51
|
Macaya CC, Saavedra PE, Cepeda RE, Nuñez VA, Sarrazin AF. A Tribolium castaneum whole-embryo culture protocol for studying the molecular mechanisms and morphogenetic movements involved in insect development. Dev Genes Evol 2016; 226:53-61. [PMID: 26739999 DOI: 10.1007/s00427-015-0524-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/16/2015] [Indexed: 12/01/2022]
Abstract
The development of the red flour beetle Tribolium castaneum is more representative of arthropods than the evolutionarily derived fly, Drosophila melanogaster. Thus, Tribolium is becoming an emerging organism model for studying the evolution of the mechanisms that control embryonic development in arthropods. In this regard, diverse genetic and molecular tools are currently available for Tribolium, as well as imaging and embryonic techniques. Recently, we developed a method for culturing embryos in order to study specific stages during Tribolium development. In this report, we present a detailed and "easy-to-follow" protocol for embryo handling and dissection, extending the use of whole-embryo culture to functional analysis by performing in vivo pharmacological manipulations. This experimental accessibility allowed us to study the relevance of microtubules in axis elongation, using nocodazole and taxol drugs to interfere with microtubule networks, followed by length measurement analysis. Additionally, we demonstrated that embryo handling had no effect on the development of Tribolium embryos, and we checked viability after dissection and bisection and during incubation using propidium iodide. The embryo culture protocol we describe here can be applied to study diverse developmental processes in Tribolium. We expect that this protocol can be adapted and applied to other arthropods.
Collapse
Affiliation(s)
- Constanza C Macaya
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Patricio E Saavedra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Rodrigo E Cepeda
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Viviana A Nuñez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile.
| |
Collapse
|
52
|
Abstract
The parasitoid wasp Nasonia represents a genus of four species that is emerging as a powerful genetic model system that has made and will continue to make important contributions to our understanding of evolutionary biology, development, ecology, and behavior. Particularly powerful are the haplodiploid genetics of the system, which allow some of the advantages of microbial genetics to be applied to a complex multicellular eukaryote. In addition, fertile, viable hybrids can be made among the four species in the genus. This makes Nasonia exceptionally well suited for evolutionary genetics approaches, especially when combined with its haploid genetics and tractability in the laboratory. These features are complemented by an expanding array of genomic, transcriptomic, and functional resources, the application of which has already made Nasonia an important model system in such emerging fields as evolutionary developmental biology and microbiomics. This article describes the genetic and genomic advantages of Nasonia wasps and the resources available for their genetic analysis.
Collapse
|
53
|
Ninova M, Ronshaugen M, Griffiths-Jones S. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum. Genome Res 2015; 26:85-96. [PMID: 26518483 PMCID: PMC4691753 DOI: 10.1101/gr.193367.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023]
Abstract
MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3′ end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.
Collapse
Affiliation(s)
- Maria Ninova
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Matthew Ronshaugen
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
54
|
Horn T, Hilbrant M, Panfilio KA. Evolution of epithelial morphogenesis: phenotypic integration across multiple levels of biological organization. Front Genet 2015; 6:303. [PMID: 26483835 PMCID: PMC4586499 DOI: 10.3389/fgene.2015.00303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/11/2015] [Indexed: 11/29/2022] Open
Abstract
Morphogenesis involves the dynamic reorganization of cell and tissue shapes to create the three-dimensional body. Intriguingly, different species have evolved different morphogenetic processes to achieve the same general outcomes during embryonic development. How are meaningful comparisons between species made, and where do the differences lie? In this Perspective, we argue that examining the evolution of embryonic morphogenesis requires the simultaneous consideration of different levels of biological organization: (1) genes, (2) cells, (3) tissues, and (4) the entire egg, or other gestational context. To illustrate the importance of integrating these levels, we use the extraembryonic epithelia of insects—a lineage-specific innovation and evolutionary hotspot—as an exemplary case study. We discuss how recent functional data, primarily from RNAi experiments targeting the Hox3/Zen and U-shaped group transcription factors, provide insights into developmental processes at all four levels. Comparisons of these data from several species both challenge and inform our understanding of homology, in assessing how the process of epithelial morphogenesis has itself evolved.
Collapse
Affiliation(s)
- Thorsten Horn
- Institute for Developmental Biology, University of Cologne , Cologne, Germany
| | - Maarten Hilbrant
- Institute for Developmental Biology, University of Cologne , Cologne, Germany
| | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne , Cologne, Germany
| |
Collapse
|
55
|
Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat Protoc 2015; 10:1486-507. [PMID: 26334868 DOI: 10.1038/nprot.2015.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tribolium castaneum has become an important insect model organism for evolutionary developmental biology, genetics and biotechnology. However, few protocols for live fluorescence imaging of Tribolium have been reported, and little image data is available. Here we provide a protocol for recording the development of Tribolium embryos with light-sheet-based fluorescence microscopy. The protocol can be completed in 4-7 d and provides procedural details for: embryo collection, microscope configuration, embryo preparation and mounting, noninvasive live imaging for up to 120 h along multiple directions, retrieval of the live embryo once imaging is completed, and image data processing, for which exemplary data is provided. Stringent quality control criteria for developmental biology studies are also discussed. Light-sheet-based fluorescence microscopy complements existing toolkits used to study Tribolium development, can be adapted to other insect species, and requires no advanced imaging or sample preparation skills.
Collapse
|
56
|
van der Zee M, Benton MA, Vazquez-Faci T, Lamers GEM, Jacobs CGC, Rabouille C. Innexin7a forms junctions that stabilize the basal membrane during cellularization of the blastoderm in Tribolium castaneum. Development 2015; 142:2173-83. [DOI: 10.1242/dev.097113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2015] [Indexed: 01/24/2023]
Abstract
In insects, the fertilized egg undergoes a series of rapid nuclear divisions before the syncytial blastoderm starts to cellularize. Cellularization has been extensively studied in Drosophilamelanogaster, but its thick columnar blastoderm is unusual among insects. We therefore set out to describe cellularization in the beetle Tribolium castaneum, the embryos of which exhibit a thin blastoderm of cuboidal cells, like most insects. Using immunohistochemistry, live imaging and transmission electron microscopy, we describe several striking differences to cellularization in Drosophila, including the formation of junctions between the forming basal membrane and the yolk plasmalemma. To identify the nature of this novel junction, we used the parental RNAi technique for a small-scale screen of junction proteins. We find that maternal knockdown of Triboliuminnexin7a (Tc-inx7a), an ortholog of the Drosophila gap junction gene Innexin 7, leads to failure of cellularization. In Inx7a-depleted eggs, the invaginated plasma membrane retracts when basal cell closure normally begins. Furthermore, transiently expressed tagged Inx7a localizes to the nascent basal membrane of the forming cells in wild-type eggs. We propose that Inx7a forms the newly identified junctions that stabilize the forming basal membrane and enable basal cell closure. We put forward Tribolium as a model for studying a more ancestral mode of cellularization in insects.
Collapse
Affiliation(s)
- Maurijn van der Zee
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Matthew A. Benton
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Tania Vazquez-Faci
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Gerda E. M. Lamers
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Chris G. C. Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Department of Cell Biology, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
57
|
Changing cell behaviours during beetle embryogenesis correlates with slowing of segmentation. Nat Commun 2015; 6:6635. [PMID: 25858515 DOI: 10.1038/ncomms7635] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
Segmented animals are found in major clades as phylogenetically distant as vertebrates and arthropods. Typically, segments form sequentially in what has been thought to be a regular process, relying on a segmentation clock to pattern budding segments and posterior mitosis to generate axial elongation. Here we show that segmentation in Tribolium has phases of variable periodicity during which segments are added at different rates. Furthermore, elongation during a period of rapid posterior segment addition is driven by high rates of cell rearrangement, demonstrated by differential fates of marked anterior and posterior blastoderm cells. A computational model of this period successfully reproduces elongation through cell rearrangement in the absence of cell division. Unlike current models of steady-state sequential segmentation and elongation from a proliferative growth zone, our results indicate that cell behaviours are dynamic and variable, corresponding to differences in segmentation rate and giving rise to morphologically distinct regions of the embryo.
Collapse
|
58
|
Vroomans RMA, Hogeweg P, ten Tusscher KHWJ. Segment-specific adhesion as a driver of convergent extension. PLoS Comput Biol 2015; 11:e1004092. [PMID: 25706823 PMCID: PMC4338282 DOI: 10.1371/journal.pcbi.1004092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
Convergent extension, the simultaneous extension and narrowing of tissues, is a crucial event in the formation of the main body axis during embryonic development. It involves processes on multiple scales: the sub-cellular, cellular and tissue level, which interact via explicit or intrinsic feedback mechanisms. Computational modelling studies play an important role in unravelling the multiscale feedbacks underlying convergent extension. Convergent extension usually operates in tissue which has been patterned or is currently being patterned into distinct domains of gene expression. How such tissue patterns are maintained during the large scale tissue movements of convergent extension has thus far not been investigated. Intriguingly, experimental data indicate that in certain cases these tissue patterns may drive convergent extension rather than requiring safeguarding against convergent extension. Here we use a 2D Cellular Potts Model (CPM) of a tissue prepatterned into segments, to show that convergent extension tends to disrupt this pre-existing segmental pattern. However, when cells preferentially adhere to cells of the same segment type, segment integrity is maintained without any reduction in tissue extension. Strikingly, we demonstrate that this segment-specific adhesion is by itself sufficient to drive convergent extension. Convergent extension is enhanced when we endow our in silico cells with persistence of motion, which in vivo would naturally follow from cytoskeletal dynamics. Finally, we extend our model to confirm the generality of our results. We demonstrate a similar effect of differential adhesion on convergent extension in tissues that can only extend in a single direction (as often occurs due to the inertia of the head region of the embryo), and in tissues prepatterned into a sequence of domains resulting in two opposing adhesive gradients, rather than alternating segments. The process of convergent extension is a major contributor to the formation of the anterior-posterior body axis in the early embryo. Convergent extension refers to the directed movement of cells that leads to the extension of tissue in one direction and narrowing of the tissue in the perpendicular direction. Often, convergent extension occurs in tissue which already contains distinct domains of gene expression such as segments, and it is unclear how these patterns are maintained despite extensive cell movement. Interestingly, experimental evidence suggests that these tissue patterns may drive rather than be compromised by convergent extension. However, existing computational models aimed at unravelling the mechanisms of convergent extension have thus far only studied the process in homogeneous tissues. With our model, we demonstrate that in a segmented tissue, preferential adhesion of cells to other cells within the same segment type is required to maintain the tissue pattern during convergent extension. Furthermore, such segment-specific adhesion is by itself capable of driving convergent extension.
Collapse
Affiliation(s)
- Renske M. A. Vroomans
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
59
|
Gilles AF, Schinko JB, Averof M. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 2015; 142:2832-9. [DOI: 10.1242/dev.125054] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/29/2015] [Indexed: 12/26/2022]
Abstract
Gene editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently. Here we test the CRISPR technology in an emerging insect model and pest, the beetle Tribolium castaneum. We use simple assays to test CRISPR/Cas activity, we demonstrate efficient expression of guide RNAs and Cas9 from Tribolium U6 and hsp68 promoters and we test the efficiency of knock-out and knock-in approaches in Tribolium. We find that 55-80% of injected individuals carry mutations (indels) generated by non-homologous end joining, including mosaic bi-allelic knock-outs; 71-100% carry such mutations in their germline and transmit them to the next generation. We show that CRISPR-mediated gene knock-out of the Tribolium E-cadherin gene gives defects in dorsal closure, which is consistent with RNAi-induced phenotypes. Homology-directed knock-in of marked transgenes was observed in 14% of injected individuals and transmitted to the next generation by 6% of injected individuals. Previous work in Tribolium mapped a large number of transgene insertions associated with developmental phenotypes and enhancer traps. We present an efficient method for re-purposing these insertions, via CRISPR-mediated replacement of these transgenes by new constructs.
Collapse
Affiliation(s)
- Anna F. Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69264, France
- École doctorale BMIC, Université Claude Bernard - Lyon 1, France
| | - Johannes B. Schinko
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69264, France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69264, France
- Centre National de la Recherche Scientifique (CNRS), France
| |
Collapse
|
60
|
Oberhofer G, Grossmann D, Siemanowski JL, Beissbarth T, Bucher G. Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone. Development 2014; 141:4740-50. [PMID: 25395458 PMCID: PMC4299277 DOI: 10.1242/dev.112797] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, signaling pathways are predicted to play a more fundamental role. Indeed, the Wnt/β-catenin pathway is required for posterior elongation in most arthropods, although which target genes are activated in this context remains elusive. Here, we use the short germ beetle Tribolium castaneum to investigate two Wnt and Hh signaling centers located in the head anlagen and in the growth zone of early embryos. We find that Wnt/β-catenin signaling acts upstream of Hh in the growth zone, whereas the opposite interaction occurs in the head. We determine the target gene sets of the Wnt/β-catenin and Hh pathways and find that the growth zone signaling center activates a much greater number of genes and that the Wnt and Hh target gene sets are essentially non-overlapping. The Wnt pathway activates key genes of all three germ layers, including pair-rule genes, and Tc-caudal and Tc-twist. Furthermore, the Wnt pathway is required for hindgut development and we identify Tc-senseless as a novel hindgut patterning gene required in the early growth zone. At the same time, Wnt acts on growth zone metabolism and cell division, thereby integrating growth with patterning. Posterior Hh signaling activates several genes potentially involved in a proteinase cascade of unknown function.
Collapse
Affiliation(s)
- Georg Oberhofer
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Daniela Grossmann
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Janna L Siemanowski
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Tim Beissbarth
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, Göttingen D-37073, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| |
Collapse
|
61
|
Koelzer S, Kölsch Y, Panfilio KA. Visualizing late insect embryogenesis: extraembryonic and mesodermal enhancer trap expression in the beetle Tribolium castaneum. PLoS One 2014; 9:e103967. [PMID: 25080214 PMCID: PMC4117572 DOI: 10.1371/journal.pone.0103967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022] Open
Abstract
The beetle Tribolium castaneum has increasingly become a powerful model for comparative research on insect development. One recent resource is a collection of piggyBac transposon-based enhancer trap lines. Here, we provide a detailed analysis of three selected lines and demonstrate their value for investigations in the second half of embryogenesis, which has thus far lagged behind research on early stages. Two lines, G12424 and KT650, show enhanced green fluorescent protein (EGFP) expression throughout the extraembryonic serosal tissue and in a few discrete embryonic domains. Intriguingly, both lines show for the first time a degree of regionalization within the mature serosa. However, their expression profiles illuminate distinct aspects of serosal biology: G12424 tracks the tissue's rapid maturation while KT650 expression likely reflects ongoing physiological processes. The third line, G04609, is stably expressed in mesodermal domains, including segmental muscles and the heart. Genomic mapping followed by in situ hybridization for genes near to the G04609 insertion site suggests that the transposon has trapped enhancer information for the Tribolium orthologue of midline (Tc-mid). Altogether, our analyses provide the first live imaging, long-term characterizations of enhancer traps from this collection. We show that EGFP expression is readily detected, including in heterozygote crosses that permit the simultaneous visualization of multiple tissue types. The tissue specificity provides live, endogenous marker gene expression at key developmental stages that are inaccessible for whole mount staining. Furthermore, the nonlocalized EGFP in these lines illuminates both the nucleus and cytoplasm, providing cellular resolution for morphogenesis research on processes such as dorsal closure and heart formation. In future work, identification of regulatory regions driving these enhancer traps will deepen our understanding of late developmental control, including in the extraembryonic domain, which is a hallmark of insect development but which is not yet well understood.
Collapse
Affiliation(s)
- Stefan Koelzer
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Yvonne Kölsch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| |
Collapse
|
62
|
Strobl F, Stelzer EHK. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development 2014; 141:2331-8. [PMID: 24803590 DOI: 10.1242/dev.108795] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insect development has contributed significantly to our understanding of metazoan development. However, most information has been obtained by analyzing a single species, the fruit fly Drosophila melanogaster. Embryonic development of the red flour beetle Tribolium castaneum differs fundamentally from that of Drosophila in aspects such as short-germ development, embryonic leg development, extensive extra-embryonic membrane formation and non-involuted head development. Although Tribolium has become the second most important insect model organism, previous live imaging attempts have addressed only specific questions and no long-term live imaging data of Tribolium embryogenesis have been available. By combining light sheet-based fluorescence microscopy with a novel mounting method, we achieved complete, continuous and non-invasive fluorescence live imaging of Tribolium embryogenesis at high spatiotemporal resolution. The embryos survived the 2-day or longer imaging process, developed into adults and produced fertile progeny. Our data document all morphogenetic processes from the rearrangement of the uniform blastoderm to the onset of regular muscular movement in the same embryo and in four orientations, contributing significantly to the understanding of Tribolium development. Furthermore, we created a comprehensive chronological table of Tribolium embryogenesis, integrating most previous work and providing a reference for future studies. Based on our observations, we provide evidence that serosa window closure and serosa opening, although deferred by more than 1 day, are linked. All our long-term imaging datasets are available as a resource for the community. Tribolium is only the second insect species, after Drosophila, for which non-invasive long-term fluorescence live imaging has been achieved.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe University - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, Frankfurt am Main D-60348, Germany
| | - Ernst H K Stelzer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe University - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, Frankfurt am Main D-60348, Germany
| |
Collapse
|
63
|
Benton MA, Pavlopoulos A. Tribolium embryo morphogenesis: may the force be with you. BIOARCHITECTURE 2014; 4:16-21. [PMID: 24451992 DOI: 10.4161/bioa.27815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of multicellular organisms depends on patterning and growth mechanisms encoded in the genome, but also on the physical properties and mechanical interactions of the constituent cells that interpret these genetic cues. This fundamental biological problem requires integrated studies at multiple levels of biological organization: from genes, to cell behaviors, to tissue morphogenesis. We have recently combined functional genetics with live imaging approaches in embryos of the insect Tribolium castaneum, in order to understand their remarkable transformation from a uniform single-layered blastoderm into a condensed multi-layered embryo covered by extensive extra-embryonic tissues. We first developed a quick and reliable methodology to fluorescently label various cell components in entire Tribolium embryos. Live imaging of labeled embryos at single cell resolution provided detailed descriptions of cell behaviors and tissue movements during normal embryogenesis. We then compared cell and tissue dynamics between wild-type and genetically perturbed embryos that exhibited altered relative proportions of constituent tissues. This systematic comparison led to a qualitative model of the molecular, cellular and tissue interactions that orchestrate the observed epithelial rearrangements. We expect this work to establish the Tribolium embryo as a powerful and attractive model system for biologists and biophysicists interested in the molecular, cellular and mechanical control of tissue morphogenesis.
Collapse
Affiliation(s)
- Matthew A Benton
- Laboratory for Development and Evolution; Department of Zoology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
64
|
Wotton KR, Jiménez-Guri E, García Matheu B, Jaeger J. A staging scheme for the development of the scuttle fly Megaselia abdita. PLoS One 2014; 9:e84421. [PMID: 24409295 PMCID: PMC3883658 DOI: 10.1371/journal.pone.0084421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/13/2013] [Indexed: 12/01/2022] Open
Abstract
Model organisms, such as Drosophila melanogaster, provide powerful experimental tools for the study of development. However, approaches using model systems need to be complemented by comparative studies for us to gain a deeper understanding of the functional properties and evolution of developmental processes. New model organisms need to be established to enable such comparative work. The establishment of new model system requires a detailed description of its life cycle and development. The resulting staging scheme is essential for providing morphological context for molecular studies, and allows us to homologise developmental processes between species. In this paper, we provide a staging scheme and morphological characterisation of the life cycle for an emerging non-drosophilid dipteran model system: the scuttle fly Megaselia abdita. We pay particular attention to early embryogenesis (cleavage and blastoderm stages up to gastrulation), the formation and retraction of extraembryonic tissues, and the determination and formation of germ (pole) cells. Despite the large evolutionary distance between the two species (approximately 150 million years), we find that M. abdita development is remarkably similar to D. melanogaster in terms of developmental landmarks and their relative timing.
Collapse
Affiliation(s)
- Karl R. Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Belén García Matheu
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
65
|
Panfilio KA, Oberhofer G, Roth S. High plasticity in epithelial morphogenesis during insect dorsal closure. Biol Open 2013; 2:1108-18. [PMID: 24244847 PMCID: PMC3828757 DOI: 10.1242/bio.20136072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023] Open
Abstract
Insect embryos complete the outer form of the body via dorsal closure (DC) of the epidermal flanks, replacing the transient extraembryonic (EE) tissue. Cell shape changes and morphogenetic behavior are well characterized for DC in Drosophila, but these data represent a single species with a secondarily reduced EE component (the amnioserosa) that is not representative across the insects. Here, we examine DC in the red flour beetle, Tribolium castaneum, providing the first detailed, functional analysis of DC in an insect with complete EE tissues (distinct amnion and serosa). Surprisingly, we find that differences between Drosophila and Tribolium DC are not restricted to the EE tissue, but also encompass the dorsal epidermis, which differs in cellular architecture and method of final closure (zippering). We then experimentally manipulated EE tissue complement via RNAi for Tc-zen1, allowing us to eliminate the serosa and still examine viable DC in a system with a single EE tissue (the amnion). We find that the EE domain is particularly plastic in morphogenetic behavior and tissue structure. In contrast, embryonic features and overall kinetics are robust to Tc-zen1(RNAi) manipulation in Tribolium and conserved with a more distantly related insect, but remain substantially different from Drosophila. Although correct DC is essential, plasticity and regulative, compensatory capacity have permitted DC to evolve within the insects. Thus, DC does not represent a strong developmental constraint on the nature of EE development, a property that may have contributed to the reduction of the EE component in the fly lineage.
Collapse
Affiliation(s)
- Kristen A. Panfilio
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Georg Oberhofer
- J. F. Blumenbach Institute of Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|