51
|
Kouwenhoven WM, Veenvliet JV, van Hooft JA, van der Heide LP, Smidt MP. Engrailed 1 shapes the dopaminergic and serotonergic landscape through proper isthmic organizer maintenance and function. Biol Open 2016; 5:279-88. [PMID: 26879466 PMCID: PMC4810741 DOI: 10.1242/bio.015032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The isthmic organizer (IsO) is a signaling center that specifies the correct and distinct embryonic development of the dopaminergic midbrain and serotonergic hindbrain. The IsO is a linear boundary between the two brain regions, emerging at around embryonic day 7-8 of murine embryonic development, that shapes its surroundings through the expression of instructive signals such as Wnt and growth factors. Homeobox transcription factor engrailed 1 (En1) is present in midbrain and rostral hindbrain (i.e. rhombomere 1, R1). Its expression spans the IsO, and it is known to be an important survival factor for both dopaminergic and serotonergic neurons. Erroneous composition of dopaminergic neurons in the midbrain or serotonergic neurons in the hindbrain is associated with severe pathologies such as Parkinson's disease, depression or autism. Here we investigated the role of En1 in early mid-hindbrain development, using multiple En1-ablated mouse models as well as lineage-tracing techniques, and observed the appearance of ectopic dopaminergic neurons, indistinguishable from midbrain dopaminergic neurons based on molecular profile and intrinsic electrophysiological properties. We propose that this change is the direct result of a caudal relocation of the IsO as represented by ectopic presence of Fgf8, Otx2, Wnt1 and canonical Wnt-signalling. Our work suggests a newly-discovered role for En1: the repression of Otx2, Wnt1 and canonical Wnt-signaling in R1. Overall, our results suggest that En1 is essential for proper IsO maintenance and function. Summary: Local molecular coding under the influence of En1 is essential for proper spatiotemporal expression of key factors involved in the maintenance and function of the isthmic organizer.
Collapse
Affiliation(s)
- Willemieke M Kouwenhoven
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Jesse V Veenvliet
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Johannes A van Hooft
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - L P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
52
|
Klafke R, Prem Anand AA, Wurst W, Prakash N, Wizenmann A. Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development. Development 2016; 143:691-702. [DOI: 10.1242/dev.126748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022]
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesencephalon and caudal diencephalon of all tetrapod species studied so far. They are the most prominent DA neuronal population and are implicated in control and modulation of motor, cognitive and rewarding/affective behaviors. Their degeneration or dysfunction is intimately linked to several neurological and neuropsychiatric human diseases. To gain further insights into their generation, we studied spatiotemporal expression patterns and epistatic interactions in chick embryos of selected marker genes and signaling pathways associated with mdDA neuron development in mouse. We detected striking differences in the expression patterns of the chick orthologs of the mouse mdDA marker genes Pitx3 and Aldh1a1, which suggests important differences between the species in the generation/generating of these cells. We also discovered that the Sonic hedgehog signaling pathway is both, necessary and sufficient for the induction of ectopic PITX3 expression in chick mesencephalon downstream of WNT9A induced LMX1a transcription. These aspects of early chicken development resemble the ontogeny of zebrafish diencephalic DA neuronal populations, and suggest a divergence between birds and mammals during evolution.
Collapse
Affiliation(s)
- Ruth Klafke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A. Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Standort München, Schillerstr. 44, 80336 München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| |
Collapse
|
53
|
Neuroprotective Transcription Factors in Animal Models of Parkinson Disease. Neural Plast 2015; 2016:6097107. [PMID: 26881122 PMCID: PMC4736191 DOI: 10.1155/2016/6097107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 11/28/2022] Open
Abstract
A number of transcription factors, including En1/2, Foxa1/2, Lmx1a/b, Nurr1, Otx2, and Pitx3, with key roles in midbrain dopaminergic (mDA) neuron development, also regulate adult mDA neuron survival and physiology. Mouse models with targeted disruption of some of these genes display several features reminiscent of Parkinson disease (PD), in particular the selective and progressive loss of mDA neurons in the substantia nigra pars compacta (SNpc). The characterization of these animal models has provided valuable insights into various mechanisms of PD pathogenesis. Therefore, the dissection of the mechanisms and survival signalling pathways engaged by these transcription factors to protect mDA neuron from degeneration can suggest novel therapeutic strategies. The work on En1/2-mediated neuroprotection also highlights the potential of protein transduction technology for neuroprotective approaches in PD.
Collapse
|
54
|
Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis. FEBS Lett 2015; 589:3786-94. [PMID: 26459030 DOI: 10.1016/j.febslet.2015.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/18/2015] [Accepted: 10/06/2015] [Indexed: 11/23/2022]
Abstract
The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms.
Collapse
|
55
|
Sherf O, Nashelsky Zolotov L, Liser K, Tilleman H, Jovanovic VM, Zega K, Jukic MM, Brodski C. Otx2 Requires Lmx1b to Control the Development of Mesodiencephalic Dopaminergic Neurons. PLoS One 2015; 10:e0139697. [PMID: 26444681 PMCID: PMC4596855 DOI: 10.1371/journal.pone.0139697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Studying the development of mesodiencephalic dopaminergic (mdDA) neurons provides an important basis for better understanding dopamine-associated brain functions and disorders and is critical for establishing cell replacement therapy for Parkinson’s disease. The transcription factors Otx2 and Lmx1b play a key role in the development of mdDA neurons. However, little is known about the genes downstream of Otx2 and Lmx1b in the pathways controlling the formation of mdDA neurons in vivo. Here we report on our investigation of Lmx1b as downstream target of Otx2 in the formation of mdDA neurons. Mouse mutants expressing Otx2 under the control of the En1 promoter (En1+/Otx2) showed increased Otx2 expression in the mid-hindbrain region, resulting in upregulation of Lmx1b and expansion of mdDA neurons there. In contrast, Lmx1b-/- mice showed decreased expression of Otx2 and impairments in several aspects of mdDA neuronal formation. To study the functional interaction between Otx2 and Lmx1b, we generated compound mutants in which Otx2 expression was restored in mice lacking Lmx1b (En1+/Otx2;Lmx1b-/-). In these animals Otx2 was not sufficient to rescue any of the aberrations in the formation of mdDA neurons caused by the loss of Lmx1b, but rescued the loss of ocular motor neurons. Gene expression studies in Lmx1b-/- embryos indicated that in these mutants Wnt1, En1 and Fgf8 expression are induced but subsequently lost in the mdDA precursor domain and the mid-hindbrain organizer in a specific, spatio-temporal manner. In summary, we demonstrate that Otx2 critically depends on Lmx1b for the formation of mdDA neurons, but not for the generation of ocular motor neurons. Moreover, our data suggest that Lmx1b precisely maintains the expression pattern of Wnt1, Fgf8 and En1, which are essential for mid-hindbrain organizer function and the formation of mdDA neurons.
Collapse
Affiliation(s)
- Orna Sherf
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
| | - Limor Nashelsky Zolotov
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
| | - Keren Liser
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
| | - Hadas Tilleman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
| | - Vukasin M. Jovanovic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
| | - Ksenija Zega
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
| | - Marin M. Jukic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’erSheva 84105, Israel
- * E-mail:
| |
Collapse
|
56
|
A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1 mice. Neurobiol Dis 2015; 82:32-45. [DOI: 10.1016/j.nbd.2015.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022] Open
|
57
|
Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett 2015; 589:3773-85. [PMID: 26431946 DOI: 10.1016/j.febslet.2015.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Midbrain dopaminergic neurons (MbDNs) modulate cognitive processes, regulate voluntary movement, and encode reward prediction errors and aversive stimuli. While the degeneration of MbDNs underlies the motor defects in Parkinson's disease, imbalances in dopamine levels are associated with neuropsychiatric disorders such as depression, schizophrenia and substance abuse. In recent years, progress has been made in understanding how MbDNs, which constitute a relatively small neuronal population in the brain, can contribute to such diverse functions and dysfunctions. In particular, important insights have been gained regarding the distinct molecular, neurochemical and network properties of MbDNs. How this diversity of MbDNs is established during brain development is only starting to be unraveled. In this review, we summarize the current knowledge on the diversity in MbDN progenitors and differentiated MbDNs in the developing rodent brain. We discuss the signaling pathways, transcription factors and transmembrane receptors that contribute to setting up these diverse MbDN subpopulations. A better insight into the processes that establish diversity in MbDNs will ultimately improve the understanding of the architecture and function of the dopaminergic system in the adult brain.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany.
| |
Collapse
|
58
|
Nouri N, Patel MJ, Joksimovic M, Poulin JF, Anderegg A, Taketo MM, Ma YC, Awatramani R. Excessive Wnt/beta-catenin signaling promotes midbrain floor plate neurogenesis, but results in vacillating dopamine progenitors. Mol Cell Neurosci 2015; 68:131-42. [PMID: 26164566 PMCID: PMC4633300 DOI: 10.1016/j.mcn.2015.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 06/30/2015] [Accepted: 07/04/2015] [Indexed: 01/10/2023] Open
Abstract
The floor plate (FP), a ventral midline structure of the developing neural tube, has differential neurogenic capabilities along the anterior-posterior axis. The midbrain FP, unlike the hindbrain and spinal cord floor plate, is highly neurogenic and produces midbrain dopaminergic (mDA) neurons. Canonical Wnt/beta-catenin signaling, at least in part, is thought to account for the difference in neurogenic capability. Removal of beta-catenin results in mDA progenitor specification defects as well as a profound reduction of neurogenesis. To examine the effects of excessive Wnt/beta-catenin signaling on mDA specification and neurogenesis, we have analyzed a model wherein beta-catenin is conditionally stabilized in the Shh+domain. Here, we show that the Foxa2+/Lmx1a+ domain is extended rostrally in mutant embryos, suggesting that canonical Wnt/beta-catenin signaling can drive FP expansion along the rostrocaudal axis. Although excess canonical Wnt/beta-catenin signaling generally promotes neurogenesis at midbrain levels, less tyrosine hydroxylase (Th)+, mDA neurons are generated, particularly impacting the Substantia Nigra pars compacta. This is likely because of improper progenitor specification. Excess canonical Wnt/beta-catenin signaling causes downregulation of net Lmx1b, Shh and Foxa2 levels in mDA progenitors. Moreover, these progenitors assume a mixed identity to that of Lmx1a+/Lmx1b+/Nkx6-1+/Neurog1+ progenitors. We also show by lineage tracing analysis that normally, Neurog1+ progenitors predominantly give rise to Pou4f1+ neurons, but not Th+ neurons. Accordingly, in the mutant embryos, Neurog1+ progenitors at the midline generate ectopic Pou4f1+ neurons at the expense of Th+ mDA neurons. Our study suggests that an optimal dose of Wnt/beta-catenin signaling is critical for proper establishment of the mDA progenitor character. Our findings will impact embryonic stem cell protocols that utilize Wnt pathway reagents to derive mDA neuron models and therapeutics for Parkinson's disease.
Collapse
Affiliation(s)
- Navid Nouri
- Northwestern University, Feinberg Medical School, Department of Neurology and Center for Genetic Medicine, 7-113 Lurie Bldg., 303 E Superior Street, Chicago, IL 60611, USA.
| | - Meera J Patel
- Northwestern University, Feinberg Medical School, Department of Neurology and Center for Genetic Medicine, 7-113 Lurie Bldg., 303 E Superior Street, Chicago, IL 60611, USA; Committee on Neurobiology, University of Chicago, 924 E 57th St. R222, Chicago, IL 60637, USA.
| | - Milan Joksimovic
- Northwestern University, Feinberg Medical School, Department of Neurology and Center for Genetic Medicine, 7-113 Lurie Bldg., 303 E Superior Street, Chicago, IL 60611, USA.
| | - Jean-Francois Poulin
- Northwestern University, Feinberg Medical School, Department of Neurology and Center for Genetic Medicine, 7-113 Lurie Bldg., 303 E Superior Street, Chicago, IL 60611, USA.
| | - Angela Anderegg
- Northwestern University, Feinberg Medical School, Department of Neurology and Center for Genetic Medicine, 7-113 Lurie Bldg., 303 E Superior Street, Chicago, IL 60611, USA.
| | - M Mark Taketo
- Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto 606-8501, Japan.
| | - Yong-Chao Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Hospital of Chicago Research Center, 2430 North Halsted Street, Room C321, Chicago, IL 60614, USA.
| | - Rajeshwar Awatramani
- Northwestern University, Feinberg Medical School, Department of Neurology and Center for Genetic Medicine, 7-113 Lurie Bldg., 303 E Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
59
|
Abstract
ABSTRACT
Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.
Collapse
Affiliation(s)
- Ernest Arenas
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Mark Denham
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus 8000, Denmark
| | - J. Carlos Villaescusa
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| |
Collapse
|
60
|
Yuan J, Lei Z, Wang X, Zhu F, Chen D. Ruthenium complex Λ-WH0402 induces hepatocellular carcinoma LM6 (HCCLM6) cell death by triggering the Beclin-1-dependent autophagy pathway. Metallomics 2015; 7:896-907. [PMID: 25811406 DOI: 10.1039/c5mt00010f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To evaluate the anticancer mechanism of the new ruthenium complex-Λ-WH0402 at the cellular level, the in vitro cytotoxicity of Λ-WH0402 was investigated on 10 human tumor cell lines. Λ-WH0402 was found to have higher anticancer activity than cisplatin toward human liver cancer HCCLM6 cells that have high tumor metastatic characteristics. Meanwhile, Λ-WH0402 showed an antimetastatic effect on HCCLM6 cells in vitro, mostly through its effect on cell adhesion, invasion and migration. In addition, Λ-WH0402 significantly reduced tumor metastasis to the lungs in orthotopic mouse hepatocellular cancer (HCC) models induced by HCCLM6 cells. Furthermore, Λ-WH0402 exerted an inhibitory effect on tumor cell growth and proliferation and induced dose-dependent cell cycle arrest in the S phase in HCCLM6 cells. Immunoblotting analysis showed that Λ-WH0402 not only decreased the expression of antiapoptotic protein Bcl-2 and nutrient-deprivation autophagy factor-1 (NAF-1), but also significantly increased the expression of Beclin-1 in HCCLM6 cells. More importantly, we identified that Λ-WH0402 treatment reduced the interaction between Bcl-2 and Beclin-1, and increased the expression of autophagic activation marker LC3B-II in HCCLM6 cells. On the whole, our results suggested that the anitcancer activity of Λ-WH0402 is mediated through promoting the Beclin-1-dependent autophagy pathway in HCCLM6 cells.
Collapse
Affiliation(s)
- Jian Yuan
- Department of Pathology and Guangdong Key Laboratory for Bioactive Drugs Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China.
| | | | | | | | | |
Collapse
|
61
|
Interaction between Oc-1 and Lmx1a promotes ventral midbrain dopamine neural stem cells differentiation into dopamine neurons. Brain Res 2015; 1608:40-50. [PMID: 25747864 DOI: 10.1016/j.brainres.2015.02.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Recent studies have shown that Onecut (Oc) transcription factors may be involved in the early development of midbrain dopaminergic neurons (mdDA). The expression profile of Oc factors matches that of Lmx1a, an important intrinsic transcription factor in the development of mDA neuron. Moreover, the Wnt1-Lmx1a pathway controls the mdDA differentiation. However, their expression dynamics and molecular mechanisms remain to be determined. To address these issues, we hypothesize that cross-talk between Oc-1 and Lmx1a regulates the mdDA specification and differentiation through the canonical Wnt-β-catenin pathway. We found that Oc-1 and Lmx1a displayed a very similar expression profile from embryonic to adult ventral midbrain (VM) tissues. Oc-1 regulated the proliferation and differentiation of ventral midbrain neural stem cells (vmNSCs). Downregulation of Oc-1 decreased both transcript and protein level of Lmx1a. Oc-1 interacted with lmx1a in vmNSCs in vitro and in VM tissues in vivo. Knockdown of Lmx1a reduced the expression of Oc-1 and Wnt1 in vmNSCs. Inhibiting Wnt1 signaling in vmNSCs provoked similar responses. Our data suggested that Oc-1 interacts with Lmx1a to promote vmNSCs differentiation into dopamine neuron through Wnt1-Lmx1a pathway.
Collapse
|
62
|
Blaess S, Ang SL. Genetic control of midbrain dopaminergic neuron development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:113-34. [PMID: 25565353 DOI: 10.1002/wdev.169] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/31/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Midbrain dopaminergic neurons are involved in regulating motor control, reward behavior, and cognition. Degeneration or dysfunction of midbrain dopaminergic neurons is implicated in several neuropsychiatric disorders such as Parkinson's disease, substance use disorders, depression, and schizophrenia. Understanding the developmental processes that generate midbrain dopaminergic neurons will facilitate the generation of dopaminergic neurons from stem cells for cell replacement therapies to substitute degenerating cells in Parkinson's disease patients and will forward our understanding on how functional diversity of dopaminergic neurons in the adult brain is established. Midbrain dopaminergic neurons develop in a multistep process. Following the induction of the ventral midbrain, a distinct dopaminergic progenitor domain is specified and dopaminergic progenitors undergo proliferation, neurogenesis, and differentiation. Subsequently, midbrain dopaminergic neurons acquire a mature dopaminergic phenotype, migrate to their final position and establish projections and connections to their forebrain targets. This review will discuss insights gained on the signaling network of secreted molecules, cell surface receptors, and transcription factors that regulate specification and differentiation of midbrain dopaminergic progenitors and neurons, from the induction of the ventral midbrain to the migration of dopaminergic neurons. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | | |
Collapse
|
63
|
Veenvliet JV, Smidt MP. Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives. Cell Mol Life Sci 2014; 71:4703-27. [PMID: 25064061 PMCID: PMC11113784 DOI: 10.1007/s00018-014-1681-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Dopaminergic (DA) neurons in the ventral mesodiencephalon control locomotion and emotion and are affected in psychiatric and neurodegenerative diseases, such as Parkinson's disease (PD). A clinical hallmark of PD is the specific degeneration of DA neurons located within the substantia nigra (SNc), whereas neurons in the ventral tegmental area remain unaffected. Recent advances have highlighted that the selective vulnerability of the SNc may originate in subset-specific molecular programming during DA neuron development, and significantly increased our understanding of the molecular code that drives specific SNc development. We here present an up-to-date overview of molecular mechanisms that direct DA subset specification, integrating our current knowledge about subset-specific roles of transcription factors, signaling pathways and morphogenes. We discuss strategies to further unravel subset-specific gene-regulatory networks, and the clinical promise of fundamental knowledge about subset specification of DA neurons, with regards to cell replacement therapy and cell-type-specific vulnerability in PD.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marten P. Smidt
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
64
|
Poulin JF, Zou J, Drouin-Ouellet J, Kim KYA, Cicchetti F, Awatramani RB. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep 2014; 9:930-43. [PMID: 25437550 DOI: 10.1016/j.celrep.2014.10.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/07/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Effective approaches to neuropsychiatric disorders require detailed understanding of the cellular composition and circuitry of the complex mammalian brain. Here, we present a paradigm for deconstructing the diversity of neurons defined by a specific neurotransmitter using a microfluidic dynamic array to simultaneously evaluate the expression of 96 genes in single neurons. With this approach, we successfully identified multiple molecularly distinct dopamine neuron subtypes and localized them in the adult mouse brain. To validate the anatomical and functional correlates of molecular diversity, we provide evidence that one Vip+ subtype, located in the periaqueductal region, has a discrete projection field within the extended amygdala. Another Aldh1a1+ subtype, located in the substantia nigra, is especially vulnerable in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. Overall, this rapid, cost-effective approach enables the identification and classification of multiple dopamine neuron subtypes, with distinct molecular, anatomical, and functional properties.
Collapse
Affiliation(s)
- Jean-Francois Poulin
- Department of Neurology and the Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Zou
- Department of Neurology and the Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Kwang-Youn A Kim
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences and Université Laval, Québec, QC G1V 4G2, Canada
| | - Rajeshwar B Awatramani
- Department of Neurology and the Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
65
|
Nordströma U, Beauvais G, Ghosh A, Pulikkaparambil Sasidharan BC, Lundblad M, Fuchs J, Joshi RL, Lipton JW, Roholt A, Medicetty S, Feinstein TN, Steiner JA, Escobar Galvis ML, Prochiantz A, Brundin P. Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson's disease. Neurobiol Dis 2014; 73:70-82. [PMID: 25281317 DOI: 10.1016/j.nbd.2014.09.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/28/2014] [Accepted: 09/21/2014] [Indexed: 01/17/2023] Open
Abstract
Current research on Parkinson's disease (PD) pathogenesis requires relevant animal models that mimic the gradual and progressive development of neuronal dysfunction and degeneration that characterizes the disease. Polymorphisms in engrailed 1 (En1), a homeobox transcription factor that is crucial for both the development and survival of mesencephalic dopaminergic neurons, are associated with sporadic PD. This suggests that En1 mutant mice might be a promising candidate PD model. Indeed, a mouse that lacks one En1 allele exhibits decreased mitochondrial complex I activity and progressive midbrain dopamine neuron degeneration in adulthood, both features associated with PD. We aimed to further characterize the disease-like phenotype of these En1(+/-) mice with a focus on early neurodegenerative changes that can be utilized to score efficacy of future disease modifying studies. We observed early terminal defects in the dopaminergic nigrostriatal pathway in En1(+/-) mice. Several weeks before a significant loss of dopaminergic neurons in the substantia nigra could be detected, we found that striatal terminals expressing high levels of dopaminergic neuron markers TH, VMAT2, and DAT were dystrophic and swollen. Using transmission electron microscopy, we identified electron dense bodies consistent with abnormal autophagic vacuoles in these terminal swellings. In line with these findings, we detected an up-regulation of the mTOR pathway, concurrent with a downregulation of the autophagic marker LC3B, in ventral midbrain and nigral dopaminergic neurons of the En1(+/-) mice. This supports the notion that autophagic protein degradation is reduced in the absence of one En1 allele. We imaged the nigrostriatal pathway using the CLARITY technique and observed many fragmented axons in the medial forebrain bundle of the En1(+/-) mice, consistent with axonal maintenance failure. Using in vivo electrochemistry, we found that nigrostriatal terminals in the dorsal striatum were severely deficient in dopamine release and reuptake. Our findings support a progressive retrograde degeneration of En1(+/-) nigrostriatal neurons, akin to what is suggested to occur in PD. We suggest that using the En1(+/-) mice as a model will provide further key insights into PD pathogenesis, and propose that axon terminal integrity and function can be utilized to estimate dopaminergic neuron health and efficacy of experimental PD therapies.
Collapse
Affiliation(s)
- Ulrika Nordströma
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Geneviève Beauvais
- Laboratory for Translational Parkinson's Disease Research, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave, N.E., Grand Rapids, MI 49503, USA
| | - Anamitra Ghosh
- Laboratory for Translational Parkinson's Disease Research, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave, N.E., Grand Rapids, MI 49503, USA
| | - Baby Chakrapani Pulikkaparambil Sasidharan
- Laboratory for Translational Parkinson's Disease Research, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave, N.E., Grand Rapids, MI 49503, USA
| | - Martin Lundblad
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A11, 221 84, Lund University, Sweden
| | - Julia Fuchs
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, Paris, France
| | - Rajiv L Joshi
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, Paris, France
| | - Jack W Lipton
- Department of Translational Science and Molecular Medicine and The Udall Center of Excellence in Parkinson's Disease Research, Michigan State University, Grand Rapids, MI, USA
| | - Andrew Roholt
- Renovo Neural, Inc. 10000 Cedar Avenue, Cleveland, OH 44106, USA
| | - Satish Medicetty
- Renovo Neural, Inc. 10000 Cedar Avenue, Cleveland, OH 44106, USA
| | - Timothy N Feinstein
- Confocal Microscopy and Quantitative Imaging Core Facility,Van Andel Research Institute, 333 Bostwick Ave, N.E., Grand Rapids, MI 49503, USA
| | - Jennifer A Steiner
- Laboratory for Translational Parkinson's Disease Research, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave, N.E., Grand Rapids, MI 49503, USA
| | - Martha L Escobar Galvis
- Laboratory for Translational Parkinson's Disease Research, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave, N.E., Grand Rapids, MI 49503, USA
| | - Alain Prochiantz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, Paris, France
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden
- Laboratory for Translational Parkinson's Disease Research, Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave, N.E., Grand Rapids, MI 49503, USA
| |
Collapse
|
66
|
Stettler O, Moya KL. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin Cell Dev Biol 2014; 35:165-72. [PMID: 25042849 DOI: 10.1016/j.semcdb.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/02/2023]
Abstract
The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.
Collapse
Affiliation(s)
- Olivier Stettler
- Laboratoire CRRET EAC 7149, Université Paris-Est Créteil, 61, Av. du Général de Gaulle, 94010 Créteil Cedex, France.
| | - Kenneth L Moya
- Collège de France, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin Berthelot, 75005 Paris, France; Labex Memolife, PSL Research University, France
| |
Collapse
|
67
|
Schmidt ERE, Brignani S, Adolfs Y, Lemstra S, Demmers J, Vidaki M, Donahoo ALS, Lilleväli K, Vasar E, Richards LJ, Karagogeos D, Kolk SM, Pasterkamp RJ. Subdomain-mediated axon-axon signaling and chemoattraction cooperate to regulate afferent innervation of the lateral habenula. Neuron 2014; 83:372-387. [PMID: 25033181 DOI: 10.1016/j.neuron.2014.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 11/20/2022]
Abstract
A dominant feature of neural circuitry is the organization of neuronal projections and synapses into specific brain nuclei or laminae. Lamina-specific connectivity is controlled by the selective expression of extracellular guidance and adhesion molecules in the target field. However, how (sub)nucleus-specific connections are established and whether axon-derived cues contribute to subdomain targeting are largely unknown. Here, we demonstrate that the lateral subnucleus of the habenula (lHb) determines its own afferent innervation by sending out efferent projections that express the cell adhesion molecule LAMP to reciprocally collect and guide dopaminergic afferents to the lHb-a phenomenon we term subdomain-mediated axon-axon signaling. This process of reciprocal axon-axon interactions cooperates with lHb-specific chemoattraction mediated by Netrin-1, which controls axon target entry, to ensure specific innervation of the lHb. We propose that cooperation between pretarget reciprocal axon-axon signaling and subdomain-restricted instructive cues provides a highly precise and general mechanism to establish subdomain-specific neural circuitry.
Collapse
Affiliation(s)
- Ewoud Roberto Eduard Schmidt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Sara Brignani
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Suzanne Lemstra
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Jeroen Demmers
- Proteomics Centre and Department of Cell Biology, Erasmus University Medical Centre, Dr Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology, Vassilika Vouton, Heraklion GR-7110, Greece
| | - Amber-Lee Skye Donahoo
- Queensland Brain Institute and The School of Biomedical Sciences, University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4067, Australia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Linda Jane Richards
- Queensland Brain Institute and The School of Biomedical Sciences, University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4067, Australia
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology, Vassilika Vouton, Heraklion GR-7110, Greece
| | - Sharon Margriet Kolk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
68
|
Roessler R, Smallwood SA, Veenvliet JV, Pechlivanoglou P, Peng SP, Chakrabarty K, Groot-Koerkamp MJA, Pasterkamp RJ, Wesseling E, Kelsey G, Boddeke E, Smidt MP, Copray S. Detailed analysis of the genetic and epigenetic signatures of iPSC-derived mesodiencephalic dopaminergic neurons. Stem Cell Reports 2014; 2:520-33. [PMID: 24749075 PMCID: PMC3986662 DOI: 10.1016/j.stemcr.2014.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3Gfp/+) neurons derived from mouse iPSCs and primary mdDA (Pitx3Gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy. Purification of iPSC-derived mdDA neurons and primary embryonic mdDA neurons Comparative gene-expression profiling and DNA methylation mapping of mdDA neurons High similarity but also differences between primary and iPSC-derived mdDA neurons Differences mainly in genes involved in neuron differentiation and development
Collapse
Affiliation(s)
- Reinhard Roessler
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | | | - Jesse V Veenvliet
- Center for Neuroscience, Swammerdam Institute for Life Science, Science Park Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Petros Pechlivanoglou
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Pharmacy, University of Groningen, 9713AV Groningen, the Netherlands
| | - Su-Ping Peng
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Koushik Chakrabarty
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marian J A Groot-Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Evelyn Wesseling
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Erik Boddeke
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Marten P Smidt
- Center for Neuroscience, Swammerdam Institute for Life Science, Science Park Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Sjef Copray
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| |
Collapse
|