51
|
piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:82-92. [DOI: 10.1016/j.bbagrm.2015.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
|
52
|
Drosophila Homolog of FMRP Maintains Genome Integrity by Interacting with Piwi. J Genet Genomics 2015; 43:11-24. [PMID: 26842990 DOI: 10.1016/j.jgg.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FraX), the most common form of inherited mental retardation, is caused by the absence of the evolutionally conserved fragile X mental retardation protein (FMRP). While neuronal functions of FMRP have been intensively studied for the last two decades, its role in non-neuronal cells remains poorly understood. Piwi, a key component of the Piwi-interacting RNA (piRNA) pathway, plays an essential role in germline development. In the present study, we report that similar to piwi, dfmr1, the Drosophila homolog of human FMR1, is required for transposon suppression in the germlines. Genetic analyses showed that dfmr1 and piwi act synergistically in heterochromatic silencing, and in inhibiting the differentiation of primordial germline cells and transposon expression. Northern analyses showed that roo piRNA expression levels are reduced in dfmr1 mutant ovaries, suggesting a role of dfmr1 in piRNA biogenesis. Biochemical analysis demonstrated a physical interaction between dFMRP and Piwi via their N-termini. Taken together, we propose that dFMRP cooperates with Piwi in maintaining genome integrity by regulating heterochromatic silencing in somatic cells and suppressing transposon activity via the piRNA pathway in germlines.
Collapse
|
53
|
Somatic Primary piRNA Biogenesis Driven by cis-Acting RNA Elements and trans-Acting Yb. Cell Rep 2015; 12:429-40. [PMID: 26166564 DOI: 10.1016/j.celrep.2015.06.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/29/2022] Open
Abstract
Primary piRNAs in Drosophila ovarian somatic cells arise from piRNA cluster transcripts and the 3' UTRs of a subset of mRNAs, including Traffic jam (Tj) mRNA. However, it is unclear how these RNAs are determined as primary piRNA sources. Here, we identify a cis-acting 100-nt fragment in the Tj 3' UTR that is sufficient for producing artificial piRNAs from unintegrated DNA. These artificial piRNAs were effective in endogenous gene transcriptional silencing. Yb, a core component of primary piRNA biogenesis center Yb bodies, directly bound the Tj-cis element. Disruption of this interaction markedly reduced piRNA production. Thus, Yb is the trans-acting partner of the Tj-cis element. Yb-CLIP revealed that Yb binding correlated with somatic piRNA production but Tj-cis element downstream sequences produced few artificial piRNAs. We thus propose that Yb determines primary piRNA sources through two modes of action: primary binding to cis elements to specify substrates and secondary binding to downstream regions to increase diversity in piRNA populations.
Collapse
|
54
|
Bozzetti MP, Specchia V, Cattenoz PB, Laneve P, Geusa A, Sahin HB, Di Tommaso S, Friscini A, Massari S, Diebold C, Giangrande A. The Drosophila fragile X mental retardation protein participates in the piRNA pathway. J Cell Sci 2015; 128:2070-84. [PMID: 25908854 DOI: 10.1242/jcs.161810] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
RNA metabolism controls multiple biological processes, and a specific class of small RNAs, called piRNAs, act as genome guardians by silencing the expression of transposons and repetitive sequences in the gonads. Defects in the piRNA pathway affect genome integrity and fertility. The possible implications in physiopathological mechanisms of human diseases have made the piRNA pathway the object of intense investigation, and recent work suggests that there is a role for this pathway in somatic processes including synaptic plasticity. The RNA-binding fragile X mental retardation protein (FMRP, also known as FMR1) controls translation and its loss triggers the most frequent syndromic form of mental retardation as well as gonadal defects in humans. Here, we demonstrate for the first time that germline, as well as somatic expression, of Drosophila Fmr1 (denoted dFmr1), the Drosophila ortholog of FMRP, are necessary in a pathway mediated by piRNAs. Moreover, dFmr1 interacts genetically and biochemically with Aubergine, an Argonaute protein and a key player in this pathway. Our data provide novel perspectives for understanding the phenotypes observed in Fragile X patients and support the view that piRNAs might be at work in the nervous system.
Collapse
Affiliation(s)
- Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA) - University of Salento, 73100 Lecce, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA) - University of Salento, 73100 Lecce, Italy
| | - Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France Université de Strasbourg, Illkirch, France
| | - Pietro Laneve
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France Université de Strasbourg, Illkirch, France
| | - Annamaria Geusa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA) - University of Salento, 73100 Lecce, Italy Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France Université de Strasbourg, Illkirch, France
| | - H Bahar Sahin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France Université de Strasbourg, Illkirch, France
| | - Silvia Di Tommaso
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA) - University of Salento, 73100 Lecce, Italy
| | - Antonella Friscini
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA) - University of Salento, 73100 Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA) - University of Salento, 73100 Lecce, Italy
| | - Celine Diebold
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France Université de Strasbourg, Illkirch, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France Université de Strasbourg, Illkirch, France
| |
Collapse
|
55
|
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24-31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of "self" and "nonself," suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | | | | |
Collapse
|
56
|
Gao M, Thomson TC, Creed TM, Tu S, Loganathan SN, Jackson CA, McCluskey P, Lin Y, Collier SE, Weng Z, Lasko P, Ohi MD, Arkov AL. Glycolytic enzymes localize to ribonucleoprotein granules in Drosophila germ cells, bind Tudor and protect from transposable elements. EMBO Rep 2015; 16:379-86. [PMID: 25600116 DOI: 10.15252/embr.201439694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Germ cells give rise to all cell lineages in the next-generation and are responsible for the continuity of life. In a variety of organisms, germ cells and stem cells contain large ribonucleoprotein granules. Although these particles were discovered more than 100 years ago, their assembly and functions are not well understood. Here we report that glycolytic enzymes are components of these granules in Drosophila germ cells and both their mRNAs and the enzymes themselves are enriched in germ cells. We show that these enzymes are specifically required for germ cell development and that they protect their genomes from transposable elements, providing the first link between metabolism and transposon silencing. We further demonstrate that in the granules, glycolytic enzymes associate with the evolutionarily conserved Tudor protein. Our biochemical and single-particle EM structural analyses of purified Tudor show a flexible molecule and suggest a mechanism for the recruitment of glycolytic enzymes to the granules. Our data indicate that germ cells, similarly to stem cells and tumor cells, might prefer to produce energy through the glycolytic pathway, thus linking a particular metabolism to pluripotency.
Collapse
Affiliation(s)
- Ming Gao
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Travis C Thomson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - T Michael Creed
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sudan N Loganathan
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | | | - Patrick McCluskey
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Yanyan Lin
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Scott E Collier
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| |
Collapse
|
57
|
Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Théron E, Dennis C, Brasset E, Vaury C. Distinct features of the piRNA pathway in somatic and germ cells: from piRNA cluster transcription to piRNA processing and amplification. Mob DNA 2014; 5:28. [PMID: 25525472 PMCID: PMC4269861 DOI: 10.1186/s13100-014-0028-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/12/2014] [Indexed: 02/05/2023] Open
Abstract
Transposable elements (TEs) are major components of genomes. Their mobilization may affect genomic expression and be a threat to genetic stability. This is why they have to be tightly regulated by a dedicated system. In the reproductive tissues of a large range of organisms, they are repressed by a subclass of small interfering RNAs called piRNAs (PIWI interacting RNAs). In Drosophila melanogaster, piRNAs are produced both in the ovarian germline cells and in their surrounding somatic cells. Accumulating evidence suggests that germinal and somatic piRNA pathways are far more different than previously thought. Here we review the current knowledge on piRNA production in both these cell types, and explore their similarities and differences.
Collapse
Affiliation(s)
- Emmanuelle Théron
- Laboratoire GReD, Faculté de Médecine, Clermont Université, Université d'Auvergne, 28 Place H Dunant, 63000 Clermont-Ferrand, France.,Inserm, U 1103, F-63001 Clermont-Ferrand, France.,CNRS, UMR 6293, F-63001 Clermont-Ferrand, France
| | - Cynthia Dennis
- Laboratoire GReD, Faculté de Médecine, Clermont Université, Université d'Auvergne, 28 Place H Dunant, 63000 Clermont-Ferrand, France.,Inserm, U 1103, F-63001 Clermont-Ferrand, France.,CNRS, UMR 6293, F-63001 Clermont-Ferrand, France
| | - Emilie Brasset
- Laboratoire GReD, Faculté de Médecine, Clermont Université, Université d'Auvergne, 28 Place H Dunant, 63000 Clermont-Ferrand, France.,Inserm, U 1103, F-63001 Clermont-Ferrand, France.,CNRS, UMR 6293, F-63001 Clermont-Ferrand, France
| | - Chantal Vaury
- Laboratoire GReD, Faculté de Médecine, Clermont Université, Université d'Auvergne, 28 Place H Dunant, 63000 Clermont-Ferrand, France.,Inserm, U 1103, F-63001 Clermont-Ferrand, France.,CNRS, UMR 6293, F-63001 Clermont-Ferrand, France
| |
Collapse
|
59
|
Huang H, Li Y, Szulwach KE, Zhang G, Jin P, Chen D. AGO3 Slicer activity regulates mitochondria-nuage localization of Armitage and piRNA amplification. ACTA ACUST UNITED AC 2014; 206:217-30. [PMID: 25049272 PMCID: PMC4107788 DOI: 10.1083/jcb.201401002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endonuclease AGO3 and mitochondria-associated protein Zucchini together control the dynamic subcellular localization of Armitage between mitochondria and germline granules to regulate secondary piRNA amplification. In Drosophila melanogaster the reciprocal “Ping-Pong” cycle of PIWI-interacting RNA (piRNA)–directed RNA cleavage catalyzed by the endonuclease (or “Slicer”) activities of the PIWI proteins Aubergine (Aub) and Argonaute3 (AGO3) has been proposed to expand the secondary piRNA population. However, the role of AGO3/Aub Slicer activity in piRNA amplification remains to be explored. We show that AGO3 Slicer activity is essential for piRNA amplification and that AGO3 inhibits the homotypic Aub:Aub Ping-Pong process in a Slicer-independent manner. We also find that expression of an AGO3 Slicer mutant causes ectopic accumulation of Armitage, a key component in the primary piRNA pathway, in the Drosophila melanogaster germline granules known as nuage. AGO3 also coexists and interacts with Armitage in the mitochondrial fraction. Furthermore, AGO3 acts in conjunction with the mitochondria-associated protein Zucchini to control the dynamic subcellular localization of Armitage between mitochondria and nuage in a Slicer-dependent fashion. Collectively, our findings uncover a new mechanism that couples mitochondria with nuage to regulate secondary piRNA amplification.
Collapse
Affiliation(s)
- Haidong Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Keith E Szulwach
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Guoqiang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
60
|
The DExH box helicase domain of spindle-E is necessary for retrotransposon silencing and axial patterning during Drosophila oogenesis. G3-GENES GENOMES GENETICS 2014; 4:2247-57. [PMID: 25239103 PMCID: PMC4232550 DOI: 10.1534/g3.114.014332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transposable selfish genetic elements have the potential to cause debilitating mutations as they replicate and reinsert within the genome. Therefore, it is critical to keep the cellular levels of these elements low. This is especially true in the germline where these mutations could affect the viability of the next generation. A class of small noncoding RNAs, the Piwi-associated RNAs, is responsible for silencing transposable elements in the germline of most organisms. Several proteins have been identified as playing essential roles in piRNA generation and transposon silencing. However, for the most part their function in piRNA generation is currently unknown. One of these proteins is the Drosophila melanogaster DExH box/Tudor domain protein Spindle-E, whose activity is necessary for the generation of most germline piRNAs. In this study we molecularly and phenotypically characterized 14 previously identified spindle-E alleles. Of the alleles that express detectable Spindle-E protein, we found that five had mutations in the DExH box domain. Additionally, we found that processes that depend on piRNA function, including Aubergine localization, Dynein motor movement, and retrotransposon silencing, were severely disrupted in alleles with DExH box domain mutations. The phenotype of many of these alleles is as severe as the strongest spindle-E phenotype, whereas alleles with mutations in other regions of Spindle-E did not affect these processes as much. From these data we conclude that the DExH box domain of Spindle-E is necessary for its function in the piRNA pathway and retrotransposon silencing.
Collapse
|
61
|
Palazzo A, Moschetti R, Caizzi R, Marsano RM. The Drosophila mojavensis Bari3 transposon: distribution and functional characterization. Mob DNA 2014; 5:21. [PMID: 25093043 PMCID: PMC4120734 DOI: 10.1186/1759-8753-5-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bari-like transposons belong to the Tc1-mariner superfamily, and they have been identified in several genomes of the Drosophila genus. This transposon's family has been used as paradigm to investigate the complex dynamics underlying the persistence and structural evolution of transposable elements (TEs) within a genome. Three structural Bari variants have been identified so far and can be distinguished based on the organization of their terminal inverted repeats. Bari3 is the last discovered member of this family identified in Drosophila mojavensis, a recently emerged species of the Repleta group of the genus Drosophila. RESULTS We studied the insertion pattern of Bari3 in different D. mojavensis populations and found evidence of recent transposition activity. Analysis of the transposase domains unveiled the presence of a functional nuclear localization signal, as well as a functional binding domain. Using luciferase-based assays, we investigated the promoter activity of Bari3 as well as the interaction of its transposase with its left terminus. The results suggest that Bari3 is transposition-competent. Finally we demonstrated transposase transcript processing when the transposase gene is overexpressed in vivo and in vitro. CONCLUSIONS Bari3 displays very similar structural and functional features with its close relative, Bari1. Our results strongly suggest that Bari3 is an independent element that has generated genomic diversity in D. mojavensis. It can autonomously transcribe its transposase gene, which in turn can localize in the nucleus and bind the terminal inverted repeats of the transposon. Nevertheless, the identification of an unpredicted spliced form of the Bari3 transposase transcript allows us to hypothesize a control mechanism of its mobility based on mRNA processing. These results will aid the studies on the Bari family of transposons, which is intriguing for its widespread diffusion in Drosophilids coupled with a structural diversity generated during the evolution of Bari-like elements in their host genomes.
Collapse
Affiliation(s)
- Antonio Palazzo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
62
|
Murota Y, Ishizu H, Nakagawa S, Iwasaki Y, Shibata S, Kamatani M, Saito K, Okano H, Siomi H, Siomi M. Yb Integrates piRNA Intermediates and Processing Factors into Perinuclear Bodies to Enhance piRISC Assembly. Cell Rep 2014; 8:103-13. [DOI: 10.1016/j.celrep.2014.05.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/09/2014] [Accepted: 05/21/2014] [Indexed: 11/30/2022] Open
|
63
|
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1:205-218. [PMID: 25512877 DOI: 10.1093/nsr/nwu014] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a complex class of small non-coding RNAs that are mostly 24-32 nucleotides in length and composed of at least hundreds of thousands of species that specifically interact with the PIWI protein subfamily of the ARGONAUTE family. Recent studies revealed that PIWI proteins interact with a number of proteins, especially the TUDOR-domain-containing proteins, to regulate piRNA biogenesis and regulatory function. Current research also provides evidence that PIWI proteins and piRNAs are not only crucial for transposon silencing in the germline, but also mediate novel mechanisms of epigenetic programming, DNA rearrangements, mRNA turnover, and translational control both in the germline and in the soma. These new discoveries begin to reveal an exciting new dimension of gene regulation in the cell.
Collapse
Affiliation(s)
- Hsueh-Yen Ku
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
64
|
Abstract
The integrity of the germline genome must be maintained to achieve successive generations of a species, because germline cells are the only source for transmitting genetic information to the next generation. Accordingly, the germline has acquired a system dedicated to protecting the genome from 'injuries' caused by harmful selfish nucleic acid elements, such as TEs (transposable elements). Accumulating evidence shows that a germline-specific subclass of small non-coding RNAs, piRNAs (piwi-interacting RNAs), are necessary for silencing TEs to protect the genome in germline cells. To silence TEs post-transcriptionally and/or transcriptionally, mature piRNAs are loaded on to germline-specific Argonaute proteins, or PIWI proteins, to form the piRISC (piRNA-induced silencing complex). The present chapter will highlight insights into the molecular mechanisms underlying piRISC-mediated silencing and piRNA biogenesis, and discuss a possible link with tumorigenesis, particularly in Drosophila.
Collapse
|
65
|
Yakushev EY, Sokolova OA, Gvozdev VA, Klenov MS. Multifunctionality of PIWI proteins in control of germline stem cell fate. BIOCHEMISTRY (MOSCOW) 2014; 78:585-91. [PMID: 23980885 DOI: 10.1134/s0006297913060047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PIWI proteins interacting with specific type of small RNAs (piRNAs) repress transposable elements in animals. Besides, they have been shown to participate in various cellular processes: in the regulation of heterochromatin formation including telomere structures, in the control of translation and the cell cycle, and in DNA rearrangements. PIWI proteins were first identified by their roles in the self-renewal of germline stem cells. PIWI protein functions are not limited to gonadogenesis, but the role in determining the fate of stem cells is their specific feature conserved throughout the evolution of animals. Molecular mechanisms underlying these processes are far from being understood. This review focuses on the role of PIWI proteins in the control of maintenance and proliferation of germinal stem cells and its relation to the known function of PIWI in transposon repression.
Collapse
Affiliation(s)
- E Y Yakushev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | | | |
Collapse
|
66
|
A genetic screen based on in vivo RNA imaging reveals centrosome-independent mechanisms for localizing gurken transcripts in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:749-60. [PMID: 24531791 PMCID: PMC4059244 DOI: 10.1534/g3.114.010462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have screened chromosome arm 3L for ethyl methanesulfonate−induced mutations that disrupt localization of fluorescently labeled gurken (grk) messenger (m)RNA, whose transport along microtubules establishes both major body axes of the developing Drosophila oocyte. Rapid identification of causative mutations by single-nucleotide polymorphism recombinational mapping and whole-genomic sequencing allowed us to define nine complementation groups affecting grk mRNA localization and other aspects of oogenesis, including alleles of elg1, scaf6, quemao, nudE, Tsc2/gigas, rasp, and Chd5/Wrb, and several null alleles of the armitage Piwi-pathway gene. Analysis of a newly induced kinesin light chain allele shows that kinesin motor activity is required for both efficient grk mRNA localization and oocyte centrosome integrity. We also show that initiation of the dorsoanterior localization of grk mRNA precedes centrosome localization, suggesting that microtubule self-organization contributes to breaking axial symmetry to generate a unique dorsoventral axis.
Collapse
|
67
|
Ma X, Wang S, Do T, Song X, Inaba M, Nishimoto Y, Liu LP, Gao Y, Mao Y, Li H, McDowell W, Park J, Malanowski K, Peak A, Perera A, Li H, Gaudenz K, Haug J, Yamashita Y, Lin H, Ni JQ, Xie T. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLoS One 2014; 9:e90267. [PMID: 24658126 PMCID: PMC3962343 DOI: 10.1371/journal.pone.0090267] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/12/2022] Open
Abstract
The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary.
Collapse
Affiliation(s)
- Xing Ma
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Su Wang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Trieu Do
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xiaoqing Song
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mayu Inaba
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yoshiya Nishimoto
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Lu-ping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yuan Gao
- School of Medicine, Tsinghua University, Beijing, China
| | - Ying Mao
- School of Medicine, Tsinghua University, Beijing, China
| | - Hui Li
- School of Medicine, Tsinghua University, Beijing, China
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jungeun Park
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kate Malanowski
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Karin Gaudenz
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Yukiko Yamashita
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United Sates of America
| | - Jian-quan Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Ting Xie
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
68
|
Clark JP, Lau NC. Piwi Proteins and piRNAs step onto the systems biology stage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:159-97. [PMID: 25201106 PMCID: PMC4248790 DOI: 10.1007/978-1-4939-1221-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.
Collapse
Affiliation(s)
- Josef P. Clark
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
69
|
Pek JW, Patil VS, Kai T. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev Growth Differ 2013; 54:66-77. [PMID: 23741748 DOI: 10.1111/j.1440-169x.2011.01316.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The accurate transfer of genetic material in germline cells during the formation of gametes is important for the continuity of the species. However, animal germline cells face challenges from transposons, which seek to spread themselves in the genome. This review focuses on studies in Drosophila melanogaster on how the genome protects itself from such a mutational burden via a class of gonad-specific small interfering RNAs, known as piRNAs (Piwi-interacting RNAs). In addition to silencing transposons, piRNAs also regulate other processes, such as chromosome segregation, mRNA degradation and germline differentiation. Recent studies revealed two modes of piRNA processing – primary processing and secondary processing (also known as ping-pong amplification). The primary processing pathway functions in both germline and somatic cells in the Drosophila ovaries by processing precursor piRNAs into 23–29 nt piRNAs. In contrast, the secondary processing pathway functions only in the germline cells where piRNAs are amplified in a feed-forward loop and require the Piwi-family proteins Aubergine and Argonaute3. Aubergine and Argonaute3 localize to a unique structure found in animal germline cells, the nuage, which has been proposed to function as a compartmentalized site for the ping-pong cycle. The nuage and the localized proteins are well-conserved, implying the importance of the piRNA amplification loop in animal germline cells. Nuage components include various types of proteins that are known to interact both physically and genetically, and therefore appear to be assembled in a sequential order to exert their function, resulting in a macromolecular RNA-protein complex dedicated to the silencing of transposons.
Collapse
Affiliation(s)
- Jun Wei Pek
- Department of Biological Sciences and Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
70
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
71
|
Dufourt J, Dennis C, Boivin A, Gueguen N, Théron E, Goriaux C, Pouchin P, Ronsseray S, Brasset E, Vaury C. Spatio-temporal requirements for transposable element piRNA-mediated silencing during Drosophila oogenesis. Nucleic Acids Res 2013; 42:2512-24. [PMID: 24288375 PMCID: PMC3936749 DOI: 10.1093/nar/gkt1184] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During Drosophila oogenesis, transposable element (TE) repression involves the Piwi-interacting RNA (piRNA) pathway which ensures genome integrity for the next generation. We developed a transgenic model to study repression of the Idefix retrotransposon in the germline. Using a candidate gene KD-approach, we identified differences in the spatio-temporal requirements of the piRNA pathway components for piRNA-mediated silencing. Some of them (Aub, Vasa, Spn-E) are necessary in very early stages of oogenesis within the germarium and appear to be less important for efficient TE silencing thereafter. Others (Piwi, Ago3, Mael) are required at all stages of oogenesis. Moreover, during early oogenesis, in the dividing cysts within the germarium, Idefix anti-sense transgenes escape host control, and this is associated with very low piwi expression. Silencing of P-element-based transgenes is also strongly weakened in these cysts. This region, termed the 'Piwiless pocket' or Pilp, may ensure that new TE insertions occur and are transmitted to the next generation, thereby contributing to genome dynamics. In contrast, piRNA-mediated silencing is strong in germline stem cells in which TE mobilization is tightly repressed ensuring the continued production of viable germline cysts.
Collapse
Affiliation(s)
- Jérémy Dufourt
- Inserm, UMR1103, F-63001 Clermont-Ferrand, France, CNRS, UMR6293, F-63001 Clermont-Ferrand, France, Clermont Université, Université d'Auvergne, Laboratoire GReD, BP 10448, F-63000 Clermont-Ferrand, France, Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, 9 quai Saint Bernard, 75005 Paris, France and CHU, F-63001 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Palazzo A, Marconi S, Specchia V, Bozzetti MP, Ivics Z, Caizzi R, Marsano RM. Functional characterization of the Bari1 transposition system. PLoS One 2013; 8:e79385. [PMID: 24244492 PMCID: PMC3828361 DOI: 10.1371/journal.pone.0079385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023] Open
Abstract
The transposons of the Bari family are mobile genetic elements widespread in the Drosophila genus. However, despite a broad diffusion, virtually no information is available on the mechanisms underlying their mobility. In this paper we report the functional characterization of the Bari elements transposition system. Using the Bari1 element as a model, we investigated the subcellular localization of the transposase, its physical interaction with the transposon, and its catalytic activity. The Bari1 transposase localized in the nucleus and interacted with the terminal sequences of the transposon both in vitro and in vivo, however, no transposition activity was detected in transposition assays. Profiling of mRNAs expressed by the transposase gene revealed the expression of abnormal, internally processed transposase transcripts encoding truncated, catalytically inactive transposase polypeptides. We hypothesize that a post-transcriptional control mechanism produces transposase-derived polypeptides that effectively repress transposition. Our findings suggest further clues towards understanding the mechanisms that control transposition of an important class of mobile elements, which are both an endogenous source of genomic variability and widely used as transformation vectors/biotechnological tools.
Collapse
Affiliation(s)
| | - Simona Marconi
- Dipartimento di Biologia, Università di Bari, Bari, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
73
|
Dönertas D, Sienski G, Brennecke J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev 2013; 27:1693-705. [PMID: 23913922 DOI: 10.1101/gad.221150.113] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a small RNA silencing system that keeps selfish genetic elements such as transposons under control in animal gonads. Several lines of evidence indicate that nuclear PIWI family proteins guide transcriptional silencing of their targets, yet the composition of the underlying silencing complex is unknown. Here we demonstrate that the double CHHC zinc finger protein gametocyte-specific factor 1 (Gtsf1) is an essential factor for Piwi-mediated transcriptional repression in Drosophila. Cells lacking Gtsf1 contain nuclear Piwi loaded with piRNAs, yet Piwi's silencing capacity is ablated. Gtsf1 interacts directly with a small subpool of nuclear Piwi, and loss of Gtsf1 phenocopies loss of Piwi in terms of deregulation of transposons, loss of H3K9 trimethylation (H3K9me3) marks at euchromatic transposon insertions, and deregulation of genes in proximity to repressed transposons. We propose that only a small fraction of nuclear Piwi is actively engaged in target silencing and that Gtsf1 is an essential component of the underlying Piwi-centered silencing complex.
Collapse
Affiliation(s)
- Derya Dönertas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences IMBA, 1030 Vienna, Austria
| | | | | |
Collapse
|
74
|
Vagin VV, Yu Y, Jankowska A, Luo Y, Wasik KA, Malone CD, Harrison E, Rosebrock A, Wakimoto BT, Fagegaltier D, Muerdter F, Hannon GJ. Minotaur is critical for primary piRNA biogenesis. RNA (NEW YORK, N.Y.) 2013; 19:1064-77. [PMID: 23788724 PMCID: PMC3708527 DOI: 10.1261/rna.039669.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.
Collapse
Affiliation(s)
- Vasily V. Vagin
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yang Yu
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Anna Jankowska
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yicheng Luo
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- College of Pharmaceutical Science, Jilin University, Changchun, Jilin 130021, China P.R
| | - Kaja A. Wasik
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Colin D. Malone
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Emily Harrison
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adam Rosebrock
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Barbara T. Wakimoto
- Department of Biology and Center for Developmental Biology, University of Washington, Seattle, Washington 98195, USA
| | - Delphine Fagegaltier
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Felix Muerdter
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Corresponding authorE-mail
| |
Collapse
|
75
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
76
|
Abstract
Small-RNA-guided gene regulation has emerged as one of the fundamental principles in cell function, and the major protein players in this process are members of the Argonaute protein family. Argonaute proteins are highly specialized binding modules that accommodate the small RNA component - such as microRNAs (miRNAs), short interfering RNAs (siRNAs) or PIWI-associated RNAs (piRNAs) - and coordinate downstream gene-silencing events by interacting with other protein factors. Recent work has made progress in our understanding of classical Argonaute-mediated gene-silencing principles, such as the effects on mRNA translation and decay, but has also implicated Argonaute proteins in several other cellular processes, such as transcriptional regulation and splicing.
Collapse
|
77
|
Sergeeva AM, Pinzón Restrepo N, Seitz H. Quantitative aspects of RNA silencing in metazoans. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:613-626. [PMID: 23980888 DOI: 10.1134/s0006297913060072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Small regulatory RNAs (microRNAs, siRNAs, and piRNAs) exhibit several unique features that clearly distinguish them from other known gene regulators. Their genomic organization, mode of action, and proposed biological functions raise specific questions. In this review, we focus on the quantitative aspect of small regulatory RNA biology. The original nature of these small RNAs accelerated the development of novel detection techniques and improved statistical methods and promoted new concepts that may unexpectedly generalize to other gene regulators. Quantification of natural phenomena is at the core of scientific practice, and the unique challenges raised by small regulatory RNAs have prompted many creative innovations by the scientific community.
Collapse
Affiliation(s)
- A M Sergeeva
- IGH du CNRS UPR 1142, 34396 Montpellier, France.
| | | | | |
Collapse
|
78
|
Czech B, Preall JB, McGinn J, Hannon GJ. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 2013; 50:749-61. [PMID: 23665227 DOI: 10.1016/j.molcel.2013.04.007] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 02/02/2023]
Abstract
The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two interrelated branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborate pathway centered on the three gonad-specific Argonaute proteins (Piwi, Aubergine, and Argonaute 3). While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals key factors of piRNA-mediated transposon silencing, including the piRNA biogenesis factors CG2183 (GASZ) and Deadlock. Our data uncover a previously unanticipated set of factors preferentially required for repression of different transposon types.
Collapse
Affiliation(s)
- Benjamin Czech
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | | | | |
Collapse
|
79
|
Handler D, Meixner K, Pizka M, Lauss K, Schmied C, Gruber FS, Brennecke J. The genetic makeup of the Drosophila piRNA pathway. Mol Cell 2013; 50:762-77. [PMID: 23665231 PMCID: PMC3679447 DOI: 10.1016/j.molcel.2013.04.031] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 01/25/2023]
Abstract
The piRNA (PIWI-interacting RNA) pathway is a small RNA silencing system that acts in animal gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ∼50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation, and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate that components acting at distinct hierarchical levels of the pathway were identified. Finally, we define CG2183/Gasz as an essential primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways, our results have far-reaching implications for the understanding of this conserved genome defense system. Systematic identification of somatic piRNA pathway factors in Drosophila Identification of functional links between piRNA biology and major cellular processes Characterization of CG2183/Gasz as an essential primary piRNA biogenesis factor
Collapse
Affiliation(s)
- Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohrgasse 3, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
80
|
Kelleher ES, Barbash DA. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense. Mol Biol Evol 2013; 30:1816-29. [PMID: 23625890 DOI: 10.1093/molbev/mst081] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of transposable element (TE) infection by imposing small-RNA-mediated silencing. Because silencing is targeted by TE-derived piRNAs, piRNA production is posited to be central to the evolution of genome defense. We harnessed genomic data sets from Drosophila melanogaster, including genome-wide measures of piRNA, mRNA, and genomic abundance, along with estimates of age structure and risk of ectopic recombination, to address fundamental questions about the functional and evolutionary relationships between TE families and their regulatory piRNAs. We demonstrate that mRNA transcript abundance, robustness of "ping-pong" amplification, and representation in piRNA clusters together explain the majority of variation in piRNA abundance between TE families, providing the first robust statistical support for the prevailing model of piRNA biogenesis. Intriguingly, we also discover that the most transpositionally active TE families, with the greatest capacity to induce harmful mutations or disrupt gametogenesis, are not necessarily the most abundant among piRNAs. Rather, the level of piRNA targeting is largely independent of recent transposition rate for active TE families, but is rapidly lost for inactive TEs. These observations are consistent with population genetic theory that suggests a limited selective advantage for host repression of transposition. Additionally, we find no evidence that piRNA targeting responds to selection against a second major cost of TE infection: ectopic recombination between TE insertions. Our observations confirm the pivotal role of piRNA-mediated silencing in defending the genome against selfish transposition, yet also suggest limits to the optimization of host genome defense.
Collapse
Affiliation(s)
- Erin S Kelleher
- Department of Molecular Biology and Genetics, Cornell University, NY, USA.
| | | |
Collapse
|
81
|
Guzzardo PM, Muerdter F, Hannon GJ. The piRNA pathway in flies: highlights and future directions. Curr Opin Genet Dev 2013; 23:44-52. [PMID: 23317515 DOI: 10.1016/j.gde.2012.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
Abstract
Piwi proteins, together with their bound Piwi-interacting RNAs, constitute an evolutionarily conserved, germline-specific innate immune system. The piRNA pathway is one of the key mechanisms for silencing transposable elements in the germline, thereby preserving genome integrity between generations. Recent work from several groups has significantly advanced our understanding of how piRNAs arise from discrete genomic loci, termed piRNA clusters, and how these Piwi-piRNA complexes enforce transposon silencing. Here, we discuss these recent findings, as well as highlight some aspects of piRNA biology that continue to escape our understanding.
Collapse
Affiliation(s)
- Paloma M Guzzardo
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
| | | | | |
Collapse
|
82
|
Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 2013; 26:2361-73. [PMID: 23124062 DOI: 10.1101/gad.203786.112] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are endogenous small noncoding RNAs that act as guardians of the genome, protecting it from invasive transposable elements in the germline. Animals lacking piRNA functions show defects in gametogenesis and exhibit sterility. Their descendants are also predisposed to inheriting mutations. Thus, the piRNA pathway has evolved to repress transposons post-transcriptionally and/or transcriptionally. A growing number of studies on piRNAs have investigated piRNA-mediated gene silencing, including piRNA biogenesis. However, piRNAs remain the most enigmatic among all of the silencing-inducing small RNAs because of their complexity and uniqueness. Although piRNAs have been previously suggested to be germline-specific, recent studies have shown that piRNAs also play crucial roles in nongonadal cells. Furthermore, piRNAs have also recently been shown to have roles in multigenerational epigenetic phenomena in worms. The purpose of this review is to highlight new piRNA factors and novel insights in the piRNA world.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
83
|
Kawaoka S, Hara K, Shoji K, Kobayashi M, Shimada T, Sugano S, Tomari Y, Suzuki Y, Katsuma S. The comprehensive epigenome map of piRNA clusters. Nucleic Acids Res 2012; 41:1581-90. [PMID: 23258708 PMCID: PMC3561999 DOI: 10.1093/nar/gks1275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PIWI-interacting RNA (piRNA) clusters act as anti-transposon/retrovirus centers. Integration of selfish jumping elements into piRNA clusters generates de novo piRNAs, which in turn exert trans-silencing activity against these elements in animal gonads. To date, neither genome-wide chromatin modification states of piRNA clusters nor a mode for piRNA precursor transcription have been well understood. Here, to understand the chromatin landscape of piRNA clusters and how piRNA precursors are generated, we analyzed the transcriptome, transcription start sites (TSSs) and the chromatin landscape of the BmN4 cell line, which harbors the germ-line piRNA pathway. Notably, our epigenomic map demonstrated the highly euchromatic nature of unique piRNA clusters. RNA polymerase II was enriched for TSSs that transcribe piRNA precursors. piRNA precursors possessed 5'-cap structures as well as 3'-poly A-tails. Collectively, we envision that the euchromatic, opened nature of unique piRNA clusters or piRNA cluster-associated TSSs allows piRNA clusters to capture new insertions efficiently.
Collapse
Affiliation(s)
- Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Hybrids of two Drosophila species show transposable element derepression and piRNA pathway malfunction, revealing adaptive evolution of piRNA pathway components. The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes rather than species-specific differences in TE-derived piRNAs. Eukaryotic genomes contain large quantities of transposable elements (TEs), short self-replicating DNA sequences that can move within the genome. The selfish replication of TEs has potentially drastic consequences for the host, such as disruption of gene function, induction of sterility, and initiation or exacerbation of some cancers. Like the adaptive immune system that defends our bodies against pathogens, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful effects of TEs. Fundamental to piRNA-mediated defense is the production of small noncoding RNAs that act like antibodies to target replicating TEs for destruction by piRNA-effector proteins. piRNAs are expected to diverge rapidly between species in response to genome infection by increasingly disparate TEs. Here, we tested this hypothesis by examining how differences in piRNAs between two species of fruit fly relate to TE “immunity” in their hybrid offspring. Because piRNAs are maternally deposited, we expected excessive replication of paternal TEs in hybrids. Surprisingly, we observe increased activity of both maternal and paternal TEs, together with defects in piRNA production that are reminiscent of piRNA effector-protein mutants. Our observations reveal that piRNA effector-proteins do not function properly in hybrids, and we propose that adaptive evolution among piRNA effector-proteins contributes to host genome defense and leads to the functional incompatibilities that we observe in hybrids.
Collapse
MESH Headings
- Adaptation, Biological
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Crosses, Genetic
- DNA Transposable Elements
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Evolution, Molecular
- Female
- Genetic Complementation Test
- Genome, Insect
- Hybridization, Genetic
- Immunohistochemistry
- Inheritance Patterns
- Male
- Mutation
- Ovary/cytology
- Ovary/metabolism
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Phenotype
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Selection, Genetic
- Species Specificity
Collapse
Affiliation(s)
- Erin S. Kelleher
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (ESK); (DAB)
| | | | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (ESK); (DAB)
| |
Collapse
|
85
|
Enrichment of HP1a on Drosophila chromosome 4 genes creates an alternate chromatin structure critical for regulation in this heterochromatic domain. PLoS Genet 2012; 8:e1002954. [PMID: 23028361 PMCID: PMC3447959 DOI: 10.1371/journal.pgen.1002954] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 07/31/2012] [Indexed: 02/06/2023] Open
Abstract
Chromatin environments differ greatly within a eukaryotic genome, depending on expression state, chromosomal location, and nuclear position. In genomic regions characterized by high repeat content and high gene density, chromatin structure must silence transposable elements but permit expression of embedded genes. We have investigated one such region, chromosome 4 of Drosophila melanogaster. Using chromatin-immunoprecipitation followed by microarray (ChIP-chip) analysis, we examined enrichment patterns of 20 histone modifications and 25 chromosomal proteins in S2 and BG3 cells, as well as the changes in several marks resulting from mutations in key proteins. Active genes on chromosome 4 are distinct from those in euchromatin or pericentric heterochromatin: while there is a depletion of silencing marks at the transcription start sites (TSSs), HP1a and H3K9me3, but not H3K9me2, are enriched strongly over gene bodies. Intriguingly, genes on chromosome 4 are less frequently associated with paused polymerase. However, when the chromatin is altered by depleting HP1a or POF, the RNA pol II enrichment patterns of many chromosome 4 genes shift, showing a significant decrease over gene bodies but not at TSSs, accompanied by lower expression of those genes. Chromosome 4 genes have a low incidence of TRL/GAGA factor binding sites and a low T(m) downstream of the TSS, characteristics that could contribute to a low incidence of RNA polymerase pausing. Our data also indicate that EGG and POF jointly regulate H3K9 methylation and promote HP1a binding over gene bodies, while HP1a targeting and H3K9 methylation are maintained at the repeats by an independent mechanism. The HP1a-enriched, POF-associated chromatin structure over the gene bodies may represent one type of adaptation for genes embedded in repetitive DNA.
Collapse
|
86
|
Olivieri D, Senti KA, Subramanian S, Sachidanandam R, Brennecke J. The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol Cell 2012; 47:954-69. [PMID: 22902557 PMCID: PMC3463805 DOI: 10.1016/j.molcel.2012.07.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/12/2022]
Abstract
In animal gonads, PIWI proteins and their bound 23–30 nt piRNAs guard genome integrity by the sequence specific silencing of transposons. Two branches of piRNA biogenesis, namely primary processing and ping-pong amplification, have been proposed. Despite an overall conceptual understanding of piRNA biogenesis, identity and/or function of the involved players are largely unknown. Here, we demonstrate an essential role for the female sterility gene shutdown in piRNA biology. Shutdown, an evolutionarily conserved cochaperone collaborates with Hsp90 during piRNA biogenesis, potentially at the loading step of RNAs into PIWI proteins. We demonstrate that Shutdown is essential for both primary and secondary piRNA populations in Drosophila. An extension of our study to previously described piRNA pathway members revealed three distinct groups of biogenesis factors. Together with data on how PIWI proteins are wired into primary and secondary processing, we propose a unified model for piRNA biogenesis.
Collapse
Affiliation(s)
- Daniel Olivieri
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
87
|
Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ. shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA (NEW YORK, N.Y.) 2012; 18:1446-57. [PMID: 22753781 PMCID: PMC3404366 DOI: 10.1261/rna.034405.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 05/03/2023]
Abstract
In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown.
Collapse
Affiliation(s)
- Jonathan B. Preall
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Czech
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paloma M. Guzzardo
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Felix Muerdter
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J. Hannon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
88
|
Abstract
Tudor domain proteins function as molecular adaptors, binding methylated arginine or lysine residues on their substrates to promote physical interactions and the assembly of macromolecular complexes. Here, we discuss the emerging roles of Tudor domain proteins during development, most notably in the Piwi-interacting RNA pathway, but also in other aspects of RNA metabolism, the DNA damage response and chromatin modification.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Toshie Kai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117604
| |
Collapse
|
89
|
Xie T. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:261-73. [PMID: 24009036 DOI: 10.1002/wdev.60] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors.
Collapse
Affiliation(s)
- Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA.
| |
Collapse
|
90
|
Grentzinger T, Armenise C, Brun C, Mugat B, Serrano V, Pelisson A, Chambeyron S. piRNA-mediated transgenerational inheritance of an acquired trait. Genome Res 2012; 22:1877-88. [PMID: 22555593 PMCID: PMC3460183 DOI: 10.1101/gr.136614.111] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maintenance of genome integrity is an essential trait to the successful transmission of genetic information. In animal germ cells, piRNAs guide PIWI proteins to silence transposable elements (TEs) in order to maintain genome integrity. In insects, most TE silencing in the germline is achieved by secondary piRNAs that are produced by a feed-forward loop (the ping-pong cycle), which requires the piRNA-directed cleavage of two types of RNAs: mRNAs of functional euchromatic TEs and heterochromatic transcripts that contain defective TE sequences. The first cleavage that initiates such an amplification loop remains poorly understood. Taking advantage of the existence of strains that are devoid of functional copies of the LINE-like I-element, we report here that in such Drosophila ovaries, the initiation of a ping-pong cycle is exclusively achieved by secondary I-element piRNAs that are produced in the ovary and deposited in the embryonic germline. This unusual secondary piRNA biogenesis, detected in the absence of functional I-element copies, results from the processing of sense and antisense transcripts of several different defective I-element. Once acquired, for instance after ancestor aging, this capacity to produce heterochromatic-only secondary piRNAs is partially transmitted through generations via maternal piRNAs. Furthermore, such piRNAs acting as ping-pong initiators in a chromatin-independent manner confer to the progeny a high capacity to repress the I-element mobility. Our study explains, at the molecular level, the basis for epigenetic memory of maternal immunity that protects females from hybrid dysgenesis caused by transposition of paternally inherited functional I-element.
Collapse
|
91
|
Blackwell E, Ceman S. Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Mol Reprod Dev 2012; 79:163-75. [PMID: 22345066 DOI: 10.1002/mrd.22024] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022]
Abstract
Arginine methylation is a post-translational modification that regulates protein function. RNA-binding proteins are an important class of cell-function mediators, some of which are methylated on arginine. Early studies of RNA-binding proteins and arginine methylation are briefly introduced, and the enzymes that mediate this post-translational modification are described. We review the most common RNA-binding domains and briefly discuss how they associate with RNAs. We address the following groups of RNA-binding proteins: hnRNP, Sm, Piwi, Vasa, FMRP, and HuD. hnRNPs were the first RNA-binding proteins found to be methylated on arginine. The Sm proteins function in RNA processing and germ cell specification. The Piwi proteins are largely germ cell specific and are also required for germ cell production, as is Vasa. FMRP participates in germ cell formation in Drosophila, but is more widely known for its neuronal function. Similarly, HuD plays a role in nervous system development and function. We review the effects of arginine methylation on the function of each protein, then conclude by addressing remaining questions and future directions of arginine methylation as an important and emerging area of regulation.
Collapse
Affiliation(s)
- Ernest Blackwell
- Department of Cell and Developmental Biology, Neuroscience Program and College of Medicine, University of Illinois, Urbana-Champaign, Illlinois, USA
| | | |
Collapse
|
92
|
|
93
|
Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, Weng Z, Theurkauf WE, Zamore PD. Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Mol Cell 2012; 44:572-84. [PMID: 22099305 DOI: 10.1016/j.molcel.2011.10.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/19/2011] [Accepted: 10/31/2011] [Indexed: 11/26/2022]
Abstract
piRNAs guide PIWI proteins to silence transposons in animal germ cells. Reciprocal cycles of piRNA-directed RNA cleavage--catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila melanogaster--expand the population of antisense piRNAs in response to transposon expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong between Aub and Ago3 ensures that antisense piRNAs predominate. We show that qin, a piRNA pathway gene whose protein product contains both E3 ligase and Tudor domains, colocalizes with Aub and Ago3 in nuage, a perinuclear structure implicated in transposon silencing. In qin mutants, less Ago3 binds Aub, futile Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many families of mobile genetic elements are reactivated, and DNA damage accumulates in nurse cells and oocytes. We propose that Qin enforces heterotypic Ping-Pong between Aub and Ago3, ensuring that transposons are silenced and maintaining the integrity of the germline genome.
Collapse
Affiliation(s)
- Zhao Zhang
- Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Specialized microenvironments called niches help maintain stem cells in an undifferentiated and self-renewing state. The existence of niches has long been predicted from mammalian studies, but identifying stem cells in their native environments in vivo has remained a challenge in most vertebrates. Many of the mechanistic insights into how niches regulate stem cell maintenance have been obtained using invertebrate models such as Drosophila. Here, we focus on the Drosophila ovarian germline stem cell niche and review recent studies that have begun to reveal how intricate crosstalk between various signaling pathways regulates stem cell maintenance, how the extracellular matrix modulates the signaling output of the niche and how epigenetic programming influences cell development and function both inside and outside the niche to ensure proper tissue homeostasis. These insights will probably inform the study of mammalian niches and how their malfunction contributes to human disease.
Collapse
|