G1 phase in hESCs is causally related to differentiation. Here, we use centrifugal elutriation to isolate and investigate differentiation propensities of hESCs in different phases of their cell cycle. We found that isolated G1 cells exhibit higher differentiation propensity compared with S and G2 cells, and they differentiate at low cell densities even under self-renewing conditions. This differentiation of G1 cells was partially prevented in dense cultures of these cells and completely abrogated in coculture with S and G2 cells. However, coculturing without cell-to-cell contact did not rescue the differentiation of G1 cells. Finally, we show that the subset of G1 hESCs with reduced phosphorylation of retinoblastoma has the highest propensity to differentiate and that the differentiation is preceded by cell cycle arrest. These results provide direct evidence for increased propensity of hESCs to differentiate in G1 and suggest a role for neighboring cells in preventing differentiation of hESCs as they pass through a differentiation sensitive, G1 phase.
Collapse
Affiliation(s)
- Yogev Sela
- Sohnis and Forman Families Center for Stem Cell and Tissue Regeneration Research, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | |
Collapse
|
60
|
Picanço-Castro V, Russo-Carbolante E, Covas DT. Forced expression of Nanog in human bone marrow-derived endothelial cells activates other six pluripotent genes. Cell Reprogram 2012; 14:187-92. [PMID: 22686476 DOI: 10.1089/cell.2011.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Human endothelial cells (ECs) have the ability to make up the lining of blood vessels. These cells are also capable of neovascularization and revascularization and have been applied in various clinical situations. With the aim of understanding the effect of NANOG superexpression on ECs, we transduced the Nanog gene into the ECs. Nanog is highly expressed in embryonic stem cells (ESCs) and is essential for pluripotency and self-renewal. However, Nanog can also be expressed in somatic stem cells, and this gene is related to great expansion capacity in vitro. We found that ECs expressing Nanog showed expression of other stemness genes, such as Sox2, FoxD3, Oct4, Klf4, c-myc, and β-catenin, that are not normally expressed or are expressed at very low levels in ECs. Nanog is one of the stemness genes that can activate other stemness genes, and the upregulation of the Nanog gene seems to be critical for reprogramming cells. In this study, the introduction of Nanog was sufficient to alter the expression of key genes of the pluripotent pathway. The functional importance of Nanog for altering the cell expression profile and morphology was clearly demonstrated by our results.
Collapse
|
61
|
Choi SC, Choi JH, Park CY, Ahn CM, Hong SJ, Lim DS. Nanog regulates molecules involved in stemness and cell cycle-signaling pathway for maintenance of pluripotency of P19 embryonal carcinoma stem cells. J Cell Physiol 2012; 227:3678-92. [PMID: 22378194 DOI: 10.1002/jcp.24076] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To identify potential downstream targets of Nanog, a key transcription factor in the maintenance of pluripotency of embryonic stem (ES) and embryonal carcinoma (EC) cells, global gene expression profiles in Nanog small interfering RNA (siRNA)-transfected P19 EC stem cells were performed using cDNA, 60-mer, and 30-mer microarray platforms. The putative Nanog target genes identified by Nanog silencing were verified using reverse transcription-polymerase chain reaction after Nanog overexpression. Downregulation of Nanog in P19 cells resulted in reduction of pluripotency markers, such as Fgf4, Klf2, Mtf2, Oct-4, Rex1, Sox1, Yes, and Zfp143, whereas overexpression of Nanog in P19 cells reversely upregulated their expression. However, expressions of pluripotency markers Cripto, germ cell nuclear factor, Sox2, and Zfp57 as well as leukemia inhibitory factor (LIF)/Stat3 pathway molecules LIF, IL6st, and Stat3 were not affected after 48 h transfection with Nanog siRNA or construct. Nanog silencing also downregulated expression of molecules involved in the p53- and cell cycle-signaling pathway (Atf3, Jdp2, Cul3, Hist1hic, and Bcl6), whereas expression of E2f1, Tob1, Lyn, and Smarcc1 was upregulated by Nanog silencing. Expressions of cyclins D1, D2, D3, and E1 as well as cyclin-dependent kinase (Cdk) 1 and Cdk6 were downregulated by Nanog silencing in P19 cells, whereas Nanog overexpression reversely increased their expressions. Taken together, examination of global transcriptional changes after Nanog silencing followed by verification by Nanog overexpression has revealed new molecules involved in the maintenance of self-renewal and in the regulation of the p53- and cell cycle-pathway of P19 cells.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Cardiovascular Center, Department of Cardiology, Korea University Anam Hospital, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
62
|
Du Y, Shi L, Wang T, Liu Z, Wang Z. Nanog siRNA plus Cisplatin may enhance the sensitivity of chemotherapy in esophageal cancer. J Cancer Res Clin Oncol 2012; 138:1759-67. [PMID: 22714588 DOI: 10.1007/s00432-012-1253-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cancer stem cells are regarded as the origin of tumors that can proliferate, relapse, and metastasize. Nanog, with its capacity to maintain the pluripotency and regulate proliferation and prevent differentiation, is one of the most important core markers of cancer stem cells. Studying the role of Nanog in esophageal squamous cell carcinoma (ESCC), therefore, has important implications. METHODS In the present study, we first detected the expression of Nanog in the ESCC and cell lines by RT-PCR, immunofluorescence, and immunohistochemisty. Then, we used small interfering RNA (siRNA) to block Nanog expression while evaluating the effect of Nanog siRNA on cell apoptosis and the combined effects with Cisplatin in ESCC cell lines. RESULTS The results showed that both mRNA and protein-level Nanog are overexpressed in ESCC tissues compared with their normal counterparts, and the increased occurrence of Nanog expression was positively correlated with TNM stages and histopathological differentiation of ESCC patients (p < 0.01). At the same time, Nanog siRNA efficiently decreased Nanog expression and induced cell apoptosis. Treatment with Nanog siRNA in combination with Cisplatin, therefore, enhanced chemosensitivity. CONCLUSION The present study's results suggest that detecting Nanog might be helpful for diagnosing ESCC, and Nanog siRNA combined with Cisplatin may be a feasible strategy to enhance the sensitivity of chemotherapy in patients with ESCC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cisplatin/therapeutic use
- Combined Modality Therapy
- Down-Regulation/drug effects
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Esophageal Neoplasms/therapy
- Female
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Male
- Middle Aged
- Nanog Homeobox Protein
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- Yaming Du
- Department of Thoracic Surgery, The First Affiliated Hospital, Liaoning Medical University, N0. 2, Section 5 Rinmin Street, Guta Dist., Jingzhou City, 121001 Liaoning, People's Republic of China
| | | | | | | | | |
Collapse
|
63
|
Ling GQ, Chen DB, Wang BQ, Zhang LS. Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncol Lett 2012. [PMID: 23197999 DOI: 10.3892/ol.2012.916] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have demonstrated that pluripotency-associated transcription factors, such as Oct3/4, Nanog and Sox2, play a crucial role in the development and malignant progression of various types of tumors. Breast cancer is the most frequent cancer among females, being a heterogeneous disease, with distinct morphologies, metastatic behavior and therapeutic responses. The expression of Oct3/4, Nanog and Sox2 in 3 human breast cancer cell lines, MCF7, T-47D and MDA-MB-231, was determined. The expression of Oct3/4, Nanog and Sox2 mRNA was determined by reverse transcription polymerase chain reaction (RT-PCR) and protein expression was detected by immunocytohistochemistry. RT-PCR revealed that all three human breast cancer cell lines tested expressed evident Oct3/4, Nanog and Sox-2 mRNA at various levels. Higher levels of Oct3/4 were identified in MCF7 and MDA-MB-231 cells compared with T-47D cells. Higher levels of Nanog were observed in MCF7 and T-47D cells compared with MDA-MB-231 cells and the highest expression of Sox-2 was detected in MCF7 cells. The nuclear localization of Oct3/4, Nanog and Sox-2 was confirmed by immunostaining. Oct3/4, Nanog and Sox2 were expressed in human breast cancer cell lines. Further studies are required to characterize the role of Oct3/4, Nanog and Sox2 in human breast cancer.
Collapse
Affiliation(s)
- Gui-Qin Ling
- The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, P.R.China
| | | | | | | |
Collapse
|
64
|
Van der Jeught M, O'Leary T, Ghimire S, Lierman S, Duggal G, Versieren K, Deforce D, Chuva de Sousa Lopes S, Heindryckx B, De Sutter P. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev 2012; 22:296-306. [PMID: 22784186 DOI: 10.1089/scd.2012.0256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In embryonic stem cell culture, small molecules can be used to alter key signaling pathways to promote self-renewal and inhibit differentiation. In mice, small-molecule inhibition of both the FGF/MEK/Erk and the GSK3β pathways during preimplantation development suppresses hypoblast formation, and this results in more pluripotent cells of the inner cell mass (ICM). In this study, we evaluated the effects of different small-molecule inhibitors of the FGF/MEK/Erk and GSK3β pathway on embryo preimplantation development, early lineage segregation, and subsequent embryonic stem cell derivation in the humans. We did not observe any effect on blastocyst formation, but small-molecule inhibition did affect the number of OCT3/4- and NANOG-positive cells in the human ICM. We found that combined inhibition of the FGF/MEK/Erk and GSK3β pathways by PD0325901 and CHIR99021, respectively, resulted in ICMs containing significantly more OCT3/4-positive cells. Inhibition of FGF/MEK/Erk alone as well as in combination with inhibition of GSK3β significantly increased the number of NANOG-positive cells in blastocysts possessing good-quality ICMs. Secondly, we verified the influence of this increased pluripotency after 2i culture on the efficiency of stem cell derivation. Similar human embryonic stem cell (hESC) derivation rates were observed after 2i compared to control conditions, resulting in 2 control hESC lines and 1 hESC line from an embryo cultured in 2i conditions. In conclusion, we demonstrated that FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human ICM, but does not improve stem cell derivation.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 2012; 47:169-82. [PMID: 22795133 DOI: 10.1016/j.molcel.2012.06.020] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/21/2012] [Accepted: 05/14/2012] [Indexed: 12/16/2022]
Abstract
The roles of Oct4 and Nanog in maintaining self-renewal and undifferentiated status of adult stem cells are unclear. Here, increase in Oct4 and Nanog expression along with increased proliferation and differentiation potential but decreased spontaneous differentiation were observed in early-passage (E), hypoxic culture (H), and p21 knockdown (p21KD) mesenchymal stem cells (MSCs) compared to late-passage (L), normoxic culture (N), and scrambled shRNA-overexpressed (Scr) MSCs. Knockdown of Oct4 and Nanog in E, H, and p21KD MSCs decreased proliferation and differentiation potential and enhanced spontaneous differentiation, whereas overexpression of Oct4 and Nanog in L, N, and Scr MSCs increased proliferation and differentiation potential and suppressed spontaneous differentiation. Oct4 and Nanog upregulate Dnmt1 through direct binding to its promoter, thereby leading to the repressed expression of p16 and p21 and genes associated with development and lineage differentiation. These data demonstrate the important roles of Oct4 and Nanog in maintaining MSC properties.
Collapse
|
66
|
Bhatia H, Sharma R, Dawes J, Khillan JS. Maintenance of feeder free anchorage independent cultures of ES and iPS cells by retinol/vitamin A. J Cell Biochem 2012; 113:3002-10. [DOI: 10.1002/jcb.24177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
67
|
Park GT, Seo YM, Lee SY, Lee KA. Lin28 regulates the expression of neuropeptide Y receptors and oocyte-specific homeobox genes in mouse embryonic stem cells. Clin Exp Reprod Med 2012; 39:87-93. [PMID: 22816075 PMCID: PMC3398122 DOI: 10.5653/cerm.2012.39.2.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Lin28 has been known to control the proliferation and pluripotency of embryonic stem cells. The purpose of this study was to determine the downstream effectors of Lin28 in mouse embryonic stem cells (mESCs) by RNA interference and microarray analysis. METHODS The control siRNA and Lin28 siRNA (Dharmacon) were transfected into mESCs. Total RNA was prepared from each type of transfected mESC and subjected to reverse transcription-polymerase chain reaction (RT-PCR) analysis to confirm the downregulation of Lin28. The RNAs were labeled and hybridized with an Affymetrix Gene-Chip Mouse Genome 430 2.0 array. The data analysis was accomplished by GenPlex 3.0 software. The expression levels of selected genes were confirmed by quantitative real-time RT-PCR. RESULTS According to the statistical analysis of the cDNA microarray, a total of 500 genes were altered in Lin28-downregulated mESCs (up-regulated, 384; down-regulated, 116). After differentially expressed gene filtering, 31 genes were selected as candidate genes regulated by Lin28 downregulation. Among them, neuropeptide Y5 receptor and oocyte-specific homeobox 5 genes were significantly upregulated in Lin28-downregulated mESCs. We also showed that the families of neuropeptide Y receptor (Npyr) and oocyte-specific homeobox (Obox) genes were upregulated by downregulation of Lin28. CONCLUSION Based on the results of this study, we suggest that Lin28 controls the characteristics of mESCs through the regulation of effectors such as the Npyr and Obox families.
Collapse
Affiliation(s)
- Geon Tae Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | | | | | | |
Collapse
|
68
|
Induction of NANOG expression by targeting promoter sequence with small activating RNA antagonizes retinoic acid-induced differentiation. Biochem J 2012; 443:821-8. [PMID: 22339500 PMCID: PMC3327998 DOI: 10.1042/bj20111491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNAa (RNA activation) is a mechanism by which small dsRNA (double-stranded RNA), termed saRNA (small activating RNA), target promoter sequences to induce gene expression. This technique represents a novel approach to gene overexpression without the use of exogenous DNA. In the present study, we investigated whether RNAa can modulate expression of the development-related gene NANOG and manipulate cell fate. Using a lentivirus-based reporter system as a screening tool, we identified synthetic saRNAs that stimulate NANOG expression in human NCCIT embryonic carcinoma cells. Mismatch mutations to saRNA duplexes define sequence requirement for gene activation. Functional analysis of NANOG induction reveals saRNA treatment predictably modulates the expression of several known downstream target genes, including FOXH1 (forkhead box H1), REST (RE1-silencing transcription factor), OCT4 (octamer-binding protein 4) and REX1 (reduced expression protein 1). Treatment with RA (retinoic acid) triggers NCCIT cell differentiation, reducing NANOG and OCT4 expression and up-regulating several neural markers [i.e. ASCL1 (achaete-scute complex homologue 1), NEUROD1 (neuronal differentiation 1) and PAX6 (paired box 6)]. However, co-treatment with saRNA antagonizes NANOG down-regulation and RA-induced differentiation. Ectopic overexpression of NANOG via lentiviral transduction further recapitulates saRNA results, providing proof-of-concept that RNAa may be utilized to activate development-related genes and manipulate cell fate.
Collapse
|
69
|
Uchino K, Hirano G, Hirahashi M, Isobe T, Shirakawa T, Kusaba H, Baba E, Tsuneyoshi M, Akashi K. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells. Exp Cell Res 2012; 318:1799-807. [PMID: 22677041 DOI: 10.1016/j.yexcr.2012.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/10/2023]
Abstract
There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation.
Collapse
Affiliation(s)
- Keita Uchino
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Jin M, Wu A, Dorzhin S, Yue Q, Ma Y, Liu D. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology 2012; 64:379-89. [PMID: 22438181 DOI: 10.1007/s10616-011-9408-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/31/2011] [Indexed: 11/25/2022] Open
Abstract
Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts were used, a mechanical method of passaging led to better cell growth than passaging by trypsin digestion. We also found that exogenous supplementation with leukemia inhibitory factor maintained the embryonic stem cell-like cells in an undifferentiated state, whereas addition of stem cell factor resulted in their differentiation. Our findings provide an experimental basis for the establishment of an effective culture system for bovine embryonic stem cells.
Collapse
Affiliation(s)
- Muzi Jin
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, 010021, Hohhot, China
| | | | | | | | | | | |
Collapse
|
71
|
Alva JA, Lee GE, Escobar EE, Pyle AD. Phosphatase and tensin homolog regulates the pluripotent state and lineage fate choice in human embryonic stem cells. Stem Cells 2012; 29:1952-62. [PMID: 21948699 DOI: 10.1002/stem.748] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding the intrinsic and extrinsic signals that regulate the molecular basis of the pluripotent state may improve our understanding of mammalian embryogenesis, different states of pluripotency, and our ability to tailor lineage differentiation. Although the role of the PI3K/Akt pathway in the self-renewal and maintenance of mESCs is well-established, the specific contribution of the pathway or of its negative regulator, PTEN, in the maintenance of the human pluripotent state is less understood. To explore the PI3K/AKT pathway in human embryonic stem cell (hESC) pluripotency and differentiation, we generated stable PTEN knockdown (KD) hESCs using short hairpin RNA. Similar to mESCs, we found that PTEN KD hESCs have increased self-renewal, cell survival, and proliferation over multiple passages compared to control cells. However, in contrast to mESCs, in vitro, PTEN KD hESCs differentiated inefficiently in directed differentiation assays, in part due to the continued maintenance of OCT4 and NANOG expression. In teratoma assays, PTEN KD hESCs generated tissues from the three germ layers, although with a bias toward neuroectoderm differentiation. These results demonstrate that PTEN is a key regulator of hESC growth and differentiation, and manipulation of this pathway may improve our ability to regulate and understand the pluripotent state.
Collapse
Affiliation(s)
- Jackelyn A Alva
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
72
|
Sato T, Okumura F, Ariga T, Hatakeyama S. TRIM6 interacts with Myc and maintains the pluripotency of mouse embryonic stem cells. J Cell Sci 2012; 125:1544-55. [PMID: 22328504 DOI: 10.1242/jcs.095273] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proto-oncogene product Myc is a master regulator of cell proliferation through its specific binding to the E-box motif in genomic DNA. It has been reported that Myc has an important role in the proliferation and maintenance of the pluripotency of embryonic stem (ES) cells and that the transcriptional activity of Myc is regulated by several post-translational modifications, including ubiquitination. In this study, we showed that tripartite motif containing 6 (TRIM6), one of the TRIM family ubiquitin ligases, was selectively expressed in ES cells and interacted with Myc followed by attenuation of the transcriptional activity of Myc. Knockdown of TRIM6 in ES cells enhanced the transcriptional activity of Myc and repressed expression of NANOG, resulting in the promotion of ES cell differentiation. These findings indicate that TRIM6 regulates the transcriptional activity of Myc during the maintenance of ES cell pluripotency, suggesting that TRIM6 functions as a novel regulator for Myc-mediated transcription in ES cells.
Collapse
Affiliation(s)
- Tomonobu Sato
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita15, Nishi7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | |
Collapse
|
73
|
Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, Chiao E, Choi YM, Choo ABH, Collins D, Colman A, Crook JM, Daley GQ, Dalton A, De Sousa PA, Denning C, Downie J, Dvorak P, Montgomery KD, Feki A, Ford A, Fox V, Fraga AM, Frumkin T, Ge L, Gokhale PJ, Golan-Lev T, Gourabi H, Gropp M, Lu G, Hampl A, Harron K, Healy L, Herath W, Holm F, Hovatta O, Hyllner J, Inamdar MS, Irwanto AK, Ishii T, Jaconi M, Jin Y, Kimber S, Kiselev S, Knowles BB, Kopper O, Kukharenko V, Kuliev A, Lagarkova MA, Laird PW, Lako M, Laslett AL, Lavon N, Lee DR, Lee JE, Li C, Lim LS, Ludwig TE, Ma Y, Maltby E, Mateizel I, Mayshar Y, Mileikovsky M, Minger SL, Miyazaki T, Moon SY, Moore H, Mummery C, Nagy A, Nakatsuji N, Narwani K, Oh SKW, Oh SK, Olson C, Otonkoski T, Pan F, Park IH, Pells S, Pera MF, Pereira LV, Qi O, Raj GS, Reubinoff B, Robins A, Robson P, Rossant J, Salekdeh GH, et alAmps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, Chiao E, Choi YM, Choo ABH, Collins D, Colman A, Crook JM, Daley GQ, Dalton A, De Sousa PA, Denning C, Downie J, Dvorak P, Montgomery KD, Feki A, Ford A, Fox V, Fraga AM, Frumkin T, Ge L, Gokhale PJ, Golan-Lev T, Gourabi H, Gropp M, Lu G, Hampl A, Harron K, Healy L, Herath W, Holm F, Hovatta O, Hyllner J, Inamdar MS, Irwanto AK, Ishii T, Jaconi M, Jin Y, Kimber S, Kiselev S, Knowles BB, Kopper O, Kukharenko V, Kuliev A, Lagarkova MA, Laird PW, Lako M, Laslett AL, Lavon N, Lee DR, Lee JE, Li C, Lim LS, Ludwig TE, Ma Y, Maltby E, Mateizel I, Mayshar Y, Mileikovsky M, Minger SL, Miyazaki T, Moon SY, Moore H, Mummery C, Nagy A, Nakatsuji N, Narwani K, Oh SKW, Oh SK, Olson C, Otonkoski T, Pan F, Park IH, Pells S, Pera MF, Pereira LV, Qi O, Raj GS, Reubinoff B, Robins A, Robson P, Rossant J, Salekdeh GH, Schulz TC, Sermon K, Sheik Mohamed J, Shen H, Sherrer E, Sidhu K, Sivarajah S, Skottman H, Spits C, Stacey GN, Strehl R, Strelchenko N, Suemori H, Sun B, Suuronen R, Takahashi K, Tuuri T, Venu P, Verlinsky Y, Ward-van Oostwaard D, Weisenberger DJ, Wu Y, Yamanaka S, Young L, Zhou Q. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 2011; 29:1132-1144. [PMID: 22119741 PMCID: PMC3454460 DOI: 10.1038/nbt.2051] [Show More Authors] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/26/2011] [Indexed: 02/07/2023]
Abstract
The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells.
Collapse
|
74
|
Modeling neurological disorders by human induced pluripotent stem cells. J Biomed Biotechnol 2011; 2011:350131. [PMID: 22162635 PMCID: PMC3227533 DOI: 10.1155/2011/350131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/06/2011] [Indexed: 01/30/2023] Open
Abstract
Studies of human brain development are critical as research on neurological disorders have been progressively advanced. However, understanding the process of neurogenesis through analysis of the early embryo is complicated and limited by a number of factors, including the complexity of the embryos, availability, and ethical constrains. The emerging of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) has shed light of a new approach to study both early development and disease pathology. The cells behave as precursors of all embryonic lineages; thus, they allow tracing the history from the root to individual branches of the cell lineage tree. Systems for neural differentiation of hESCs and iPSCs have provided an experimental model that can be used to augment in vitro studies of in vivo brain development. Interestingly, iPSCs derived from patients, containing donor genetic background, have offered a breakthrough approach to study human genetics of neurodegenerative diseases. This paper summarizes the recent reports of the development of iPSCs from patients who suffer from neurological diseases and evaluates the feasibility of iPSCs as a disease model. The benefits and obstacles of iPSC technology are highlighted in order to raising the cautions of misinterpretation prior to further clinical translations.
Collapse
|
75
|
Zhang L, Luo YB, Bou G, Kong QR, Huan YJ, Zhu J, Wang JY, Li H, Wang F, Shi YQ, Wei YC, Liu ZH. Overexpression Nanog activates pluripotent genes in porcine fetal fibroblasts and nuclear transfer embryos. Anat Rec (Hoboken) 2011; 294:1809-17. [PMID: 21972213 DOI: 10.1002/ar.21457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/31/2011] [Accepted: 06/12/2011] [Indexed: 02/05/2023]
Abstract
Nanog as an important transcription factor plays a pivotal role in maintaining pluripotency and in reprogramming the epigenome of somatic cells. Its ability to function on committed somatic cells and embryos has been well defined in mouse and human, but rarely in pig. To better understand Nanog's function on reprogramming in porcine fetal fibroblast (PFF) and nuclear transfer (NT) embryo, we cloned porcine Nanog CDS and constructed pcDNA3.1 (+)/Nanog and pEGFP-C1/Nanog overexpression vectors and transfected them into PFFs. We studied the cell biological changes and the expression of Nanog, Oct4, Sox2, Klf4, C-myc, and Sall4 in transfected PFFs. We also detected the development potential of the cloned embryos harboring Nanog stably overexpressed fibroblasts and the expression of Oct4, Sox2, and both endogenous and exogenous Nanog in these embryos. The results showed that transient overexpression Nanog in PFF could activate the expression of Oct4 (5-fold), C-myc (2-fold), and Sall4 (5-fold) in somatic cells, but they could not be maintained during G418 selection. In NT embryos, although Nanog overexpression did not have a significant effect on blastocyst development rate and blastocyst cell number, it could significantly activate the expression of endogenous Nanog, Oct4, Sox2 to 160-fold, 93-fold, and 182-fold, respectively (P < 0.05). Our results demonstrate that Nanog could interact with and activate other pluripotent genes both in PFFs and embryos.
Collapse
Affiliation(s)
- Li Zhang
- Department of Life Science, Northeast Agriculture University, Heilongjiang Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Han JW, Yoon YS. Induced pluripotent stem cells: emerging techniques for nuclear reprogramming. Antioxid Redox Signal 2011; 15:1799-820. [PMID: 21194386 PMCID: PMC3159104 DOI: 10.1089/ars.2010.3814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed.
Collapse
Affiliation(s)
- Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
77
|
Moon JH, Kwon S, Jun EK, Kim A, Whang KY, Kim H, Oh S, Yoon BS, You S. Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochem Biophys Res Commun 2011; 412:175-81. [PMID: 21810410 DOI: 10.1016/j.bbrc.2011.07.070] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 12/19/2022]
Abstract
Self-renewal, differentiation, and tumorigenicity characterize cancer stem cells (CSCs), which are rare and maintained by specific cell fate regulators. CSCs are isolated from glioblastoma multiforme (GBM) and may be responsible for the lethality of incurable brain tumors. Brain CSCs may arise from the transformation of undifferentiated, nestin-positive neural stem or progenitor cells and GFAP-expressing astrocytes. Here, we report a role of Nanog in the genesis of cancer stem-like cells. Using primary murine p53-knockout astrocytes (p53(-/-) astrocytes), we provide evidence that enforced Nanog expression can increase the cellular growth rate and transform phenotypes in vitro and in vivo. In addition, Nanog drives p53(-/-) astrocytes toward a dedifferentiated, CSC-like phenotype with characteristic neural stem cell/progenitor marker expression, neurosphere formation, self-renewal activity, and tumor development. These findings suggest that Nanog promotes dedifferentiation of p53-deficient mouse astrocytes into cancer stem-like cells by changing the cell fate and transforming cell properties.
Collapse
Affiliation(s)
- Jai-Hee Moon
- Laboratory of Cell Function Regulation, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Noisa P, Parnpai R. Technical challenges in the derivation of human pluripotent cells. Stem Cells Int 2011; 2011:907961. [PMID: 21776284 PMCID: PMC3138062 DOI: 10.4061/2011/907961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/25/2011] [Indexed: 01/26/2023] Open
Abstract
It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs). These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT), cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.
Collapse
Affiliation(s)
- Parinya Noisa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | | |
Collapse
|
79
|
Abstract
The field of regenerative medicine research is rapidly expanding. One area of interest to equine researchers is the possibility of isolating or generating pluripotent cells, capable of producing differentiated cell types derived from all 3 primary germ layers. Reports of equine embryonic stem-like (ES) cell isolation can be found in the literature. Other groups are working to produce equine-induced pluripotent stem (iPS) cells. This article summarizes the essential features needed to characterize a cell type as pluripotent, specific challenges in using the horse as a model organism for pluripotent cell generation, and current and upcoming clinical trials using ES/iPS cells.
Collapse
|
80
|
A Tcf/Lef element within the enhancer region of the human NANOG gene plays a role in promoter activation. Biochem Biophys Res Commun 2011; 410:637-42. [PMID: 21689639 DOI: 10.1016/j.bbrc.2011.06.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022]
Abstract
NANOG is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self-renewal in embryonic stem cells. However, the molecular mechanisms underlying the regulation of NANOG expression in human cells remain largely unknown. Here, we investigated the role of Tcf/Lef response elements located in the enhancer of the human NANOG gene. We found that forced expression of Lef1 or β-catenin stimulated human NANOG promoter activity, while shRNA-mediated knockdown of β-catenin reduced Lef1-induced NANOG promoter activation. Deletion or mutation of the Tcf/Lef element within the enhancer region of the human NANOG gene completely abrogated Lef1-induced NANOG promoter activity. The results of a chromatin immunoprecipitation assay demonstrated that Lef1 and β-catenin bind to the Tcf/Lef element in the enhancer region of the NANOG gene. Forced expression of GSK-3β inhibited basal, Lef1-induced, and β-catenin-induced NANOG promoter activity, while treatment with the GSK-3β inhibitor SB216763 resulted in the accumulation of β-catenin and NANOG protein. Furthermore, Dvl-1-induced NANOG promoter activity was abrogated by the expression of β-catenin shRNA. Stable overexpression of Dvl-1 caused β-catenin and NANOG to accumulate. These results indicate that the Tcf/Lef response element in the enhancer region of the human NANOG gene is able to stimulate NANOG gene transcription.
Collapse
|
81
|
Kallas A, Pook M, Maimets M, Zimmermann K, Maimets T. Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells. PLoS One 2011; 6:e19114. [PMID: 21559451 PMCID: PMC3084750 DOI: 10.1371/journal.pone.0019114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/25/2011] [Indexed: 01/06/2023] Open
Abstract
Nocodazole is a known destabiliser of microtubule dynamics and arrests cell-cycle at the G2/M phase. In the context of the human embryonic stem cell (hESC) it is important to understand how this arrest influences the pluripotency of cells. Here we report for the first time the changes in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated hESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4. Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition, the presence of ROCK-2 inhibitor Y-27632 in the medium had no effect on increasing the expression of pluripotency markers Nanog and Oct4 or decreasing apoptosis or the level of p53. The expression of SSEA-3 and SSEA-4 increased in Nanog-positive cells after wash-out of nocodazole in the presence and in the absence of Y-27632. Our data show that in hESC nocodazole reversible blocks cell cycle, which is accompanied by irreversible loss of expression of pluripotency markers Nanog and Oct4.
Collapse
Affiliation(s)
- Ade Kallas
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
82
|
Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 2011; 8:326-34. [PMID: 21362572 PMCID: PMC3052735 DOI: 10.1016/j.stem.2011.01.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/05/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Here, we show that as human embryonic stem cells (ESCs) exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs induce differentiation of human ESCs into extraembryonic lineages. Here, we find that FGF2, acting through the MEK-ERK pathway, switches BMP4-induced human ESC differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. We also find that MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation, that forced NANOG expression results in FGF-independent BMP4 induction of mesendoderm, and that knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4-induced differentiation of human ESCs by maintaining NANOG levels through the MEK-ERK pathway.
Collapse
Affiliation(s)
- Pengzhi Yu
- Morgridge Institute for Research, Madison, WI 53715-7365, USA
| | | | | | | |
Collapse
|
83
|
Higuchi A, Ling QD, Ko YA, Chang Y, Umezawa A. Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev 2011; 111:3021-35. [PMID: 21344932 DOI: 10.1021/cr1003612] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, 32001 Taiwan.
| | | | | | | | | |
Collapse
|
84
|
Huang L, Wong YP, Gu H, Cai YJ, Ho Y, Wang CC, Leung TY, Burd A. Stem cell-like properties of human umbilical cord lining epithelial cells and the potential for epidermal reconstitution. Cytotherapy 2011; 13:145-55. [DOI: 10.3109/14653249.2010.509578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
85
|
Coyle DE, Li J, Baccei M. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons. PLoS One 2011; 6:e16174. [PMID: 21283767 PMCID: PMC3024414 DOI: 10.1371/journal.pone.0016174] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022] Open
Abstract
The NTERA2 cl D1 (NT2) cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES) cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N) with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR). Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.
Collapse
Affiliation(s)
- Dennis E Coyle
- Department of Anesthesiology, University of Cincinnati, Cincinnati, Ohio, United States of America.
| | | | | |
Collapse
|
86
|
Using cadherin expression to assess spontaneous differentiation of embryonic stem cells. Methods Mol Biol 2011; 690:81-94. [PMID: 21042986 DOI: 10.1007/978-1-60761-962-8_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Embryonic stem cells (ESCs) are pluripotent cells derived from preimplantation embryos and can be maintained in an undifferentiated state over prolonged periods in vitro. In addition, ESCs can be induced to differentiate into cells representative of the three primary germ layers. As such, ESCs are a useful system for studying early developmental events in vitro and have the potential to provide a ubiquitous supply of somatic cells for use in regenerative medicine. However, significant differences in the expression pattern of various cell surface markers between murine and human ESCs, e.g. the SSEA series, necessitate the use of separate markers for determining the undifferentiated state of these cells. We have recently shown that an E- to N-cadherin switch occurs during spontaneous differentiation of both murine and human ESCs. Here we describe the use of E-cadherin and N-cadherin proteins and transcript expression for assessing the proportion of undifferentiated and spontaneously differentiated cells within ESC populations. In summary, loss of cell surface E-cadherin and/or gain of N-cadherin protein expression provides a useful nondestructive assay for the determination of the proportion of spontaneously differentiated cells within an ESC population. In addition, presence of N-cadherin transcripts in an ESC population is indicative of spontaneous differentiation of a proportion of the cells.
Collapse
|
87
|
Li Y, Zhao H, Lan F, Lee A, Chen L, Lin C, Yao Y, Li L. Generation of human-induced pluripotent stem cells from gut mesentery-derived cells by ectopic expression of OCT4/SOX2/NANOG. Cell Reprogram 2010; 12:237-47. [PMID: 20698766 DOI: 10.1089/cell.2009.0103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have been generated from human somatic cells by ectopic expression of defined transcription factors. Application of this approach in human cells may have enormous potential to generate patient-specific pluripotent stem cells. However, traditional methods of reprogramming in human somatic cells involve the use of oncogenes c-MYC and KLF4, which are not applicable to clinical translation. In the present study, we investigated whether human fetal gut mesentery-derived cells (hGMDCs) could be successfully reprogrammed into induced pluripotent stem (iPS) cells by OCT4, SOX2, and NANOG alone. We used lentiviruses to express OCT4, SOX2, NANOG, in hGMDCs, then generated iPS cells that were identified by morphology, presence of pluripotency markers, global gene expression profile, DNA methylation status, capacity to form embryoid bodies (EBs), and terotoma formation. iPS cells resulting from hGMDCs were similar to human embryonic stem (ES) cells in morphology, proliferation, surface markers, gene expression, and epigenetic status of pluripotent cell-specific genes. Furthermore, these cells were able to differentiate into cell types of all three germ layers both in vitro and in vivo, as shown by EB and teratoma formation assays. DNA fingerprinting showed that the human iPS cells were derived from the donor cells, and are not a result of contamination. Our results provide proof that hGMDCs can be reprogrammed into pluripotent cells by ectopic expression of three factors (OCT4, SOX2, and NANOG) without the use of oncogenes c-MYC and KLF4.
Collapse
Affiliation(s)
- Yang Li
- Peking University Stem Cell Research Center, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Lin CY, Wang L, Than K, Marca FL, Park P. Cancer stem cell markers: what is their diagnostic value? ACTA ACUST UNITED AC 2010; 4:473-81. [PMID: 23496228 DOI: 10.1517/17530059.2010.512363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Cancer resistance to conventional therapies has been attributed to cancer stem cells (CSCs). Although a variety of markers have been reported, a universal marker has not yet been found to identify CSCs. Better identification of these CSCs may lead to new therapies that selectively target these cells and thereby result in more effective treatment. This article categorizes the types of marker that have been identified and explores their potential diagnostic and therapeutic value. AREAS COVERED IN THIS REVIEW A focused literature review of studies relating to CSCs and their identification was conducted. Databases evaluated include MEDLINE and Web of Science through 2009. WHAT THE READER WILL GAIN The ideal identification method needs to be effective and practical in terms of application. The measurement of aldehyde dehydrogenase activity is simple to accomplish compared with other reported identification methods; however, cell surface antigens have been studied most frequently in the therapeutic targeting of CSCs. TAKE HOME MESSAGE Although specific targeting methods have been reported for various cancers, there does not appear to be a proven universal marker for CSCs that would apply to all cancers. Each particular identification method appears to have advantages and disadvantages. From a therapeutic standpoint, targeting of these CSCs should improve prognosis.
Collapse
Affiliation(s)
- Chia-Ying Lin
- University of Michigan Medical School, Spine Research Laboratory, Department of Neurosurgery, Biomedical Science Research Building, Room 5007, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA +1734 615 0371 ; +1734 763 7322 ;
| | | | | | | | | |
Collapse
|
89
|
Fischer Y, Ganic E, Ameri J, Xian X, Johannesson M, Semb H. NANOG reporter cell lines generated by gene targeting in human embryonic stem cells. PLoS One 2010; 5. [PMID: 20824089 PMCID: PMC2932718 DOI: 10.1371/journal.pone.0012533] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/10/2010] [Indexed: 12/12/2022] Open
Abstract
Background Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. Methodology/Principal Findings To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOGhigh and NANOGlow hESCs, providing candidates for NANOG downstream targets hESCs. Conclusion/Significance The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANOG in pluripotent hESCs.
Collapse
Affiliation(s)
| | - Elvira Ganic
- Stem Cell Center, University of Lund, Lund, Sweden
| | | | - Xiaojie Xian
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Martina Johannesson
- Department of Stem Cell Biology, Hagedorn Research Institute, Gentofte, Denmark
| | - Henrik Semb
- Stem Cell Center, University of Lund, Lund, Sweden
- * E-mail:
| |
Collapse
|
90
|
Dixon JE, Allegrucci C, Redwood C, Kump K, Bian Y, Chatfield J, Chen YH, Sottile V, Voss SR, Alberio R, Johnson AD. Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development 2010; 137:2973-80. [PMID: 20736286 PMCID: PMC2926951 DOI: 10.1242/dev.049262] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 01/08/2023]
Abstract
Cells in the pluripotent ground state can give rise to somatic cells and germ cells, and the acquisition of pluripotency is dependent on the expression of Nanog. Pluripotency is conserved in the primitive ectoderm of embryos from mammals and urodele amphibians, and here we report the isolation of a Nanog ortholog from axolotls (axNanog). axNanog does not contain a tryptophan repeat domain and is expressed as a monomer in the axolotl animal cap. The monomeric form is sufficient to regulate pluripotency in mouse embryonic stem cells, but axNanog dimers are required to rescue LIF-independent self-renewal. Our results show that protein interactions mediated by Nanog dimerization promote proliferation. More importantly, they demonstrate that the mechanisms governing pluripotency are conserved from urodele amphibians to mammals.
Collapse
Affiliation(s)
- James E. Dixon
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
| | - Cinzia Allegrucci
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - Catherine Redwood
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
| | - Kevin Kump
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Yuhong Bian
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
| | - Jodie Chatfield
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
| | - Yi-Hsien Chen
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, University of Nottingham, Nottingham NG7 2RD, UK
| | - S. Randal Voss
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Ramiro Alberio
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - Andrew D. Johnson
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham NG2 2UH, UK
| |
Collapse
|
91
|
Ben-Yehudah A, Easley CA, Hermann BP, Castro C, Simerly C, Orwig KE, Mitalipov S, Schatten G. Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns. Stem Cell Res Ther 2010; 1:24. [PMID: 20699013 PMCID: PMC2941116 DOI: 10.1186/scrt24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells.
Collapse
Affiliation(s)
- Ahmi Ben-Yehudah
- Pittsburgh Development Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Departments of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Charles A Easley
- Pittsburgh Development Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Departments of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian P Hermann
- Pittsburgh Development Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Departments of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Carlos Castro
- Pittsburgh Development Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Departments of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Calvin Simerly
- Pittsburgh Development Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Departments of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Pittsburgh Development Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Departments of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shoukhrat Mitalipov
- Oregon Stem Cell Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | - Gerald Schatten
- Pittsburgh Development Center, 204 Craft Avenue, Pittsburgh, PA 15213, USA
- Departments of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
92
|
Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, Hung SC. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. J Biomed Sci 2010; 17:64. [PMID: 20670406 PMCID: PMC2923118 DOI: 10.1186/1423-0127-17-64] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/29/2010] [Indexed: 01/01/2023] Open
Abstract
To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders.
Collapse
Affiliation(s)
- Chih-Chien Tsai
- Stem Cell Laboratory, Department of Medical Research & Education and Orthopaedics & Traumatology, Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
93
|
Kim JS, Kim BS, Kim J, Park CS, Chung IY. The phosphoinositide-3-kinase/Akt pathway mediates the transient increase in Nanog expression during differentiation of F9 cells. Arch Pharm Res 2010; 33:1117-25. [PMID: 20661723 DOI: 10.1007/s12272-010-0719-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/11/2010] [Accepted: 05/19/2010] [Indexed: 11/28/2022]
Abstract
Nanog is a key determinant that maintains self-renewal and pluripotency of embryonic stem cells and represses their differentiation to endoderm. In this study, we examined the regulation of Nanog expression by phosphoinositide-3-kinase (PI3K)/Akt pathway during retinoic acid (RA)-induced differentiation of F9 embryonic carcinoma cells. Nanog protein expression was transiently upregulated up to 6 h after RA treatment and then declined. In agreement, a murine Nanog promoter reporter assay revealed that promoter activity increased during early stage of differentiation, but decreased when F9 cells became fully differentiated. RA treatment of F9 cells also led to a transient and parallel increase in both Akt and glycogen synthase kinase 3beta phosphorylations. Nanog expression was diminished in the early stage by LY294002, a PI3K inhibitor, but was not affected in the late stage despite considerable inhibition of Akt phosphorylation and endoderm marker expression by the inhibitor. These data suggest that RA-induced PI3K/Akt activation in the early stage of differentiation is required for Nanog expression, which becomes independent of PI3K/Akt signaling once the differentiation is established. Thus, Nanog expression appears to be differently regulated by the PI3K/Akt pathway depending on differentiation stage.
Collapse
|
94
|
Horie M, Ito A, Kiyohara T, Kawabe Y, Kamihira M. E-cadherin gene-engineered feeder systems for supporting undifferentiated growth of mouse embryonic stem cells. J Biosci Bioeng 2010; 110:582-7. [PMID: 20587371 DOI: 10.1016/j.jbiosc.2010.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/18/2010] [Accepted: 06/06/2010] [Indexed: 01/16/2023]
Abstract
Conventionally, embryonic stem (ES) cells are cultured on a cell layer of mouse embryonic fibroblasts (MEFs) as feeder cells to support undifferentiated growth of ES cells. In this study, cell-cell interactions between mouse ES and feeder cells were artificially engineered via an epithelial cell adhesion molecule, E-cadherin, whose expression is considerable in ES cells. Mouse mesenchymal STO and NIH3T3 cells that were genetically engineered to express E-cadherin were used in ES cell cultures as feeder cells. ES cells cultured on the E-cadherin-expressing feeder cells maintained the expression of stem cell markers, alkaline phosphatase (AP), Oct3/4, Nanog and Sox2, and the efficiency of AP-positive colony formation was comparable to MEFs, and much better than parental STO and NIH3T3 cells. Furthermore, ES cells maintained on the E-cadherin-expressing feeder cells possessed the ability to differentiate into the three germ layers both in vitro and in vivo. The results indicated that E-cadherin expression in feeder cells could improve the performance of feeder cells, which may be further applicable to create new artificial feeder cell lines.
Collapse
Affiliation(s)
- Masanobu Horie
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | |
Collapse
|
95
|
NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 2010; 29:2659-74. [PMID: 20581802 DOI: 10.1038/emboj.2010.137] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/02/2010] [Indexed: 01/03/2023] Open
Abstract
A cohort of genes associated with embryonic stem (ES) cell behaviour, including NANOG, are expressed in a number of human cancers. They form an ES-like signature we first described in glioblastoma multiforme (GBM), a highly invasive and incurable brain tumour. We have also shown that HEDGEHOG-GLI (HH-GLI) signalling is required for GBM growth, stem cell expansion and the expression of this (ES)-like stemness signature. Here, we address the function of NANOG in human GBMs and its relationship with HH-GLI activity. We find that NANOG modulates gliomasphere clonogenicity, CD133(+) stem cell cell behavior and proliferation, and is regulated by HH-GLI signalling. However, GLI1 also requires NANOG activity forming a positive loop, which is negatively controlled by p53 and vice versa. NANOG is essential for GBM tumourigenicity in orthotopic xenografts and it is epistatic to HH-GLI activity. Our data establish NANOG as a novel HH-GLI mediator essential for GBMs. We propose that this function is conserved and that tumour growth and stem cell behaviour rely on the status of a functional GLI1-NANOG-p53 network.
Collapse
|
96
|
Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS One 2010; 5:e11173. [PMID: 20574523 PMCID: PMC2888580 DOI: 10.1371/journal.pone.0011173] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/25/2010] [Indexed: 12/28/2022] Open
Abstract
Adenosine to Inosine (A-to-I) RNA editing is a site-specific modification of RNA transcripts, catalyzed by members of the ADAR (Adenosine Deaminase Acting on RNA) protein family. RNA editing occurs in human RNA in thousands of different sites. Some of the sites are located in protein-coding regions but the majority is found in non-coding regions, such as 3′UTRs, 5′UTRs and introns - mainly in Alu elements. While editing is found in all tissues, the highest levels of editing are found in the brain. It was shown that editing levels within protein-coding regions are increased during embryogenesis and after birth and that RNA editing is crucial for organism viability as well as for normal development. In this study we characterized the A-to-I RNA editing phenomenon during neuronal and spontaneous differentiation of human embryonic stem cells (hESCs). We identified high editing levels of Alu repetitive elements in hESCs and demonstrated a global decrease in editing levels of non-coding Alu sites when hESCs are differentiating, particularly into the neural lineage. Using RNA interference, we showed that the elevated editing levels of Alu elements in undifferentiated hESCs are highly dependent on ADAR1. DNA microarray analysis showed that ADAR1 knockdown has a global effect on gene expression in hESCs and leads to a significant increase in RNA expression levels of genes involved in differentiation and development processes, including neurogenesis. Taken together, we speculate that A-to-I editing of Alu sequences plays a role in the regulation of hESC early differentiation decisions.
Collapse
|
97
|
Schnerch A, Cerdan C, Bhatia M. Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men. Stem Cells 2010; 28:419-30. [PMID: 20054863 DOI: 10.1002/stem.298] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cells (PSCs) have been derived from the embryos of mice and humans, representing the two major sources of PSCs. These cells are universally defined by their developmental properties, specifically their self-renewal capacity and differentiation potential which are regulated in mice and humans by complex transcriptional networks orchestrated by conserved transcription factors. However, significant differences exist in the transcriptional networks and signaling pathways that control mouse and human PSC self-renewal and lineage development. To distinguish between universally applicable and species-specific features, we collated and compared the molecular and cellular descriptions of mouse and human PSCs. Here we compare and contrast the response to signals dictated by the transcriptome and epigenome of mouse and human PSCs that will hopefully act as a critical resource to the field. These analyses underscore the importance of accounting for species differences when designing strategies to capitalize on the clinical potential of human PSCs.
Collapse
Affiliation(s)
- Angelique Schnerch
- Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
98
|
CD45+/CD133+positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency. Cell Biol Int 2010; 34:783-90. [DOI: 10.1042/cbi20090236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
99
|
Nieminen M, Tuuri T, Savilahti H. Genetic recombination pathways and their application for genome modification of human embryonic stem cells. Exp Cell Res 2010; 316:2578-86. [PMID: 20542027 DOI: 10.1016/j.yexcr.2010.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/31/2010] [Accepted: 06/06/2010] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens.
Collapse
Affiliation(s)
- Mikko Nieminen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | | | | |
Collapse
|
100
|
Abstract
The present article reviews master stem cell transcription factors, their expression regulation network, and related signaling pathways with the aim of understanding the molecular mechanisms of pluripotent cell fate decisions. Oct4, Sox2, and Nanog are master transcription factors for maintenance of the undifferentiated state and self-renewal of embryonic stem cells (ESCs). In the mouse, they form a regulatory circuitry with coregulators, such as beta-catenin, Stat3, Myc, Klfs, Sall4, and Esrrb to control the expression of pluripotency-related genes including themselves. The threshold expression of Oct4, Sox2, and Nanog for sustaining ESC properties depends on the synergistic effects among Stat3, beta-catenin, and Smad signaling pathway under the specific conditions of the ESC cytoplasmic microenvironment. Some of the salient differences in human ESC signaling pathways affecting their fate commitment are highlighted.
Collapse
Affiliation(s)
- Yu-Qiang Li
- Cell Laboratory, Marine College, Shandong University at Weihai, Shandong, People's Republic of China.
| |
Collapse
|