51
|
Gou Y, Li J, Jackson-Weaver O, Wu J, Zhang T, Gupta R, Cho I, Ho TV, Chen Y, Li M, Richard S, Wang J, Chai Y, Xu J. Protein Arginine Methyltransferase PRMT1 Is Essential for Palatogenesis. J Dent Res 2018; 97:1510-1518. [PMID: 29986157 DOI: 10.1177/0022034518785164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cleft palate is among the most common birth defects. Currently, only 30% of cases have identified genetic causes, whereas the etiology of the majority remains to be discovered. We identified a new regulator of palate development, protein arginine methyltransferase 1 (PRMT1), and demonstrated that disruption of PRMT1 function in neural crest cells caused complete cleft palate and craniofacial malformations. PRMT1 is the most highly expressed of the protein arginine methyltransferases, enzymes responsible for methylation of arginine motifs on histone and nonhistone proteins. PRMT1 regulates signal transduction and transcriptional activity that affect multiple signal pathways crucial in craniofacial development, such as the BMP, TGFβ, and WNT pathways. We demonstrated that Wnt1-Cre;Prmt1 fl/fl mice displayed a decrease in palatal mesenchymal cell proliferation and failure of palatal shelves to reach the midline. Further analysis in signal pathways revealed that loss of Prmt1 in mutant mice decreased BMP signaling activation and reduced the deposition of H4R3me2a mark. Collectively, our study demonstrates that Prmt1 is crucial in palate development. Our study may facilitate the development of a better strategy to interrupt the formation of cleft palate through manipulation of PRMT1 activity.
Collapse
Affiliation(s)
- Y Gou
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - J Li
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - O Jackson-Weaver
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - J Wu
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - T Zhang
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - R Gupta
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - I Cho
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - T V Ho
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Y Chen
- 3 Bioinfornatics Group, Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - M Li
- 3 Bioinfornatics Group, Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - S Richard
- 4 Segal Cancer Center, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, Canada
| | - J Wang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Chai
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - J Xu
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
52
|
Desanlis I, Felstead HL, Edwards DR, Wheeler GN. ADAMTS9, a member of the ADAMTS family, in Xenopus development. Gene Expr Patterns 2018; 29:72-81. [PMID: 29935379 PMCID: PMC6119763 DOI: 10.1016/j.gep.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022]
Abstract
Extracellular matrix (ECM) remodeling by metalloproteinases is crucial during development. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin type I motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling. The human family includes 19 members. In this study we identified the 19 members of the ADAMTS family in Xenopus laevis and Xenopus tropicalis. Gene identification and a phylogenetic study revealed strong conservation of the ADAMTS family and contributed to a better annotation of the Xenopus genomes. Expression of the entire ADAMTS family was studied from early stages to tadpole stages of Xenopus, and detailed analysis of ADAMTS9 revealed expression in many structures during organogenesis such as neural crest (NC) derivative tissues, the pronephros and the pancreas. Versican, a matrix component substrate of ADAMTS9 shows a similar expression pattern suggesting a role of ADAMTS9 in the remodeling of the ECM in these structures by degradation of versican.
Collapse
Affiliation(s)
- Ines Desanlis
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hannah L Felstead
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Dylan R Edwards
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
53
|
Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol 2018; 71-72:225-239. [PMID: 29885460 DOI: 10.1016/j.matbio.2018.06.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
ADAMTS proteins are a superfamily of 26 secreted molecules comprising two related, but distinct families. ADAMTS proteases are zinc metalloendopeptidases, most of whose substrates are extracellular matrix (ECM) components, whereas ADAMTS-like proteins lack a metalloprotease domain, reside in the ECM and have regulatory roles vis-à-vis ECM assembly and/or ADAMTS activity. Evolutionary conservation and expansion of ADAMTS proteins in mammals is suggestive of crucial embryologic or physiological roles in humans. Indeed, Mendelian disorders or birth defects resulting from naturally occurring ADAMTS2, ADAMTS3, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTS20, ADAMTSL2 and ADAMTSL4 mutations as well as numerous phenotypes identified in genetically engineered mice have revealed ADAMTS participation in major biological pathways. Important roles have been identified in a few acquired conditions. ADAMTS5 is unequivocally implicated in pathogenesis of osteoarthritis via degradation of aggrecan, a major structural proteoglycan in cartilage. ADAMTS7 is strongly associated with coronary artery disease and promotes atherosclerosis. Autoantibodies to ADAMTS13 lead to a platelet coagulopathy, thrombotic thrombocytopenic purpura, which is similar to that resulting from ADAMTS13 mutations. ADAMTS proteins have numerous potential connections to other human disorders that were identified by genome-wide association studies. Here, we review inherited and acquired human disorders in which ADAMTS proteins participate, and discuss progress and prospects in therapeutics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States.
| |
Collapse
|
54
|
Mead TJ, McCulloch DR, Ho JC, Du Y, Adams SM, Birk DE, Apte SS. The metalloproteinase-proteoglycans ADAMTS7 and ADAMTS12 provide an innate, tendon-specific protective mechanism against heterotopic ossification. JCI Insight 2018; 3:92941. [PMID: 29618652 DOI: 10.1172/jci.insight.92941] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022] Open
Abstract
Heterotopic ossification (HO) is a significant clinical problem with incompletely resolved mechanisms. Here, the secreted metalloproteinases ADAMTS7 and ADAMTS12 are shown to comprise a unique proteoglycan class that protects against a tendency toward HO in mouse hindlimb tendons, menisci, and ligaments. Adamts7 and Adamts12 mRNAs were sparsely expressed in murine forelimbs but strongly coexpressed in hindlimb tendons, skeletal muscle, ligaments, and meniscal fibrocartilage. Adamts7-/- Adamts12-/- mice, but not corresponding single-gene mutants, which demonstrated compensatory upregulation of the intact homolog mRNA, developed progressive HO in these tissues after 4 months of age. Adamts7-/- Adamts12-/- tendons had abnormal collagen fibrils, accompanied by reduced levels of the small leucine-rich proteoglycans (SLRPs) biglycan, fibromodulin, and decorin, which regulate collagen fibrillogenesis. Bgn-/0 Fmod-/- mice are known to have a strikingly similar hindlimb HO to that of Adamts7-/- Adamts12-/- mice, implicating fibromodulin and biglycan reduction as a likely mechanism underlying HO in Adamts7-/- Adamts12-/- mice. Interestingly, degenerated human biceps tendons had reduced ADAMTS7 mRNA compared with healthy biceps tendons, which expressed both ADAMTS7 and ADAMTS12. These results suggest that ADAMTS7 and ADAMTS12 drive an innate pathway protective against hindlimb HO in mice and may be essential for human tendon health.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering and the Orthopaedic and Rheumatologic Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Daniel R McCulloch
- Department of Biomedical Engineering and the Orthopaedic and Rheumatologic Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Jason C Ho
- Department of Biomedical Engineering and the Orthopaedic and Rheumatologic Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Orthopaedic Surgery and the Orthopaedic and Rheumatology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yaoyao Du
- Department of Biomedical Engineering and the Orthopaedic and Rheumatologic Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Sheila M Adams
- Departments of Molecular Pharmacology and Physiology and Orthopaedics and Sports Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - David E Birk
- Departments of Molecular Pharmacology and Physiology and Orthopaedics and Sports Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Suneel S Apte
- Department of Biomedical Engineering and the Orthopaedic and Rheumatologic Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
55
|
Suzuki A, Jun G, Abdallah N, Gajera M, Iwata J. Gene datasets associated with mouse cleft palate. Data Brief 2018; 18:655-673. [PMID: 29896534 PMCID: PMC5996166 DOI: 10.1016/j.dib.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
This article presents data on genes associated with cleft palate (CP), retrieved through both a full-text systematic review and a mouse genome informatics (MGI) database search. In order to group CP-associated genes according to function, pathway, biological process, and cellular component, the genes were analyzed using category enrichment bioinformatics tools, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). This approach provides invaluable opportunities for the identification of candidate pathways and genes in CP research.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
56
|
Dancevic CM, Gibert Y, Berger J, Smith AD, Liongue C, Stupka N, Ward AC, McCulloch DR. The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation. Int J Mol Sci 2018. [PMID: 29518972 PMCID: PMC5877627 DOI: 10.3390/ijms19030766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated.
Collapse
Affiliation(s)
- Carolyn M Dancevic
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Yann Gibert
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Adam D Smith
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Nicole Stupka
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
57
|
Disintegrin and metalloproteinases (ADAMs and ADAM-TSs), the emerging family of proteases in heart physiology and pathology. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Liu DT, Carter NJ, Wu XJ, Hong WS, Chen SX, Zhu Y. Progestin and Nuclear Progestin Receptor Are Essential for Upregulation of Metalloproteinase in Zebrafish Preovulatory Follicles. Front Endocrinol (Lausanne) 2018; 9:517. [PMID: 30279677 PMCID: PMC6153345 DOI: 10.3389/fendo.2018.00517] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022] Open
Abstract
Ovulation requires proteinases to promote the rupture of ovarian follicles. However, the identity of these proteinases remains unclear. In our previous studies using RNA-seq analysis of differential expressed genes, we found significant down-regulation of five metalloproteinases: adam8b (a disintegrin and metalloproteinase domain 8b), adamts8a (a disintegrin and metalloproteinase with thrombospondin motif 8a), adamts9, mmp2 (matrix metalloproteinase 2), and mmp9 in the nuclear progestin receptor knockout (pgr -/-) zebrafish that have failed to ovulate. We hypothesize that these metalloproteinases are responsible for ovulation and are regulated by progestin and Pgr. In this study, we first determined the expression of these five metalloproteinases and adamts1 in preovulatory follicles at different times within the spawning cycle in pgr -/- and wildtype (wt) zebrafish and under varying hormonal treatments. We found that transcripts of adam8b, adamts1, adamts9, and mmp9 increased drastically in the preovulatory follicular cells of wt female zebrafish, while changes of adamts8a and mmp2 were not significant. This increase of adam8b, adamts9, and mmp9 was significantly reduced in pgr -/-, whereas expression of adamts1 was not affected in pgr -/- zebrafish. Among upregulated metalloproteinases, adamts9 mRNA was found to be expressed specifically in follicular cells. Strong immunostaining of Adamts9 protein was observed in the follicular cells of wt fish, and this expression was reduced drastically in pgr -/-. Interestingly, about an hour prior to the increase of metalloproteinases in wt fish, both Pgr transcript and protein increased transiently in preovulatory follicular cells. The results from in vitro experiments showed that adamts9 expression markedly increased in a dose, time and Pgr-dependent manner when preovulatory follicles were exposed to a progestin, 17α,20β-dihydroxy-4-pregnen-3-one (DHP). Taken together, our results provide the first evidence that upregulation of adamts9 occurs specifically in preovulatory follicular cells of zebrafish prior to ovulation. Progestin and its receptor (Pgr) are essential for the upregulation of metalloproteinases.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Nichole J. Carter
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Xin Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Shi Xi Chen
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Biology, East Carolina University, Greenville, NC, United States
- Yong Zhu
| |
Collapse
|
59
|
Stromal Versican Regulates Tumor Growth by Promoting Angiogenesis. Sci Rep 2017; 7:17225. [PMID: 29222454 PMCID: PMC5722896 DOI: 10.1038/s41598-017-17613-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
The proteoglycan versican is implicated in growth and metastases of several cancers. Here we investigated a potential contribution of stromal versican to tumor growth and angiogenesis. We initially determined versican expression by several cancer cell lines. Among these, MDA-MB231 and B16F10 had none to minimal expression in contrast to Lewis lung carcinoma (LLC). Notably, tumors arising from these cell lines had higher versican levels than the cell lines themselves suggesting a contribution from the host-derived tumor stroma. In LLC-derived tumors, both the tumor and stroma expressed versican at high levels. Thus, tumor stroma can make a significant contribution to tumor versican content. Versican localized preferentially to the vicinity of tumor vasculature and macrophages in the tumor. However, an ADAMTS protease-generated versican fragment uniquely localized to vascular endothelium. To specifically determine the impact of host/stroma-derived versican we therefore compared growth of tumors from B16F10 cells, which produced littleversican, in Vcan hdf/+ mice and wild-type littermates. Tumors in Vcan hdf/+ mice had reduced growth with a lower capillary density and accumulation of capillaries at the tumor periphery. These findings illustrate the variability of tumor cell line expression of versican, and demonstrate that versican is consistently contributed by the stromal tissue, where it contributes to tumor angiogenesis.
Collapse
|
60
|
Murasawa Y, Nakamura H, Watanabe K, Kanoh H, Koyama E, Fujii S, Kimata K, Zako M, Yoneda M, Isogai Z. The Versican G1 Fragment and Serum-Derived Hyaluronan-Associated Proteins Interact and Form a Complex in Granulation Tissue of Pressure Ulcers. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:432-449. [PMID: 29169988 DOI: 10.1016/j.ajpath.2017.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 01/03/2023]
Abstract
The hyaluronan (HA)-rich extracellular matrix plays dynamic roles during tissue remodeling. Versican and serum-derived HA-associated protein (SHAP), corresponding to the heavy chains of inter-α-trypsin inhibitor, are major HA-binding molecules in remodeling processes, such as wound healing. Versican G1-domain fragment (VG1F) is generated by proteolysis and is present in either remodeling tissues or the mature dermis. However, the macrocomplex formation of VG1F has not been clarified. Therefore, we examined the VG1F-containing macrocomplex in pressure ulcers characterized by chronic refractory wounds. VG1F colocalized with SHAP-HA in specific regions of the granulation tissue but not with fibrillin-1. A unique VG1F-SHAP-HA complex was isolated from granulation tissues using gel filtration chromatography and subsequent cesium chloride-gradient ultracentrifugation under dissociating conditions. Consistent with this molecular composition, recombinant versican G1, but not versican G3, interacted with the two heavy chains of inter-α-trypsin inhibitor. The addition of recombinant VG1 in fibroblast cultures enhanced VG1F-SHAP-HA complex deposition in the pericellular extracellular matrix. Comparison with other VG1F-containing macrocomplexes, including dermal VG1F aggregates, versican-bound microfibrils, and intact versican, highlighted the tissue-specific organization of HA-rich extracellular matrix formation containing versican and SHAP. The VG1F-SHAP-HA complex was specifically detected in the edematous granulation tissues of human pressure ulcers and in inflamed stages in a mouse model of moist would healing, suggesting that the complex provides an HA-rich matrix suitable for inflammatory reactions.
Collapse
Affiliation(s)
- Yusuke Murasawa
- Department of Advanced Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroyuki Nakamura
- Department of Dental Regenerative Medicine, Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ken Watanabe
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Toki Municipal Hospital, Toki, Japan
| | - Emiko Koyama
- Department of Nursing, Kurashiki Heisei Hospital, Kurashiki, Japan
| | - Satoshi Fujii
- Department of Laboratory Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Koji Kimata
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Masahiro Zako
- School of Nursing and Health, Aichi Prefectural University, Nagoya, Japan
| | - Masahiko Yoneda
- School of Nursing and Health, Aichi Prefectural University, Nagoya, Japan
| | - Zenzo Isogai
- Department of Advanced Medicine, National Center for Geriatrics and Gerontology, Obu, Japan; School of Nursing and Health, Aichi Prefectural University, Nagoya, Japan.
| |
Collapse
|
61
|
Liu DT, Brewer MS, Chen S, Hong W, Zhu Y. Transcriptomic signatures for ovulation in vertebrates. Gen Comp Endocrinol 2017; 247:74-86. [PMID: 28111234 PMCID: PMC5410184 DOI: 10.1016/j.ygcen.2017.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/01/2023]
Abstract
The central roles of luteinizing hormone (LH), progestin and their receptors for initiating ovulation have been well established. However, signaling pathways and downstream targets such as proteases that are essential for the rupture of follicular cells are still unclear. Recently, we found anovulation in nuclear progestin receptor (Pgr) knockout (Pgr-KO) zebrafish, which offers a new model for examining genes and pathways that are important for ovulation and fertility. In this study, we examined expression of all transcripts using RNA-Seq in preovulatory follicular cells collected following the final oocyte maturation, but prior to ovulation, from wild-type (WT) or Pgr-KO fish. Differential expression analysis revealed 3567 genes significantly differentially expressed between WT and Pgr-KO fish (fold change⩾2, p<0.05). Among those, 1543 gene transcripts were significantly more expressed, while 2024 genes were significantly less expressed, in WT than those in Pgr-KO. We then retrieved and compared transcriptional data from online databases and further identified 661 conserved genes in fish, mice, and humans that showed similar levels of high (283 genes) or low (387) expression in animals that were ovulating compared to those with no ovulation. For the first time, ovulatory genes and their involved biological processes and pathways were also visualized using Enrichment Map and Cytoscape. Intriguingly, enrichment analysis indicated that the genes with higher expression were involved in multiple ovulatory pathways and processes such as inflammatory response, angiogenesis, cytokine production, cell migration, chemotaxis, MAPK, focal adhesion, and cytoskeleton reorganization. In contrast, the genes with lower expression were mainly involved in DNA replication, DNA repair, DNA methylation, RNA processing, telomere maintenance, spindle assembling, nuclear acid transport, catabolic processes, and nuclear and cell division. Our results indicate that a large set of genes (>3000) is differentially regulated in the follicular cells in zebrafish prior to ovulation, terminating programs such as growth and proliferation, and beginning processes including the inflammatory response and apoptosis. Further studies are required to establish relationships among these genes and an ovulatory circuit in the zebrafish model.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China; Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Shixi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China
| | - Wanshu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China; Department of Biology, East Carolina University, Greenville, NC 27858, United States.
| |
Collapse
|
62
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
63
|
Association between coding single nucleotide polymorphisms in ADAMTS20 and schizophrenia in a Korean population. Psychiatry Res 2016; 246:332-334. [PMID: 27750115 DOI: 10.1016/j.psychres.2016.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/25/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
64
|
Ataca D, Caikovski M, Piersigilli A, Moulin A, Benarafa C, Earp SE, Guri Y, Kostic C, Arsenijevic Y, Soininen R, Apte SS, Brisken C. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development. Biol Open 2016; 5:1585-1594. [PMID: 27638769 PMCID: PMC5155532 DOI: 10.1242/bio.019711] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain 'orphan' proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis.
Collapse
Affiliation(s)
- Dalya Ataca
- Ecole Polytechnique Fédérale de Lausanne, ISREC, NCCR Molecular Oncology, Station 19, Lausanne CH-1015, Switzerland
| | - Marian Caikovski
- Ecole Polytechnique Fédérale de Lausanne, ISREC, NCCR Molecular Oncology, Station 19, Lausanne CH-1015, Switzerland
| | - Alessandra Piersigilli
- Ecole Polytechnique Fédérale de Lausanne, ISREC, NCCR Molecular Oncology, Station 19, Lausanne CH-1015, Switzerland
| | - Alexandre Moulin
- Jules-Gonin Eye Hospital, University of Lausanne, Avenue de France 15, Lausanne CH-1004, Switzerland
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern CH-3012, Switzerland
| | - Sarah E Earp
- Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Yakir Guri
- Ecole Polytechnique Fédérale de Lausanne, ISREC, NCCR Molecular Oncology, Station 19, Lausanne CH-1015, Switzerland.,Biozentrum, University of Basel, Basel CH-4056, Switzerland
| | - Corinne Kostic
- Jules-Gonin Eye Hospital, University of Lausanne, Avenue de France 15, Lausanne CH-1004, Switzerland
| | - Yvan Arsenijevic
- Jules-Gonin Eye Hospital, University of Lausanne, Avenue de France 15, Lausanne CH-1004, Switzerland
| | - Raija Soininen
- Department of Pathology, Biocenter Oulu, University of Oulu, Oulu FIN-90014, Finland
| | - Suneel S Apte
- Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Cathrin Brisken
- Ecole Polytechnique Fédérale de Lausanne, ISREC, NCCR Molecular Oncology, Station 19, Lausanne CH-1015, Switzerland
| |
Collapse
|
65
|
Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep 2016; 6:33974. [PMID: 27687499 PMCID: PMC5043182 DOI: 10.1038/srep33974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/06/2016] [Indexed: 01/15/2023] Open
Abstract
Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseβ1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS. Mass spectrometry of recombinant ADAMTS9 showed that 9 of 12 TSRs with the O-fucosylation consensus sequence carried the Glucoseβ1-3Fucose disaccharide and B3GLCT knockdown reduced ADAMTS9 secretion in HEK293F cells. Together, the genetic and biochemical findings imply a dosage-dependent role for ADAMTS9 in ocular morphogenesis. Reduced secretion of ADAMTS9 in the absence of B3GLCT is proposed as a mechanism of Peters anomaly in PPS. The functional link between ADAMTS9 and B3GLCT established here also provides credence to their recently reported association with age-related macular degeneration.
Collapse
|
66
|
Velásquez AE, Manríquez J, Castro FO, Cox JF, Rodriguez-Alvarez L. Embryo splitting affects the transcriptome during elongation stage of in vitro-produced bovine blastocysts. Theriogenology 2016; 87:124-134. [PMID: 27641677 DOI: 10.1016/j.theriogenology.2016.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 01/26/2023]
Abstract
Embryo splitting has been used for the production of identical twins and to increase the pregnancy rate per available embryo. Split blastocysts can develop to term; however, little is known about the impact on gene expression of split embryos, especially at the whole transcriptome level. This work was aimed to evaluate the effect of blastocyst splitting on global gene expression profile at the elongation stage. For that, split and time-matched nonsplit (control group) bovine blastocysts were transferred to a bovine recipient and recovered at Day 17 of development. The number of collected embryos, their size, and global gene expression was compared between both groups. From 16 transferred split embryos, six (37.5%) were collected, whereas nine elongated were recovered from 17 nonsplit (52.9%). Neither the recovery rate nor the average length of the elongated embryos was significantly different between both groups. However more than 50% of embryos from the control group had a length surpassing 100 mm, whereas only 33% of the split embryos reached that size. Global gene expression was performed in individual elongated embryos from both groups using Two-Color Microarray-Based Gene Expression Analysis. From detected genes, 383 (1.31%) were differentially expressed between both groups, among them, 185 (0.63%) were downregulated and 198 (0.67%) genes were upregulated in split embryos. Bioinformatic analysis of differentially expressed genes revealed that embryo splitting affects transcriptomes of resulting elongated embryos, mainly downregulating genes involved in matrix remodelation, control of growth, detoxification, and transport of metabolites. These in turns might have a detrimental impact on the developmental potential of produced embryos.
Collapse
Affiliation(s)
- A E Velásquez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - J Manríquez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - F O Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - J F Cox
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - Ll Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile.
| |
Collapse
|
67
|
Benz BA, Nandadasa S, Takeuchi M, Grady RC, Takeuchi H, LoPilato RK, Kakuda S, Somerville RPT, Apte SS, Haltiwanger RS, Holdener BC. Genetic and biochemical evidence that gastrulation defects in Pofut2 mutants result from defects in ADAMTS9 secretion. Dev Biol 2016; 416:111-122. [PMID: 27297885 DOI: 10.1016/j.ydbio.2016.05.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023]
Abstract
Protein O-fucosyltransferase 2 (POFUT2) adds O-linked fucose to Thrombospondin Type 1 Repeats (TSR) in 49 potential target proteins. Nearly half the POFUT2 targets belong to the A Disintegrin and Metalloprotease with ThromboSpondin type-1 motifs (ADAMTS) or ADAMTS-like family of proteins. Both the mouse Pofut2 RST434 gene trap allele and the Adamts9 knockout were reported to result in early embryonic lethality, suggesting that defects in Pofut2 mutant embryos could result from loss of O-fucosylation on ADAMTS9. To address this question, we compared the Pofut2 and Adamts9 knockout phenotypes and used Cre-mediated deletion of Pofut2 and Adamts9 to dissect the tissue-specific role of O-fucosylated ADAMTS9 during gastrulation. Disruption of Pofut2 using the knockout (LoxP) or gene trap (RST434) allele, as well as deletion of Adamts9, resulted in disorganized epithelia (epiblast, extraembryonic ectoderm, and visceral endoderm) and blocked mesoderm formation during gastrulation. The similarity between Pofut2 and Adamts9 mutants suggested that disruption of ADAMTS9 function could be responsible for the gastrulation defects observed in Pofut2 mutants. Consistent with this prediction, CRISPR/Cas9 knockout of POFUT2 in HEK293T cells blocked secretion of ADAMTS9. We determined that Adamts9 was dynamically expressed during mouse gastrulation by trophoblast giant cells, parietal endoderm, the most proximal visceral endoderm adjacent to the ectoplacental cone, extraembryonic mesoderm, and anterior primitive streak. Conditional deletion of either Pofut2 or Adamts9 in the epiblast rescues the gastrulation defects, and identified a new role for O-fucosylated ADAMTS9 during morphogenesis of the amnion and axial mesendoderm. Combined, these results suggested that loss of ADAMTS9 function in the extra embryonic tissue is responsible for gastrulation defects in the Pofut2 knockout. We hypothesize that loss of ADAMTS9 function in the most proximal visceral endoderm leads to slippage of the visceral endoderm and altered characteristics of the extraembryonic ectoderm. Consequently, loss of input from the extraembryonic ectoderm and/or compression of the epiblast by Reichert's membrane blocks gastrulation. In the future, the Pofut2 and Adamts9 knockouts will be valuable tools for understanding how local changes in the properties of the extracellular matrix influence the organization of tissues during mammalian development.
Collapse
Affiliation(s)
- Brian A Benz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Sumeda Nandadasa
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Megumi Takeuchi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Richard C Grady
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Hideyuki Takeuchi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Rachel K LoPilato
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Robert P T Somerville
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States.
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
68
|
Versican: a novel modulator of hepatic fibrosis. J Transl Med 2016; 96:361-74. [PMID: 26752747 DOI: 10.1038/labinvest.2015.152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Little is known about the deposition and turnover of proteoglycans in liver fibrosis, despite their abundance in the extracellular matrix. Versican plays diverse roles in modulating cell behavior in other fibroproliferative diseases, but remains poorly described in the liver. Hepatic fibrosis was induced by carbon tetrachloride treatment of C57BL/6 mice over 4 weeks followed by recovery over a 28-day period. Primary mouse hepatic stellate cells (HSCs) were activated in culture and versican was transiently knocked down in human (LX2) and mouse HSCs. Expression of versican, A Disintegrin-like and Metalloproteinase with Thrombospondin-1 motifs (ADAMTS)-1, -4, -5, -8, -9, -15, and -20, and markers of fibrogenesis were studied using immunohistochemistry, real-time quantitative PCR, and western blotting. Immunohistochemistry showed increased expression of versican in cirrhotic human livers and the mouse model of fibrosis. Carbon tetrachloride treatment led to significant increases in versican expression and the proteoglycanases ADAMTS-5, -9, -15, and -20, alongside TNF-α, α-smooth muscle actin (α-SMA), collagen-1, and TGF-β expression. During recovery, expression of many of these genes returned to control levels. However, expression of ADAMTS-5, -8, -9, and -15 showed delayed increases in expression at 28 days of recovery, which corresponded with decreases in versican V0 and V1 cleavage products (G1-DPEAAE(1401) and G1-DPEAAE(441)). Activation of primary HSCs in vitro significantly increased versican, α-SMA, and collagen-1 expression. Transient knockdown of versican in HSCs led to decreases in markers of fibrogenesis and reduced cell proliferation, without inducing apoptosis. Versican expression increases during HSC activation and liver fibrosis, and proteolytic processing occurs during the resolution of fibrosis. Knockdown studies in vitro suggest a possible role of versican in modulating hepatic fibrogenesis.
Collapse
|
69
|
Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol 2015; 93:186-99. [PMID: 26522853 DOI: 10.1016/j.yjmcc.2015.10.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of membrane-bound proteases. ADAM-TSs (ADAMs with thrombospondin domains) are a close relative of ADAMs that are present in soluble form in the extracellular space. Dysregulated production or function of these enzymes has been associated with pathologies such as cancer, asthma, Alzheimer's and cardiovascular diseases. ADAMs contribute to angiogenesis, hypertrophy and apoptosis in a stimulus- and cell type-dependent manner. Among the ADAMs identified so far (34 in mouse, 21 in human), ADAMs 8, 9, 10, 12, 17 and 19 have been shown to be involved in cardiovascular development or cardiomyopathies; and among the 19 ADAM-TSs, ADAM-TS1, 5, 7 and 9 are important in development of the cardiovascular system, while ADAM-TS13 can contribute to vascular disorders. Meanwhile, there remain a number of ADAMs and ADAM-TSs whose function in the cardiovascular system has not been yet explored. The current knowledge about the role of ADAMs and ADAM-TSs in the cardiovascular pathologies is still quite limited. The most detailed studies have been performed in other cell types (e.g. cancer cells) and organs (nervous system) which can provide valuable insight into the potential functions of ADAMs and ADAM-TSs, their mechanism of action and therapeutic potentials in cardiomyopathies. Here, we review what is currently known about the structure and function of ADAMs and ADAM-TSs, and their roles in development, physiology and pathology of the cardiovascular system.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
70
|
Wu W, Gu S, Sun C, He W, Xie X, Li X, Ye W, Qin C, Chen Y, Xiao J, Liu C. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves. PLoS One 2015; 10:e0136951. [PMID: 26332583 PMCID: PMC4558018 DOI: 10.1371/journal.pone.0136951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/10/2015] [Indexed: 01/15/2023] Open
Abstract
In palatogenesis, palatal shelves are patterned along the mediolateral axis as well as the anteroposterior axis before the onset of palatal fusion. Fgf10 specifically expressed in lateral mesenchyme of palate maintains Shh transcription in lateral epithelium, while Fgf7 activated in medial mesenchyme by Dlx5, suppressed the expansion of Shh expression to medial epithelium. How FGF signaling pathways regulate the cell behaviors of developing palate remains elusive. In our study, we found that when Fgf8 is ectopically expressed in the embryonic palatal mesenchyme, the elevation of palatal shelves is impaired and the posterior palatal shelves are enlarged, especially in the medial side. The palatal deformity results from the drastic increase of cell proliferation in posterior mesenchyme and decrease of cell proliferation in epithelium. The expression of mesenchymal Fgf10 and epithelial Shh in the lateral palate, as well as the Dlx5 and Fgf7 transcription in the medial mesenchyme are all interrupted, indicating that the epithelial-mesenchymal interactions during palatogenesis are disrupted by the ectopic activation of mesenchymal Fgf8. Besides the altered Fgf7, Fgf10, Dlx5 and Shh expression pattern, the reduced Osr2 expression domain in the lateral mesenchyme also suggests an impaired mediolateral patterning of posterior palate. Moreover, the ectopic Fgf8 expression up-regulates pJak1 throughout the palatal mesenchyme and pErk in the medial mesenchyme, but down-regulates pJak2 in the epithelium, suggesting that during normal palatogenesis, the medial mesenchymal cell proliferation is stimulated by FGF/Erk pathway, while the epithelial cell proliferation is maintained through FGF/Jak2 pathway.
Collapse
Affiliation(s)
- Weijie Wu
- Department of Stomatology, Shanghai Zhongshan Hospital, Shanghai, China
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Shuping Gu
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Cheng Sun
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Wei He
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Xiaohua Xie
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
- Department of Endodontics, Institute of Hard Tissue Development and Regeneration, the 2 Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xihai Li
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenduo Ye
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
| | - Yiping Chen
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Jing Xiao
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (JX); (CL)
| | - Chao Liu
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (JX); (CL)
| |
Collapse
|
71
|
Zhang J, Yang R, Liu Z, Hou C, Zong W, Zhang A, Sun X, Gao J. Loss of lysyl oxidase-like 3 causes cleft palate and spinal deformity in mice. Hum Mol Genet 2015; 24:6174-85. [PMID: 26307084 PMCID: PMC4599675 DOI: 10.1093/hmg/ddv333] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/10/2015] [Indexed: 01/04/2023] Open
Abstract
In mammals, embryonic development are highly regulated morphogenetic processes that are tightly controlled by genetic elements. Failure of any one of these processes can result in embryonic malformation. The lysyl oxidase (LOX) family genes are closely related to human diseases. In this study, we investigated the essential role of lysyl oxidase-like 3 (LOXL3), a member of the LOX family, in embryonic development. Mice lacking LOXL3 exhibited perinatal lethality, and the deletion of the Loxl3 gene led to impaired development of the palate shelves, abnormalities in the cartilage primordia of the thoracic vertebrae and mild alveolar shrinkage. We found that the obvious decrease of collagen cross-links in palate and spine that was induced by the lack of LOXL3 resulted in cleft palate and spinal deformity. Thus, we provide critical in vivo evidence that LOXL3 is indispensable for mouse palatogenesis and vertebral column development. The Loxl3 gene may be a candidate disease gene resulting in cleft palate and spinal deformity.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Rui Yang
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Ziyi Liu
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Congzhe Hou
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Wen Zong
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Aizhen Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Xiaoyang Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| | - Jiangang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| |
Collapse
|
72
|
Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 2015; 16:113. [PMID: 26025392 PMCID: PMC4448532 DOI: 10.1186/s13059-015-0676-3] [Citation(s) in RCA: 433] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ines Desanlis
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Grant N Wheeler
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Dylan R Edwards
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
73
|
ADAMTS9-Mediated Extracellular Matrix Dynamics Regulates Umbilical Cord Vascular Smooth Muscle Differentiation and Rotation. Cell Rep 2015; 11:1519-28. [PMID: 26027930 DOI: 10.1016/j.celrep.2015.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/03/2015] [Accepted: 05/03/2015] [Indexed: 11/17/2022] Open
Abstract
Despite the significance for fetal nourishment in mammals, mechanisms of umbilical cord vascular growth remain poorly understood. Here, the secreted metalloprotease ADAMTS9 is shown to be necessary for murine umbilical cord vascular development. Restricting it to the cell surface using a gene trap allele, Adamts9(Gt), impaired umbilical vessel elongation and radial growth via reduced versican proteolysis and accumulation of extracellular matrix (ECM). Both Adamts9(Gt) and conditional Adamts9 deletion revealed that ADAMTS9 produced by mesenchymal cells acted non-autonomously to regulate smooth muscle cell (SMC) proliferation, differentiation, and orthogonal reorientation during growth of the umbilical vasculature. In Adamts9(Gt/Gt), we observed interference with PDGFRβ signaling via the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which regulates cytoskeletal dynamics during SMC rotation. In addition, we observed disrupted Shh signaling and perturbed orientation of the mesenchymal primary cilium. Thus, ECM dynamics is a major influence on umbilical vascular SMC fate, with ADAMTS9 acting as its principal mediator.
Collapse
|
74
|
Apte SS, Parks WC. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future. Matrix Biol 2015; 44-46:1-6. [PMID: 25916966 DOI: 10.1016/j.matbio.2015.04.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022]
Abstract
This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes rather than ECM proteolysis. The overlap in the activities within and between these families leads to the view that ECM proteolysis, which is indispensable for life, was over-engineered to an extraordinary extent during vertebrate evolution. That these proteinases, which likely evolved within networks regulating morphogenesis, immunity and regeneration, also participate in diseases is a side effect of human longevity. Attempts to inhibit metalloproteinases in human diseases thus require continuing appraisal of their biological roles and cautious evaluation of potential new therapeutic opportunities.
Collapse
Affiliation(s)
- Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| | | |
Collapse
|
75
|
Wolf ZT, Brand HA, Shaffer JR, Leslie EJ, Arzi B, Willet CE, Cox TC, McHenry T, Narayan N, Feingold E, Wang X, Sliskovic S, Karmi N, Safra N, Sanchez C, Deleyiannis FWB, Murray JC, Wade CM, Marazita ML, Bannasch DL. Genome-wide association studies in dogs and humans identify ADAMTS20 as a risk variant for cleft lip and palate. PLoS Genet 2015; 11:e1005059. [PMID: 25798845 PMCID: PMC4370697 DOI: 10.1371/journal.pgen.1005059] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023] Open
Abstract
Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10-13; adjusted p= 2.2 x 10-3). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 – 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans. Cleft lip with or without cleft palate (CL/P) is a commonly occurring birth defect that can lead to a lifetime of complications in affected children. To better understand the genetic cause of these disorders, we investigated CL/P in both dogs and humans. Genome-wide association studies in both species independently identify ADAMTS20 as a candidate gene for CL/P development. In dogs, a deletion within a functional domain of ADAMTS20 is responsible for CL/P in the Nova Scotia Duck Tolling Retriever dog breed. In humans, an associated region containing the same gene, ADAMTS20, was identified in a study population of native Guatemalans. Subsequent sequencing in humans was unable to identify a causative mutation within the coding region of ADAMTS20 in the Guatemalan cohort; however, sequencing of ADAMTS20 in additional cases with CL/P identified four novel coding variants. This work provides genetic evidence for a role for ADAMTS20 in CL/P development in both dogs and humans.
Collapse
Affiliation(s)
- Zena T. Wolf
- Department of Population Health and Reproduction, School of Veterinary Medicine University of California, Davis, Davis, California, United States of America
| | - Harrison A. Brand
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth J. Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Cali E. Willet
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy C. Cox
- Department of Pediatrics (Division of Craniofacial Medicine), University of Washington, Seattle, Washington, United States of America
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Toby McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nicole Narayan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Xioajing Wang
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Saundra Sliskovic
- Department of Population Health and Reproduction, School of Veterinary Medicine University of California, Davis, Davis, California, United States of America
| | - Nili Karmi
- Department of Population Health and Reproduction, School of Veterinary Medicine University of California, Davis, Davis, California, United States of America
| | - Noa Safra
- Department of Population Health and Reproduction, School of Veterinary Medicine University of California, Davis, Davis, California, United States of America
| | - Carla Sanchez
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Frederic W. B. Deleyiannis
- Department of Surgery, Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jeffrey C. Murray
- Division of Neonatology, Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Claire M. Wade
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, United States of America
- Clinical and Translational Science and Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (MLM); (DLB)
| | - Danika L. Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine University of California, Davis, Davis, California, United States of America
- * E-mail: (MLM); (DLB)
| |
Collapse
|
76
|
Dubail J, Apte SS. Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol 2015; 44-46:24-37. [PMID: 25770910 DOI: 10.1016/j.matbio.2015.03.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell-matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis. Specific genetic models have provided crucial insights on mechanisms of osteoarthritis (OA), a common adult-onset degenerative condition. Engineered mutants will facilitate interpretation of exome variants identified in isolated birth defects and rare genetic conditions, as well as in genome-wide screens for trait and disease associations. Mammalian forward and reverse genetics, together with genome-wide analysis, together constitute a powerful force for revealing the functions of ADAMTS proteins in physiological pathways and health disorders. Their continuing use, together with genome-editing technology and the ability to generate stem cells from mutants, presents numerous opportunities for advancing basic knowledge, human disease pathways and therapy.
Collapse
Affiliation(s)
- Johanne Dubail
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
77
|
Liu S, Higashihori N, Yahiro K, Moriyama K. Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis. Biochem Biophys Res Commun 2015; 458:525-530. [DOI: 10.1016/j.bbrc.2015.01.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/30/2015] [Indexed: 12/29/2022]
|
78
|
Brunet FG, Fraser FW, Binder MJ, Smith AD, Kintakas C, Dancevic CM, Ward AC, McCulloch DR. The evolutionary conservation of the A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motif metzincins across vertebrate species and their expression in teleost zebrafish. BMC Evol Biol 2015; 15:22. [PMID: 25879701 PMCID: PMC4349717 DOI: 10.1186/s12862-015-0281-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022] Open
Abstract
Background The A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motifs (ADAMTS) enzymes comprise 19 mammalian zinc-dependent metalloproteinases (metzincins) with homologues in a wide range of invertebrates. ADAMTS enzymes have a broad range of functions in development and diseases due to their extracellular matrix remodelling activity. Here, we report a detailed characterisation of their evolutionary conservation across vertebrates. Results Using bioinformatics complemented with de novo sequencing, gene sequences for ADAMTS enzymes were obtained from a variety of organisms. Detailed evolutionary analyses revealed a high level of conservation across vertebrates with evidence of ADAMTS gene expansion during two rounds of whole genome duplication (WGD) in vertebrates, while tandem duplication events and gene loss were also apparent. However, the additional round of teleost-specific WGD did not have a significant effect on ADAMTS gene family members suggesting their conserved roles have remained constant in teleost fish. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed dynamic expression of adamts genes throughout zebrafish embryonic development reflecting the key conserved roles they play in vertebrate embryogenesis. Notably, several adamts mRNAs were maternally expressed with a dramatic increase in mRNA levels coinciding with zygotic expression and organogenesis. Broad adamts mRNA expression was also demonstrated in several adult organs indicating potential roles in adult homeostasis. Conclusions Our data highlight the evolution of the ADAMTS gene family through duplication processes across metazoans supplemented by a burst of amplification through vertebrate WGD events. It also strongly posits the zebrafish as a potential model species to further elucidate the function of ADAMTS enzymes during vertebrate development. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0281-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon cedex 07, France.
| | - Fiona W Fraser
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| | - Marley J Binder
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| | - Adam D Smith
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| | | | | | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia. .,Molecular and Medical Research Strategic Research Centre, Deakin University, Geelong, VIC, 3216, Australia.
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia. .,Molecular and Medical Research Strategic Research Centre, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
79
|
Kim HS, Nishiwaki K. Control of the basement membrane and cell migration by ADAMTS proteinases: Lessons from C. elegans genetics. Matrix Biol 2015; 44-46:64-9. [PMID: 25595837 DOI: 10.1016/j.matbio.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 01/22/2023]
Abstract
The members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of secreted proteins, MIG-17 and GON-1, play essential roles in Caenorhabditis elegans gonadogenesis. The genetic and molecular analyses of these proteinases uncovered novel molecular interactions regulating the basement membrane (BM) during the migration of the gonadal leader cells. MIG-17, which is localized to the gonadal BM recruits or activates fibulin-1 and type IV collagen, which then recruits nidogen, thereby inducing the remodeling of the BM that is required for directional control of leader cell migration. GON-1 acts antagonistically with fibulin-1 to regulate the levels of type IV collagen accumulation in the gonadal BM, which facilitates active migration of the leader cells. The cooperative action of MIG-17 and GON-1 represents an excellent model for understanding the mechanisms of organogenesis mediated by ADAMTS proteinases.
Collapse
Affiliation(s)
- Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.
| |
Collapse
|
80
|
Abstract
Versican is a widely distributed chondroitin sulfate proteoglycan that forms large complexes with the glycosaminoglycan hyaluronan (HA). As a consequence of HA binding to its receptor CD44 and interactions of the versican C-terminal globular (G3) domain with a variety of extracellular matrix proteins, versican is a key component of well-defined networks in pericellular matrix and extracellular matrix. It is crucial for several developmental processes in the embryo and there is increasing interest in its roles in cancer and inflammation. Versican proteolysis by ADAMTS proteases is highly regulated, occurs at specific peptide bonds, and is relevant to several physiological and disease mechanisms. In this chapter, methods are described for the isolation and detection of intact and cleaved versican in tissues using morphologic and biochemical techniques. These, together with the methodologies for purification and analysis of recombinant versican and a versican fragment provided here, are likely to facilitate further progress on the biology of versican and its proteolysis.
Collapse
|
81
|
Tavakolinejad S, Ebrahimzadeh Bidskan A, Ashraf H, Hamidi Alamdari D. A glance at methods for cleft palate repair. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e15393. [PMID: 25593724 PMCID: PMC4270645 DOI: 10.5812/ircmj.15393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 01/17/2023]
Abstract
Context: Cleft palate is the second most common birth defect and is considered as a challenge for pediatric plastic surgeons. There is still a general lack of a standard protocol and patients often require multiple surgical interventions during their lifetime along with disappointing results. Evidence Acquisition: PubMed search was undertaken using search terms including 'cleft palate repair', 'palatal cleft closure', 'cleft palate + stem cells', 'cleft palate + plasma rich platelet', 'cleft palate + scaffold', 'palatal tissue engineering', and 'bone tissue engineering'. The found articles were included if they defined a therapeutic strategy and/or assessed a new technique. Results: We reported a summary of the key-points concerning cleft palate development, the genes involving this defect, current therapeutic strategies, recently novel aspects, and future advances in treatments for easy and fast understanding of the concepts, rather than a systematic review. In addition, the results were integrated with our recent experience. Conclusions: Tissue engineering may open a new window in cleft palate reconstruction. Stem cells and growth factors play key roles in this field.
Collapse
Affiliation(s)
- Sima Tavakolinejad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Alireza Ebrahimzadeh Bidskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Hami Ashraf
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Daryoush Hamidi Alamdari
- Biochemistry and Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Corresponding Author: Daryoush Hamidi Alamdari, Biochemistry and Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel: +98-9151017650, E-mail:
| |
Collapse
|
82
|
Foulcer SJ, Nelson CM, Quintero MV, Kuberan B, Larkin J, Dours-Zimmermann MT, Zimmermann DR, Apte SS. Determinants of versican-V1 proteoglycan processing by the metalloproteinase ADAMTS5. J Biol Chem 2014; 289:27859-73. [PMID: 25122765 DOI: 10.1074/jbc.m114.573287] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolysis of the Glu(441)-Ala(442) bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possibility of additional ADAMTS-cleaved processing sites are unknown. We demonstrate here that if Glu(441) is mutated, ADAMTS5 cleaves inefficiently at a proximate upstream site but normally does not cleave elsewhere within the GAGβ domain. Chondroitin sulfate (CS) modification of versican is a prerequisite for cleavage at the Glu(441)-Ala(442) site, as demonstrated by reduced processing of CS-deficient or chondroitinase ABC-treated versican-V1. Site-directed mutagenesis identified the N-terminal CS attachment sites Ser(507) and Ser(525) as essential for processing of the Glu(441)-Ala(442) bond by ADAMTS5. A construct including only these two GAG chains, but not downstream GAG attachment sites, was cleaved efficiently. Therefore, CS chain attachment to Ser(507) and Ser(525) is necessary and sufficient for versican proteolysis by ADAMTS5. Mutagenesis of Glu(441) and an antibody to a peptide spanning Thr(432)-Gly(445) (i.e. containing the scissile bond) reduced versican-V1 processing. ADAMTS5 lacking the C-terminal ancillary domain did not cleave versican, and an ADAMTS5 ancillary domain construct bound versican-V1 via the CS chains. We conclude that docking of ADAMTS5 with two N-terminal GAG chains of versican-V1 via its ancillary domain is required for versican processing at Glu(441)-Ala(442). V1 proteolysis by ADAMTS1 demonstrated a similar requirement for the N-terminal GAG chains and Glu(441). Therefore, versican cleavage can be inhibited substantially by mutation of Glu(441), Ser(507), and Ser(525) or by an antibody to the region of the scissile bond.
Collapse
Affiliation(s)
- Simon J Foulcer
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Courtney M Nelson
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Maritza V Quintero
- the Departments of Medicinal Chemistry and Bioengineering, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Balagurunathan Kuberan
- the Departments of Medicinal Chemistry and Bioengineering, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Jonathan Larkin
- the Experimental Medicine Unit, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, and
| | | | - Dieter R Zimmermann
- the Institute of Surgical Pathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Suneel S Apte
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
83
|
ADAMTS4 and ADAMTS5 knockout mice are protected from versican but not aggrecan or brevican proteolysis during spinal cord injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:693746. [PMID: 25101296 PMCID: PMC4101972 DOI: 10.1155/2014/693746] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/22/2022]
Abstract
The chondroitin sulfate proteoglycans (CSPGs) aggrecan, versican, and brevican are large aggregating extracellular matrix molecules that inhibit axonal growth of the mature central nervous system (CNS). ADAMTS proteoglycanases, including ADAMTS4 and ADAMTS5, degrade CSPGs, representing potential targets for ameliorating axonal growth-inhibition by CSPG accumulation after CNS injury. We investigated the proteolysis of CSPGs in mice homozygous for Adamts4 or Adamts5 null alleles after spinal cord injury (SCI). ADAMTS-derived 50–60 kDa aggrecan and 50 kDa brevican fragments were observed in Adamts4−/−, Adamts5−/−, and wt mice but not in the sham-operated group. By contrast Adamts4−/− and Adamts5−/− mice were both protected from versican proteolysis with an ADAMTS-generated 70 kDa versican fragment predominately observed in WT mice. ADAMTS1, ADAMTS9, and ADAMTS15 were detected by Western blot in Adamts4−/− mice' spinal cords after SCI. Immunohistochemistry showed astrocyte accumulation at the injury site. These data indicate that aggrecan and brevican proteolysis is compensated in Adamts4−/− or Adamts5−/− mice by ADAMTS proteoglycanase family members but a threshold of versican proteolysis is sensitive to the loss of a single ADAMTS proteoglycanase during SCI. We show robust ADAMTS activity after SCI and exemplify the requirement for collective proteolysis for effective CSPG clearance during SCI.
Collapse
|
84
|
Xu X, Chen D, Zhang Z, Wei Z, Cao Y. Molecular signature in human cumulus cells related to embryonic developmental potential. Reprod Sci 2014; 22:173-80. [PMID: 24899471 DOI: 10.1177/1933719114536471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Identification of criteria for embryo quality is required to improve the clinical outcome of in vitro fertilization. The aim of this study was to determine the gene expression profile of cumulus cells (CC) surrounding the oocyte as biomarkers for embryonic developmental potential. CCs from single oocytes were analysed using DNA microarrays. Gene expression profiles of CC surrounding the oocyte associated with good embryonic quality were analyzed. We observed that CCs issued from oocytes that developed into embryos with a good morphology had significantly different gene expression profile from those with bad morphology. These results were confirmed by quantitative RT-PCR. The gene expression profiling of human CC correlates with embryo potential. Our findings suggest anon-invasive approach, offering a new potential strategy for competent embryo selection.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China Institute of Reproductive Genetics, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Dawei Chen
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China Institute of Reproductive Genetics, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Zhiguo Zhang
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China Institute of Reproductive Genetics, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Zhaolian Wei
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China Institute of Reproductive Genetics, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Yunxia Cao
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China Institute of Reproductive Genetics, The First Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
85
|
Dubail J, Aramaki-Hattori N, Bader HL, Nelson CM, Katebi N, Matuska B, Olsen BR, Apte SS. A new Adamts9 conditional mouse allele identifies its non-redundant role in interdigital web regression. Genesis 2014; 52:702-12. [PMID: 24753090 DOI: 10.1002/dvg.22784] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023]
Abstract
ADAMTS9 is the most conserved member of a large family of secreted metalloproteases having diverse functions. Adamts9 null mice die before gastrulation, precluding investigations of its roles later in embryogenesis, in adult mice or disease models. We therefore generated a floxed Adamts9 allele to bypass embryonic lethality. In this mutant, unidirectional loxP sites flank exons 5-8, which encode the catalytic domain, including the protease active site. Mice homozygous for the floxed allele were viable, lacked an overt phenotype, and were fertile. Conversely, mice homozygous for a germ-line deletion produced from the floxed allele by Cre-lox recombination did not survive past gastrulation. Hemizygosity of the deleted Adamts9 in combination with mutant Adamts20 led to cleft palate and severe white spotting as previously described. Previously, Adamts9 haploinsufficiency combined with either Adamts20 or Adamts5 nullizygosity suggested a cooperative role in interdigital web regression, but the outcome of deletion of Adamts9 alone remained unknown. Here, Adamts9 was conditionally deleted in limb mesoderm using Prx1-Cre mice. Unlike other ADAMTS single knockouts, limb-specific Adamts9 deletion resulted in soft-tissue syndactyly (STS) with 100% penetrance and concurrent deletion of Adamts5 increased the severity of STS. Thus, Adamts9 has both non-redundant and cooperative roles in ensuring interdigital web regression. This new allele will be useful for investigating other biological functions of ADAMTS9.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Okano J, Udagawa J, Shiota K. Roles of retinoic acid signaling in normal and abnormal development of the palate and tongue. Congenit Anom (Kyoto) 2014; 54:69-76. [PMID: 24666225 DOI: 10.1111/cga.12049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/26/2013] [Indexed: 02/02/2023]
Abstract
Palatogenesis involves various developmental events such as growth, elevation, elongation and fusion of opposing palatal shelves. Extrinsic factors such as mouth opening and subsequent tongue withdrawal are also needed for the horizontal elevation of palate shelves. Failure of any of these steps can lead to cleft palate, one of the most common birth defects in humans. It has been shown that retinoic acid (RA) plays important roles during palate development, but excess RA causes cleft palate in fetuses of both rodents and humans. Thus, the coordinated regulation of retinoid metabolism is essential for normal palatogenesis. The endogenous RA level is determined by the balance of RA-synthesizing (retinaldehyde dehydrogenases: RALDHs) and RA-degrading enzymes (CYP26s). Cyp26b1 is a key player in normal palatogenesis. In this review, we discuss recent progress in the study of the pathogenesis of RA-induced cleft palate, with special reference to the regulation of endogenous RA levels by RA-degrading enzymes.
Collapse
Affiliation(s)
- Junko Okano
- Department of Anatomy and Cell Biology, Shiga University of Medical Science, Otsu
| | | | | |
Collapse
|
87
|
Nandadasa S, Foulcer S, Apte SS. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol 2014; 35:34-41. [PMID: 24444773 DOI: 10.1016/j.matbio.2014.01.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Simon Foulcer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
88
|
Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation. BMC DEVELOPMENTAL BIOLOGY 2014; 14:3. [PMID: 24433583 PMCID: PMC3899388 DOI: 10.1186/1471-213x-14-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022]
Abstract
Background LIM domain binding protein 1 (LDB1) is a transcriptional co-factor, which interacts with multiple transcription factors and other proteins containing LIM domains. Complete inactivation of Ldb1 in mice resulted in early embryonic lethality with severe patterning defects during gastrulation. Tissue-specific deletions using a conditional knockout allele revealed additional roles of Ldb1 in the development of the central nervous system, hematopoietic system, and limbs. The goal of the current study was to determine the importance of Ldb1 function during craniofacial development in mouse embryos. Results We generated tissue-specific Ldb1 mutants using Wnt1-Cre, which causes deletion of a floxed allele in the neural crest; neural crest-derived cells contribute to most of the mesenchyme of the developing face. All examined Wnt1-Cre;Ldb1fl/- mutants suffered from cleft secondary palate. Therefore, we performed a series of experiments to investigate how Ldb1 regulated palate development. First, we examined the expression of Ldb1 during normal development, and found that Ldb1 was expressed broadly in the palatal mesenchyme during early stages of palate development. Second, we compared the morphology of the developing palate in control and Ldb1 mutant embryos using sections. We found that the mutant palatal shelves had abnormally blunt appearance, and failed to elevate above the tongue at the posterior domain. An in vitro head culture experiment indicated that the elevation defect was not due to interference by the tongue. Finally, in the Ldb1 mutant palatal shelves, cell proliferation was abnormal in the anterior, and the expression of Wnt5a, Pax9 and Osr2, which regulate palatal shelf elevation, was also altered. Conclusions The function of Ldb1 in the neural crest-derived palatal mesenchyme is essential for normal morphogenesis of the secondary palate.
Collapse
|
89
|
The novel secreted factor MIG-18 acts with MIG-17/ADAMTS to control cell migration in Caenorhabditis elegans. Genetics 2013; 196:471-9. [PMID: 24318535 DOI: 10.1534/genetics.113.157685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The migration of Caenorhabditis elegans gonadal distal tip cells (DTCs) offers an excellent model to study the migration of epithelial tubes in organogenesis. mig-18 mutants cause meandering or wandering migration of DTCs during gonad formation, which is very similar to that observed in animals with mutations in mig-17, which encodes a secreted metalloprotease of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family. MIG-18 is a novel secreted protein that is conserved only among nematode species. The mig-17(null) and mig-18 double mutants exhibited phenotypes similar to those in mig-17(null) single mutants. In addition, the mutations in fbl-1/fibulin-1 and let-2/collagen IV that suppress mig-17 mutations also suppressed the mig-18 mutation, suggesting that mig-18 and mig-17 function in a common genetic pathway. The Venus-MIG-18 fusion protein was secreted from muscle cells and localized to the gonadal basement membrane, a tissue distribution reminiscent of that observed for MIG-17. Overexpression of MIG-18 in mig-17 mutants and vice versa partially rescued the relevant DTC migration defects, suggesting that MIG-18 and MIG-17 act cooperatively rather than sequentially. We propose that MIG-18 may be a cofactor of MIG-17/ADAMTS that functions in the regulation of the gonadal basement membrane to achieve proper direction of DTC migration during gonadogenesis.
Collapse
|
90
|
Dancevic CM, Fraser FW, Smith AD, Stupka N, Ward AC, McCulloch DR. Biosynthesis and expression of a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats-15: a novel versican-cleaving proteoglycanase. J Biol Chem 2013; 288:37267-76. [PMID: 24220035 DOI: 10.1074/jbc.m112.418624] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteoglycanase clade of the ADAMTS superfamily shows preferred proteolytic activity toward the hyalectan/lectican proteoglycans as follows: aggrecan, brevican, neurocan, and versican. ADAMTS15, a member of this clade, was recently identified as a putative tumor suppressor gene in colorectal and breast cancer. However, its biosynthesis, substrate specificity, and tissue expression are poorly described. Therefore, we undertook a detailed study of this proteinase and its expression. We report propeptide processing of the ADAMTS15 zymogen by furin activity, identifying RAKR(212)↓ as a major furin cleavage site within the prodomain. ADAMTS15 was localized on the cell surface, activated extracellularly, and required propeptide processing before cleaving V1 versican at position (441)E↓A(442). In the mouse embryo, Adamts15 was expressed in the developing heart at E10.5 and E11.5 days post-coitum and in the musculoskeletal system from E13.5 to E15.5 days post-coitum, where it was co-localized with hyaluronan. Adamts15 was also highly expressed in several structures within the adult mouse colon. Our findings show overlapping sites of Adamts15 expression with other members of ADAMTS proteoglycanases during embryonic development, suggesting possible cooperative roles during embryogenesis, consistent with other ADAMTS proteoglycanase combinatorial knock-out mouse models. Collectively, these data suggest a role for ADAMTS15 in a wide range of biological processes that are potentially mediated through the processing of versican.
Collapse
Affiliation(s)
- Carolyn M Dancevic
- From the School of Medicine, Faculty of Health, and Molecular and Medical Research SRC, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | | | | | | | | | | |
Collapse
|
91
|
Geng FS, Abbas L, Baxendale S, Holdsworth CJ, Swanson AG, Slanchev K, Hammerschmidt M, Topczewski J, Whitfield TT. Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development 2013; 140:4362-74. [PMID: 24067352 PMCID: PMC4007713 DOI: 10.1242/dev.098061] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Morphogenesis of the semicircular canal ducts in the vertebrate inner ear is a dramatic example of epithelial remodelling in the embryo, and failure of normal canal development results in vestibular dysfunction. In zebrafish and Xenopus, semicircular canal ducts develop when projections of epithelium, driven by extracellular matrix production, push into the otic vesicle and fuse to form pillars. We show that in the zebrafish, extracellular matrix gene expression is high during projection outgrowth and then rapidly downregulated after fusion. Enzymatic disruption of hyaluronan in the projections leads to their collapse and a failure to form pillars: as a result, the ears swell. We have cloned a zebrafish mutant, lauscher (lau), identified by its swollen ear phenotype. The primary defect in the ear is abnormal projection outgrowth and a failure of fusion to form the semicircular canal pillars. Otic expression of extracellular matrix components is highly disrupted: several genes fail to become downregulated and remain expressed at abnormally high levels into late larval stages. The lau mutations disrupt gpr126, an adhesion class G protein-coupled receptor gene. Expression of gpr126 is similar to that of sox10, an ear and neural crest marker, and is partially dependent on sox10 activity. Fusion of canal projections and downregulation of otic versican expression in a hypomorphic lau allele can be restored by cAMP agonists. We propose that Gpr126 acts through a cAMP-mediated pathway to control the outgrowth and adhesion of canal projections in the zebrafish ear via the regulation of extracellular matrix gene expression.
Collapse
Affiliation(s)
- Fan-Suo Geng
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Christian L, Bahudhanapati H, Wei S. Extracellular metalloproteinases in neural crest development and craniofacial morphogenesis. Crit Rev Biochem Mol Biol 2013; 48:544-60. [PMID: 24066766 DOI: 10.3109/10409238.2013.838203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neural crest (NC) is a population of migratory stem/progenitor cells that is found in early vertebrate embryos. NC cells are induced during gastrulation, and later migrate to multiple destinations and contribute to many types of cells and tissues, such as craniofacial structures, cardiac tissues, pigment cells and the peripheral nervous system. Recently, accumulating evidence suggests that many extracellular metalloproteinases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs), play important roles in various stages of NC development. Interference with metalloproteinase functions often causes defects in craniofacial structures, as well as in other cells and tissues that are contributed by NC cells, in humans and other vertebrates. In this review, we summarize the current state of the field concerning the roles of these three families of metalloproteinases in NC development and related tissue morphogenesis, with a special emphasis on craniofacial morphogenesis.
Collapse
Affiliation(s)
- Laura Christian
- Department of Biology, West Virginia University , Morgantown, WV , USA
| | | | | |
Collapse
|
93
|
Murasawa Y, Watanabe K, Yoneda M, Zako M, Kimata K, Sakai LY, Isogai Z. Homotypic versican G1 domain interactions enhance hyaluronan incorporation into fibrillin microfibrils. J Biol Chem 2013; 288:29170-81. [PMID: 23963449 DOI: 10.1074/jbc.m113.456947] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Versican G1 domain-containing fragments (VG1Fs) have been identified in extracts from the dermis in which hyaluronan (HA)-versican-fibrillin complexes are found. However, the molecular assembly of VG1Fs in the HA-versican-microfibril macrocomplex has not yet been elucidated. Here, we clarify the role of VG1Fs in the extracellular macrocomplex, specifically in mediating the recruitment of HA to microfibrils. Sequential extraction studies suggested that the VG1Fs were not associated with dermal elements through HA binding properties alone. Overlay analyses of dermal tissue sections using the recombinant versican G1 domain, rVN, showed that rVN deposited onto the elastic fiber network. In solid-phase binding assays, rVN bound to isolated nondegraded microfibrils. rVN specifically bound to authentic versican core protein produced by dermal fibroblasts. Furthermore, rVN bound to VG1Fs extracted from the dermis and to nondenatured versican but not to fibrillin-1. Homotypic binding of rVN was also seen. Consistent with these binding properties, macroaggregates containing VG1Fs were detected in high molecular weight fractions of sieved dermal extracts and visualized by electron microscopy, which revealed localization to microfibrils at the microscopic level. Importantly, exogenous rVN enhanced HA recruitment both to isolated microfibrils and to microfibrils in tissue sections in a dose-dependent manner. From these data, we propose that cleaved VG1Fs can be recaptured by microfibrils through VG1F homotypical interactions to enhance HA recruitment to microfibrils.
Collapse
|
94
|
Ismat A, Cheshire AM, Andrew DJ. The secreted AdamTS-A metalloprotease is required for collective cell migration. Development 2013; 140:1981-93. [PMID: 23536567 DOI: 10.1242/dev.087908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the ADAMTS family of secreted metalloproteases play crucial roles in modulating the extracellular matrix (ECM) in development and disease. Here, we show that ADAMTS-A, the Drosophila ortholog of human ADAMTS 9 and ADAMTS 20, and of C. elegans GON-1, is required for cell migration during embryogenesis. AdamTS-A is expressed in multiple migratory cell types, including hemocytes, caudal visceral mesoderm (CVM), the visceral branch of the trachea (VBs) and the secretory portion of the salivary gland (SG). Loss of AdamTS-A causes defects in germ cell, CVM and VB migration and, depending on the tissue, AdamTS-A functions both autonomously and non-autonomously. In the highly polarized collective of the SG epithelium, loss of AdamTS-A causes apical surface irregularities and cell elongation defects. We provide evidence that ADAMTS-A is secreted into the SG lumen where it functions to release cells from the apical ECM, consistent with the defects observed in AdamTS-A mutant SGs. We show that loss of the apically localized protocadherin Cad99C rescues the SG defects, suggesting that Cad99C serves as a link between the SG apical membrane and the secreted apical ECM component(s) cleaved by ADAMTS-A. Our analysis of AdamTS-A function in the SG suggests a novel role for ADAMTS proteins in detaching cells from the apical ECM, facilitating tube elongation during collective cell migration.
Collapse
Affiliation(s)
- Afshan Ismat
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
95
|
Tan IDA, Ricciardelli C, Russell DL. The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 2013; 133:2263-76. [PMID: 23444028 DOI: 10.1002/ijc.28127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
As it was first characterized in 1997, the ADAMTS (A Disintegrin and Metalloprotease with ThromboSpondin motifs) metalloprotease family has been associated with many physiological and pathological conditions. Of the 19 proteases belonging to this family, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer. Elevated ADAMTS1 promotes pro-tumorigenic changes such as increased tumor cell proliferation, inhibited apoptosis and altered vascularization. Importantly, it facilitates significant peritumoral remodeling of the extracellular matrix environment to promote tumor progression and metastasis. However, discrepancy exists, as several studies also depict ADAMTS1 as a tumor suppressor. This article reviews the current understanding of ADAMTS1 regulation and the consequence of its dysregulation in primary cancer and ADAMTS1-mediated pathways of cancer progression and metastasis.
Collapse
Affiliation(s)
- Izza de Arao Tan
- Robinson Institute, School of Paediatrics and Reproductive Health, Department of Obstetrics and Gynaecology, Univeristy of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
96
|
Stupka N, Kintakas C, White JD, Fraser FW, Hanciu M, Aramaki-Hattori N, Martin S, Coles C, Collier F, Ward AC, Apte SS, McCulloch DR. Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol Chem 2012; 288:1907-17. [PMID: 23233679 DOI: 10.1074/jbc.m112.429647] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.
Collapse
Affiliation(s)
- Nicole Stupka
- School of Medicine and Molecular and Medical Research SRC, Deakin University, Geelong, Victoria 3216, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kumar S, Rao N, Ge R. Emerging Roles of ADAMTSs in Angiogenesis and Cancer. Cancers (Basel) 2012; 4:1252-99. [PMID: 24213506 PMCID: PMC3712723 DOI: 10.3390/cancers4041252] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 12/18/2022] Open
Abstract
A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs—ADAMTSs—are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.
Collapse
Affiliation(s)
- Saran Kumar
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | | | | |
Collapse
|
98
|
Bush JO, Jiang R. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 2012; 139:231-43. [PMID: 22186724 DOI: 10.1242/dev.067082] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammalian palatogenesis is a highly regulated morphogenetic process during which the embryonic primary and secondary palatal shelves develop as outgrowths from the medial nasal and maxillary prominences, respectively, remodel and fuse to form the intact roof of the oral cavity. The complexity of control of palatogenesis is reflected by the common occurrence of cleft palate in humans. Although the embryology of the palate has long been studied, the past decade has brought substantial new knowledge of the genetic control of secondary palate development. Here, we review major advances in the understanding of the morphogenetic and molecular mechanisms controlling palatal shelf growth, elevation, adhesion and fusion, and palatal bone formation.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology and Program in Craniofacial and Mesenchymal Biology, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
99
|
Nelson ER, Levi B, Sorkin M, James AW, Liu KJ, Quarto N, Longaker MT. Role of GSK-3β in the osteogenic differentiation of palatal mesenchyme. PLoS One 2011; 6:e25847. [PMID: 22022457 PMCID: PMC3194817 DOI: 10.1371/journal.pone.0025847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/12/2011] [Indexed: 01/01/2023] Open
Abstract
Introduction The function of Glycogen Synthase Kinases 3β (GSK-3β) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification. Methods Palates were harvested from GSK-3β, embryonic days 15.0–18.5 (e15.0–e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3β null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3β and Ihh +/+ and −/− e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists. Results GSK-3β null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3β null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3β −/− palate cultures were “rescued” with the Wnt inhibitor, Dkk-1. Conclusions Here, we identify a critical role for GSK-3β in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation.
Collapse
Affiliation(s)
- Emily R. Nelson
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Benjamin Levi
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael Sorkin
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Aaron W. James
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Karen J. Liu
- Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Dipartimento di Scienze Chirurgiche, Anestesiologiche-Rianimatorie e dell ‘Emergenza “Giuseppe Zannini,” Universita’ degli Studi di Napoli Federico II, Napoli, Italy
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
100
|
Ricciardelli C, Frewin KM, Tan IDA, Williams ED, Opeskin K, Pritchard MA, Ingman WV, Russell DL. The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3075-85. [PMID: 22001177 DOI: 10.1016/j.ajpath.2011.08.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 12/21/2022]
Abstract
A disintegrin and metalloprotease with thrombospondin motifs protein 1 (ADAMTS1) is a protease commonly up-regulated in metastatic carcinoma. Its overexpression in cancer cells promotes experimental metastasis, but whether ADAMTS1 is essential for metastatic progression is unknown. To address this question, we investigated mammary cancer progression and spontaneous metastasis in the MMTV-PyMT mouse mammary tumor model in Adamts1 knockout mice. Adamts1(-/-)/PyMT mice displayed significantly reduced mammary tumor and lung metastatic tumor burden and increased survival, compared with their wild-type and heterozygous littermates. Histological examination revealed an increased proportion of tumors with ductal carcinoma in situ and a lower proportion of high-grade invasive tumors in Adamts1(-/-)/PyMT mice, compared with Adamts1(+/+)/PyMT mice. Increased apoptosis with unaltered proliferation and vascular density in the Adamts1(-/-)/PyMT tumors suggested that reduced cell survival accounts for the lower tumor burden in ADAMTS1-deficient mice. Furthermore, Adamts1(-/-) tumor stroma had significantly lesser amounts of proteolytically cleaved versican and increased numbers of CD45(+) leukocytes. Characterization of immune cell gene expression indicated that cytotoxic cell activation was increased in Adamts1(-/-) tumors, compared with Adamts1(+/+) tumors. This finding is supported by significantly elevated IL-12(+) cell numbers in Adamts1(-/-) tumors. Thus, in vivo ADAMTS1 may promote mammary tumor growth and progression to metastasis in the PyMT model and is a potential therapeutic target to prevent metastatic breast cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|