51
|
Dey NS, Ramesh P, Chugh M, Mandal S, Mandal L. Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. eLife 2016; 5:18295. [PMID: 27782877 PMCID: PMC5120881 DOI: 10.7554/elife.18295] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022] Open
Abstract
Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila, the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).
Collapse
Affiliation(s)
- Nidhi Sharma Dey
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Parvathy Ramesh
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Mayank Chugh
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
52
|
|
53
|
Abstract
The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.
Collapse
Affiliation(s)
- Sarah J Bray
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
54
|
Letourneau M, Lapraz F, Sharma A, Vanzo N, Waltzer L, Crozatier M. Drosophila hematopoiesis under normal conditions and in response to immune stress. FEBS Lett 2016; 590:4034-4051. [PMID: 27455465 DOI: 10.1002/1873-3468.12327] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
The emergence of hematopoietic progenitors and their differentiation into various highly specialized blood cell types constitute a finely tuned process. Unveiling the genetic cascades that control blood cell progenitor fate and understanding how they are modulated in response to environmental changes are two major challenges in the field of hematopoiesis. In the last 20 years, many studies have established important functional analogies between blood cell development in vertebrates and in the fruit fly, Drosophila melanogaster. Thereby, Drosophila has emerged as a powerful genetic model for studying mechanisms that control hematopoiesis during normal development or in pathological situations. Moreover, recent advances in Drosophila have highlighted how intricate cell communication networks and microenvironmental cues regulate blood cell homeostasis. They have also revealed the striking plasticity of Drosophila mature blood cells and the presence of different sites of hematopoiesis in the larva. This review provides an overview of Drosophila hematopoiesis during development and summarizes our current knowledge on the molecular processes controlling larval hematopoiesis, both under normal conditions and in response to an immune challenge, such as wasp parasitism.
Collapse
Affiliation(s)
- Manon Letourneau
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Centre de Biologie Intégrative, Toulouse Cedex 9, France
| | - Francois Lapraz
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Centre de Biologie Intégrative, Toulouse Cedex 9, France
| | - Anurag Sharma
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Centre de Biologie Intégrative, Toulouse Cedex 9, France.,Department of Biomedical Sciences, NU Centre for Science Education & Research, Nitte University, Mangalore-18, India
| | - Nathalie Vanzo
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Centre de Biologie Intégrative, Toulouse Cedex 9, France
| | - Lucas Waltzer
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Centre de Biologie Intégrative, Toulouse Cedex 9, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 CNRS/Université Toulouse III and Centre de Biologie Intégrative, Toulouse Cedex 9, France
| |
Collapse
|
55
|
Abstract
The Wilms' tumor suppressor gene 1 (Wt1) is critically involved in a number of developmental processes in vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in protein-protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chapter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small fraction of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a number of laboratory protocols to be used with these animal models in order to assess reporter expression.
Collapse
|
56
|
|
57
|
Baechler BL, McKnight C, Pruchnicki PC, Biro NA, Reed BH. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila. Biol Open 2015; 5:1-10. [PMID: 26658272 PMCID: PMC4728307 DOI: 10.1242/bio.015636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways.
Collapse
Affiliation(s)
- Brittany L Baechler
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Cameron McKnight
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Porsha C Pruchnicki
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nicole A Biro
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Bruce H Reed
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
58
|
Fiedler M, Graeb M, Mieszczanek J, Rutherford TJ, Johnson CM, Bienz M. An ancient Pygo-dependent Wnt enhanceosome integrated by Chip/LDB-SSDP. eLife 2015; 4:e09073. [PMID: 26312500 PMCID: PMC4571689 DOI: 10.7554/elife.09073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 12/15/2022] Open
Abstract
TCF/LEF factors are ancient context-dependent enhancer-binding proteins that are activated by β-catenin following Wnt signaling. They control embryonic development and adult stem cell compartments, and their dysregulation often causes cancer. β-catenin-dependent transcription relies on the NPF motif of Pygo proteins. Here, we use a proteomics approach to discover the Chip/LDB-SSDP (ChiLS) complex as the ligand specifically binding to NPF. ChiLS also recognizes NPF motifs in other nuclear factors including Runt/RUNX2 and Drosophila ARID1, and binds to Groucho/TLE. Studies of Wnt-responsive dTCF enhancers in the Drosophila embryonic midgut indicate how these factors interact to form the Wnt enhanceosome, primed for Wnt responses by Pygo. Together with previous evidence, our study indicates that ChiLS confers context-dependence on TCF/LEF by integrating multiple inputs from lineage and signal-responsive factors, including enhanceosome switch-off by Notch. Its pivotal function in embryos and stem cells explain why its integrity is crucial in the avoidance of cancer.
Collapse
Affiliation(s)
- Marc Fiedler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Michael Graeb
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
59
|
Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S, Stevens M, Boyle S, Park JS, Weirauch MT, Brent MR, Kopan R. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Mol Cell 2015; 59:685-97. [PMID: 26257285 DOI: 10.1016/j.molcel.2015.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/11/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
We developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA adenine methyltransferase) were fused to protein pairs to be queried. Either direct interaction between proteins or proximity enabled DAM reconstitution and methylation of adenine in GATC. Inducible SpDamID was used to analyze Notch-mediated transcriptional activation. We demonstrate that Notch complexes label RBP sites broadly across the genome and show that a subset of these complexes that recruit MAML and p300 undergo changes in chromatin accessibility in response to Notch signaling. SpDamID differentiates between monomeric and dimeric binding, thereby allowing for identification of half-site motifs used by Notch dimers. Motif enrichment of Notch enhancers coupled with SpDamID reveals co-targeting of regulatory sequences by Notch and Runx1. SpDamID represents a sensitive and powerful tool that enables dynamic analysis of combinatorial protein-DNA transactions at a genome-wide level.
Collapse
Affiliation(s)
- Matthew R Hass
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Hien-Haw Liow
- Center for Genome Sciences and Systems Biology, Washington University, Saint Louis, MO 63108, USA
| | - Xiaoting Chen
- School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, USA; Center for Autoimmune Genomics and Etiology (CAGE) and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ankur Sharma
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Ashley Reeb
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Andrew Martens
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Mary Fulbright
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Michael Stevens
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Scott Boyle
- Department of Developmental Biology, Washington University, Saint Louis, MO 63110, USA
| | - Joo-Seop Park
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Pediatric Urology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Autoimmune Genomics and Etiology (CAGE) and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University, Saint Louis, MO 63108, USA
| | - Raphael Kopan
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
60
|
Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G, Sakai H, Tajbakhsh S, Russell S, Adryan B, Bray SJ. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 2015; 34:1889-904. [PMID: 26069324 DOI: 10.15252/embj.201489923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.
Collapse
Affiliation(s)
- Lenka Skalska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert Stojnic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Jinghua Li
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Gustavo Cerda-Moya
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Boris Adryan
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Ghosh S, Singh A, Mandal S, Mandal L. Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response. Dev Cell 2015; 33:478-88. [PMID: 25959225 PMCID: PMC4448147 DOI: 10.1016/j.devcel.2015.03.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/23/2015] [Accepted: 03/12/2015] [Indexed: 12/01/2022]
Abstract
Blood cell development in Drosophila shares significant similarities with vertebrate. The conservation ranges from biphasic mode of hematopoiesis to signaling molecules crucial for progenitor cell formation, maintenance, and differentiation. Primitive hematopoiesis in Drosophila ensues in embryonic head mesoderm, whereas definitive hematopoiesis happens in larval hematopoietic organ, the lymph gland. This organ, with the onset of pupation, ruptures to release hemocytes into circulation. It is believed that the adult lacks a hematopoietic organ and survives on the contribution of both embryonic and larval hematopoiesis. However, our studies revealed a surge of blood cell development in the dorsal abdominal hemocyte clusters of adult fly. These active hematopoietic hubs are capable of blood cell specification and can respond to bacterial challenges. The presence of progenitors and differentiated hemocytes embedded in a functional network of Laminin A and Pericardin within this hematopoietic hub projects it as a simple version of the vertebrate bone marrow. An active hematopoietic hub exists in the abdomen of adult Drosophila Progenitors within the hub can give rise to plasmatocytes and crystal cells Resident plasmatocytes show immune responses and proliferate upon infection Progenitors residing in the hub originate from the posterior lobes of lymph gland
Collapse
Affiliation(s)
- Saikat Ghosh
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli P.O. 140306, India
| | - Arashdeep Singh
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli P.O. 140306, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli P.O. 140306, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli P.O. 140306, India.
| |
Collapse
|
62
|
Wang H, Zang C, Liu XS, Aster JC. The role of Notch receptors in transcriptional regulation. J Cell Physiol 2015; 230:982-8. [PMID: 25418913 DOI: 10.1002/jcp.24872] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/22/2022]
Abstract
Notch signaling has pleiotropic context-specific functions that have essential roles in many processes, including embryonic development and maintenance and homeostasis of adult tissues. Aberrant Notch signaling (both hyper- and hypoactive) is implicated in a number of human developmental disorders and many cancers. Notch receptor signaling is mediated by tightly regulated proteolytic cleavages that lead to the assembly of a nuclear Notch transcription complex, which drives the expression of downstream target genes and thereby executes Notch's functions. Thus, understanding regulation of gene expression by Notch is central to deciphering how Notch carries out its many activities. Here, we summarize the recent findings pertaining to the complex interplay between the Notch transcriptional complex and interacting factors involved in transcriptional regulation, including co-activators, cooperating transcription factors, and chromatin regulators, and discuss emerging data pertaining to the role of Notch-regulated noncoding RNAs in transcription.
Collapse
Affiliation(s)
- Hongfang Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
63
|
Vlisidou I, Wood W. Drosophila blood cells and their role in immune responses. FEBS J 2015; 282:1368-82. [PMID: 25688716 DOI: 10.1111/febs.13235] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022]
Abstract
Drosophila melanogaster has been extensively used to study the humoral arm of innate immunity because of the developmental and functional parallels with mammalian innate immunity. However, the fly cellular response to infection is far less understood. Investigative work on Drosophila haemocytes, the immunosurveillance cells of the insect, has revealed that they fulfil roles similar to mammalian monocytes and macrophages. They respond to wound signals and orchestrate the coagulation response. In addition, they phagocytose and encapsulate invading pathogens, and clear up apoptotic bodies controlling inflammation. This review briefly describes the Drosophila haematopoietic system and discusses what is currently known about the contribution of haemocytes to the immune response upon infection and wounding, during all stages of development.
Collapse
Affiliation(s)
- Isabella Vlisidou
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
64
|
Leitão AB, Sucena É. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. eLife 2015; 4. [PMID: 25650737 PMCID: PMC4357286 DOI: 10.7554/elife.06166] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte transdifferentiation. This process occurs in the sessile clusters and is contingent upon the integrity of these structures. The existence of this hematopoietic tissue, relying on structure-dependent signaling events to promote blood homeostasis, creates a new paradigm for addressing outstanding questions in Drosophila hematopoiesis and establishing further parallels with vertebrate systems.
Collapse
Affiliation(s)
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
65
|
Abstract
RUNX proteins belong to a family of metazoan transcription factors that serve as master regulators of development. They are frequently deregulated in human cancers, indicating a prominent and, at times, paradoxical role in cancer pathogenesis. The contextual cues that direct RUNX function represent a fast-growing field in cancer research and could provide insights that are applicable to early cancer detection and treatment. This Review describes how RUNX proteins communicate with key signalling pathways during the multistep progression to malignancy; in particular, we highlight the emerging partnership of RUNX with p53 in cancer suppression.
Collapse
Affiliation(s)
- Yoshiaki Ito
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| | - Suk-Chul Bae
- 1] Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, 361763, South Korea. [2]
| | - Linda Shyue Huey Chuang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| |
Collapse
|
66
|
Palmer WH, Jia D, Deng WM. Cis-interactions between Notch and its ligands block ligand-independent Notch activity. eLife 2014; 3. [PMID: 25486593 PMCID: PMC4286723 DOI: 10.7554/elife.04415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/06/2014] [Indexed: 01/01/2023] Open
Abstract
The Notch pathway is integrated into numerous developmental processes and therefore is fine-tuned on many levels, including receptor production, endocytosis, and degradation. Notch is further characterized by a twofold relationship with its Delta-Serrate (DSL) ligands, as ligands from opposing cells (trans-ligands) activate Notch, whereas ligands expressed in the same cell (cis-ligands) inhibit signaling. We show that cells without both cis- and trans-ligands can mediate Notch-dependent developmental events during Drosophila oogenesis, indicating ligand-independent Notch activity occurs when the receptor is free of cis- and trans-ligands. Furthermore, cis-ligands can reduce Notch activity in endogenous and genetically induced situations of elevated trans-ligand-independent Notch signaling. We conclude that cis-expressed ligands exert their repressive effect on Notch signaling in cases of trans-ligand-independent activation, and propose a new function of cis-inhibition which buffers cells against accidental Notch activity. DOI:http://dx.doi.org/10.7554/eLife.04415.001 Many biological processes require cells to send messages to one another. Typically, this is achieved when molecules are released from one cell and make contact with companion molecules on another cell. This triggers a chemical or biological reaction in the receiving cell. One of the most common examples of this is the Notch pathway, which is used throughout the animal kingdom and plays an important role in helping cells and embryos to develop. The Notch protein itself is a ‘receptor’ protein that is embedded in the surface of a cell, and relays signals from outside the cell to activate certain genes inside the cell. In fruit flies, two proteins called Serrate and Delta act as ‘ligands’ for Notch—by binding to Notch, they can change how this receptor works. If Serrate or Delta are present on the outside of one cell, they can activate Notch (and hence the Notch signaling pathway) in an adjacent cell. However, if the Serrate or Delta ligands are present on the surface of the same cell as Notch they turn the receptor off, rather than activate it. Notch can also work without being activated by Serrate or Delta, but whether the ligands can inhibit this ‘ligand-independent’ Notch activation if they are on the surface of the same cell as the Notch receptor was unknown. Palmer et al. study Notch signaling in the fruit fly equivalent of the ovary, in cells that are naturally deficient in Serrate and from which Delta was artificially removed. The Notch protein was activated when these ligands were not present. Furthermore, the developmental processes that are activated by Notch were able to proceed as normal when triggered by ligand-independent Notch signaling. In total, Palmer et al. investigated three different types of fruit fly cell, and found that ligand-independent Notch signaling can occur in all of them. Reintroducing Delta to the same cell as Notch turns the receptor off, suggesting that ligands on the surface of the same cell as the receptor can inhibit ligand-independent Notch activity. Many genetic diseases and cancers have been linked to Notch being activated when it should not be; therefore, understanding how Notch is controlled could help guide the development of new treatments for these conditions. DOI:http://dx.doi.org/10.7554/eLife.04415.002
Collapse
Affiliation(s)
- William Hunt Palmer
- Department of Biological Science, Florida State University, Tallahassee, United States
| | - Dongyu Jia
- Department of Biological Science, Florida State University, Tallahassee, United States
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, United States
| |
Collapse
|
67
|
Milton CC, Grusche FA, Degoutin JL, Yu E, Dai Q, Lai EC, Harvey KF. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster. Curr Biol 2014; 24:2673-80. [PMID: 25454587 PMCID: PMC4269548 DOI: 10.1016/j.cub.2014.10.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/26/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
The Salvador-Warts-Hippo (Hippo) pathway is an evolutionarily conserved regulator of organ growth and cell fate. It performs these functions in epithelial and neural tissues of both insects and mammals, as well as in mammalian organs such as the liver and heart. Despite rapid advances in Hippo pathway research, a definitive role for this pathway in hematopoiesis has remained enigmatic. The hematopoietic compartments of Drosophila melanogaster and mammals possess several conserved features. D. melanogaster possess three types of hematopoietic cells that most closely resemble mammalian myeloid cells: plasmatocytes (macrophage-like cells), crystal cells (involved in wound healing), and lamellocytes (which encapsulate parasites). The proteins that control differentiation of these cells also control important blood lineage decisions in mammals. Here, we define the Hippo pathway as a key mediator of hematopoiesis by showing that it controls differentiation and proliferation of the two major types of D. melanogaster blood cells, plasmatocytes and crystal cells. In animals lacking the downstream Hippo pathway kinase Warts, lymph gland cells overproliferated, differentiated prematurely, and often adopted a mixed lineage fate. The Hippo pathway regulated crystal cell numbers by both cell-autonomous and non-cell-autonomous mechanisms. Yorkie and its partner transcription factor Scalloped were found to regulate transcription of the Runx family transcription factor Lozenge, which is a key regulator of crystal cell fate. Further, Yorkie or Scalloped hyperactivation induced ectopic crystal cells in a non-cell-autonomous and Notch-pathway-dependent fashion.
Collapse
Affiliation(s)
- Claire C Milton
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Felix A Grusche
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joffrey L Degoutin
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eefang Yu
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Qi Dai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Kieran F Harvey
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
68
|
Guiu J, Bergen DJM, De Pater E, Islam ABMMK, Ayllón V, Gama-Norton L, Ruiz-Herguido C, González J, López-Bigas N, Menendez P, Dzierzak E, Espinosa L, Bigas A. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. ACTA ACUST UNITED AC 2014; 211:2411-23. [PMID: 25385755 PMCID: PMC4235648 DOI: 10.1084/jem.20131857] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guiu et al. use ChIP-on-chip analysis for the Notch partner RBPj, using embryonic tissue from the aorta-gonad-mesonephros region to identify potential novel Notch target genes involved in HSC emergence. They show that c-MYC–responsive gene Cdca7 is expressed in different HSC and progenitor subpopulations and that CDCA7 is important for maintaining the undifferentiated phenotype. Cdca7 acts downstream of Notch in HSCs in zebrafish, mouse, and human, indicating a highly conserved Notch/RBPj/Cdca7 axis in hematopoietic development. Hematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch1 in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notch-dependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.
Collapse
Affiliation(s)
- Jordi Guiu
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Dylan J M Bergen
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Emma De Pater
- Erasmus MC Stem Cell and Regenerative Medicine Institute, Erasmus Medical Center, 3000 CA Rotterdam, Netherlands
| | - Abul B M M K Islam
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Verónica Ayllón
- Centre for Genomics and Oncological Research (Genyo), Pfizer-University of Granada-Andalusian Government, 18016 Granada, Spain
| | - Leonor Gama-Norton
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Cristina Ruiz-Herguido
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Jessica González
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Nuria López-Bigas
- Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Pablo Menendez
- José Carreras Leukaemia Research Institute, Cell Therapy Program, School of Medicine, University of Barcelona, 08036 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Elaine Dzierzak
- Erasmus MC Stem Cell and Regenerative Medicine Institute, Erasmus Medical Center, 3000 CA Rotterdam, Netherlands
| | - Lluis Espinosa
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Anna Bigas
- Program de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| |
Collapse
|
69
|
Pézeron G, Millen K, Boukhatmi H, Bray S. Notch directly regulates the cell morphogenesis genes Reck, talin and trio in adult muscle progenitors. J Cell Sci 2014; 127:4634-44. [PMID: 25217625 DOI: 10.1242/jcs.151787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is growing evidence that activation of the Notch pathway can result in consequences on cell morphogenesis and behaviour, both during embryonic development and cancer progression. In general, Notch is proposed to coordinate these processes by regulating expression of key transcription factors. However, many Notch-regulated genes identified in genome-wide studies are involved in fundamental aspects of cell behaviour, suggesting a more direct influence on cellular properties. By testing the functions of 25 such genes we confirmed that 12 are required in developing adult muscles, consistent with roles downstream of Notch. Focusing on three, Reck, rhea/talin and trio, we verify their expression in adult muscle progenitors and identify Notch-regulated enhancers in each. Full activity of these enhancers requires functional binding sites for Su(H), the DNA-binding transcription factor in the Notch pathway, validating their direct regulation. Thus, besides its well-known roles in regulating the expression of cell-fate-determining transcription factors, Notch signalling also has the potential to directly affect cell morphology and behaviour by modulating expression of genes such as Reck, rhea/talin and trio. This sheds new light on the functional outputs of Notch activation in morphogenetic processes.
Collapse
Affiliation(s)
- Guillaume Pézeron
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kat Millen
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hadi Boukhatmi
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
70
|
Collu GM, Hidalgo-Sastre A, Brennan K. Wnt-Notch signalling crosstalk in development and disease. Cell Mol Life Sci 2014; 71:3553-67. [PMID: 24942883 PMCID: PMC11113451 DOI: 10.1007/s00018-014-1644-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The Notch and Wnt pathways are two of only a handful of highly conserved signalling pathways that control cell-fate decisions during animal development (Pires-daSilva and Sommer in Nat Rev Genet 4: 39-49, 2003). These two pathways are required together to regulate many aspects of metazoan development, ranging from germ layer patterning in sea urchins (Peter and Davidson in Nature 474: 635-639, 2011) to the formation and patterning of the fly wing (Axelrod et al in Science 271:1826-1832, 1996; Micchelli et al in Development 124:1485-1495, 1997; Rulifson et al in Nature 384:72-74, 1996), the spacing of the ciliated cells in the epidermis of frog embryos (Collu et al in Development 139:4405-4415, 2012) and the maintenance and turnover of the skin, gut lining and mammary gland in mammals (Clayton et al in Nature 446:185-189, 2007; Clevers in Cell 154:274-284, 2013; Doupe et al in Dev Cell 18:317-323, 2010; Lim et al in Science 342:1226-1230, 2013; Lowell et al in Curr Biol 10:491-500, 2000; van et al in Nature 435:959-963, 2005; Yin et al in Nat Methods 11:106-112, 2013). In addition, many diseases, including several cancers, are caused by aberrant signalling through the two pathways (Bolós et al in Endocr Rev 28: 339-363, 2007; Clevers in Cell 127: 469-480, 2006). In this review, we will outline the two signalling pathways, describe the different points of interaction between them, and cover how these interactions influence development and disease.
Collapse
Affiliation(s)
- Giovanna M Collu
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | | |
Collapse
|
71
|
Kaul A, Schuster E, Jennings BH. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription. PLoS Genet 2014; 10:e1004595. [PMID: 25165826 PMCID: PMC4148212 DOI: 10.1371/journal.pgen.1004595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022] Open
Abstract
Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation and polymerase pausing. Repression by transcription factors plays a central role in gene regulation. The Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressors interacts with many different transcription factors and has many essential roles during animal development. Groucho/TLE proteins form oligomers that are necessary for target gene repression in some contexts. We have profiled the genome-wide recruitment of the founding member of this family, Groucho (from Drosophila) to gain insight into how and where it binds with respect to target genes and to identify factors associated with its binding. We find that Groucho binds in discrete peaks, frequently at transcription start sites, and that blocking Groucho from forming oligomers does not significantly change the pattern of Groucho recruitment. Although Groucho acts as a repressor, Groucho binding is enriched in chromatin that is permissive for transcription, and we find that it acts to attenuate rather than completely silence target gene expression. Thus, Groucho does not act as an “on/off” switch on target gene expression, but rather as a “mute” button.
Collapse
Affiliation(s)
- Aamna Kaul
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Eugene Schuster
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Barbara H. Jennings
- UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
72
|
Zacharioudaki E, Bray SJ. Tools and methods for studying Notch signaling in Drosophila melanogaster. Methods 2014; 68:173-82. [PMID: 24704358 PMCID: PMC4059942 DOI: 10.1016/j.ymeth.2014.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
Notch signaling involves a highly conserved pathway that mediates communication between neighboring cells. Activation of Notch by its ligands, results in the release of the Notch intracellular domain (NICD), which enters the nucleus and regulates transcription. This pathway has been implicated in many developmental decisions and diseases (including cancers) over the past decades. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, make this an attractive model for studying fundamental principles of Notch regulation and function. In this article we present some of the established and emerging tools that are available to monitor and manipulate the Notch pathway in Drosophila and discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Evanthia Zacharioudaki
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
73
|
It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Semin Cell Dev Biol 2014; 28:63-9. [PMID: 24631354 DOI: 10.1016/j.semcdb.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 01/12/2023]
Abstract
During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion.
Collapse
|
74
|
Ming L, Wilk R, Reed BH, Lipshitz HD. Drosophila Hindsight and mammalian RREB-1 are evolutionarily conserved DNA-binding transcriptional attenuators. Differentiation 2014; 86:159-70. [PMID: 24418439 DOI: 10.1016/j.diff.2013.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/25/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022]
Abstract
The Drosophila Hindsight (hnt) gene encodes a C2H2-type Zinc-finger protein, HNT, that plays multiple developmental roles including control of embryonic germ band retraction and regulation of retinal cell fate and morphogenesis. While the developmental functions of the human HNT homolog, RREB-1, are unknown, it has been shown to function as a transcriptional modulator of several tumor suppressor genes. Here we investigate HNT's functional motifs, target genes and its regulatory abilities. We show that the C-terminal region of HNT, containing the last five of its 14 Zinc fingers, binds in vitro to DNA elements very similar to those identified for RREB-1. We map HNT's in vivo binding sites on salivary gland polytene chromosomes and define, at high resolution, where HNT is bound to two target genes, hnt itself and nervy (nvy). Data from both loss-of-function and over-expression experiments show that HNT attenuates the transcription of these two targets in a tissue-specific manner. RREB-1, when expressed in Drosophila, binds to the same polytene chromosome sites as HNT, attenuates expression of the hnt and nvy genes, and rescues the germ band retraction phenotype. HNT's ninth Zinc finger has degenerated or been lost in the vertebrate lineage. We show that a HNT protein mutant for this finger can also attenuate target gene expression and rescue germ band retraction. Thus HNT and RREB-1 are functional homologs at the level of DNA binding, transcriptional regulation and developmental control.
Collapse
Affiliation(s)
- Liang Ming
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Ronit Wilk
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Bruce H Reed
- Department of Biology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, Canada N2L 3G1.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
75
|
Abstract
Signaling assays in Drosophila cell lines are a valuable method for investigating whether other proteins influence the function of the Notch pathway and for assessing whether specific enhancers or genes are regulated by Notch. In this chapter, we will describe two different types of assays that can be used to monitor Notch activation in Kc167 and S2 cells. One involves activating Notch in cultured cells and measuring the change in endogenous gene expression levels. The other uses luciferase reporters and measures their response to Notch, by co-transfecting with NICD.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | | | | |
Collapse
|
76
|
Honti V, Csordás G, Kurucz É, Márkus R, Andó I. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:47-56. [PMID: 23800719 DOI: 10.1016/j.dci.2013.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom.
Collapse
Affiliation(s)
- Viktor Honti
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary
| | | | | | | | | |
Collapse
|
77
|
Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, Tiffen JC, Kober C, Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium, Green AR, Massie CE, Nangalia J, Lempidaki S, Döhner H, Döhner K, Bray SJ, McDermott U, Papaemmanuil E, Campbell PJ, Adams DJ. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet 2014; 46:33-8. [PMID: 24316979 PMCID: PMC3874239 DOI: 10.1038/ng.2846] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023]
Abstract
A major challenge in cancer genetics is to determine which low-frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers and find inactivating mutations in the homeodomain transcription factor gene CUX1 (cut-like homeobox 1) in ~1-5% of various tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical significance of CUX1 loss. In parallel, we validate CUX1 as a bona fide tumor suppressor using mouse transposon-mediated insertional mutagenesis and Drosophila cancer models. We demonstrate that CUX1 deficiency activates phosphoinositide 3-kinase (PI3K) signaling through direct transcriptional downregulation of the PI3K inhibitor PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), leading to increased tumor growth and susceptibility to PI3K-AKT inhibition. Thus, our complementary approaches identify CUX1 as a pan-driver of tumorigenesis and uncover a potential strategy for treating CUX1-mutant tumors.
Collapse
Affiliation(s)
- Chi C. Wong
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
| | - Inigo Martincorena
- The Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Alistair G. Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Mamunur Rashid
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Constantine Alifrangis
- The Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Ludmil B. Alexandrov
- The Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jessamy C. Tiffen
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Christina Kober
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Anthony R. Green
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Charles E. Massie
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stella Lempidaki
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY, UK
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Albert-Einstein-Allee 23 89081, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Albert-Einstein-Allee 23 89081, Ulm, Germany
| | - Sarah J. Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY, UK
| | - Ultan McDermott
- The Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Elli Papaemmanuil
- The Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Peter J. Campbell
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
- The Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
78
|
|
79
|
An unexpected link between notch signaling and ROS in restricting the differentiation of hematopoietic progenitors in Drosophila. Genetics 2013; 197:471-83. [PMID: 24318532 DOI: 10.1534/genetics.113.159210] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A fundamental question in hematopoietic development is how multipotent progenitors achieve precise identities, while the progenitors themselves maintain quiescence. In Drosophila melanogaster larvae, multipotent hematopoietic progenitors support the production of three lineages, exhibit quiescence in response to cues from a niche, and from their differentiated progeny. Infection by parasitic wasps alters the course of hematopoiesis. Here we address the role of Notch (N) signaling in lamellocyte differentiation in response to wasp infection. We show that Notch activity is moderately high and ubiquitous in all cells of the lymph gland lobes, with crystal cells exhibiting the highest levels. Wasp infection reduces Notch activity, which results in fewer crystal cells and more lamellocytes. Robust lamellocyte differentiation is induced even in N mutants. Using RNA interference knockdown of N, Serrate, and neuralized (neur), and twin clone analysis of a N null allele, we show that all three genes inhibit lamellocyte differentiation. However, unlike its cell-autonomous function in crystal cell development, Notch's inhibitory influence on lamellocyte differentiation is not cell autonomous. High levels of reactive oxygen species in the lymph gland lobes, but not in the niche, accompany N(RNAi)-induced lamellocyte differentiation and lobe dispersal. Our results define a novel dual role for Notch signaling in maintaining competence for basal hematopoiesis: while crystal cell development is encouraged, lamellocytic fate remains repressed. Repression of Notch signaling in fly hematopoiesis is important for host defense against natural parasitic wasp infections. These findings can serve as a model to understand how reactive oxygen species and Notch signals are integrated and interpreted in vivo.
Collapse
|