51
|
Tripathi S, Jolly MK, Woodward WA, Levine H, Deem MW. Analysis of Hierarchical Organization in Gene Expression Networks Reveals Underlying Principles of Collective Tumor Cell Dissemination and Metastatic Aggressiveness of Inflammatory Breast Cancer. Front Oncol 2018; 8:244. [PMID: 30023340 PMCID: PMC6039554 DOI: 10.3389/fonc.2018.00244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
Abstract
Clusters of circulating tumor cells (CTCs), despite being rare, may account for more than 90% of metastases. Cells in these clusters do not undergo a complete epithelial-to-mesenchymal transition (EMT), but retain some epithelial traits as compared to individually disseminating tumor cells. Determinants of single cell dissemination versus collective dissemination remain elusive. Inflammatory breast cancer (IBC), a highly aggressive breast cancer subtype that chiefly metastasizes via CTC clusters, is a promising model for studying mechanisms of collective tumor cell dissemination. Previous studies, motivated by a theory that suggests physical systems with hierarchical organization tend to be more adaptable, have found that the expression of metastasis-associated genes is more hierarchically organized in cases of successful metastases. Here, we used the cophenetic correlation coefficient (CCC) to quantify the hierarchical organization in the expression of two distinct gene sets, collective dissemination-associated genes and IBC-associated genes, in cancer cell lines and in tumor samples from breast cancer patients. Hypothesizing that a higher CCC for collective dissemination-associated genes and for IBC-associated genes would be associated with retention of epithelial traits enabling collective dissemination and with worse disease progression in breast cancer patients, we evaluated the correlation of CCC with different phenotypic groups. The CCC of both the abovementioned gene sets, the collective dissemination-associated genes and the IBC-associated genes, was higher in (a) epithelial cell lines as compared to mesenchymal cell lines and (b) tumor samples from IBC patients as compared to samples from non-IBC breast cancer patients. A higher CCC of both gene sets was also correlated with a higher rate of metastatic relapse in breast cancer patients. In contrast, neither the levels of CDH1 gene expression nor gene set enrichment analysis (GSEA) of the abovementioned gene sets could provide similar insights. These results suggest that retention of some epithelial traits in disseminating tumor cells as IBC progresses promotes successful breast cancer metastasis. The CCC provides additional information regarding the organizational complexity of gene expression in comparison to GSEA. We have shown that the CCC may be a useful metric for investigating the collective dissemination phenotype and a prognostic factor for IBC.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Wendy A. Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Herbert Levine
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| | - Michael W. Deem
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| |
Collapse
|
52
|
ETS1 regulates Twist1 transcription in a Kras G12D/Lkb1 -/- metastatic lung tumor model of non-small cell lung cancer. Clin Exp Metastasis 2018; 35:149-165. [PMID: 29909489 DOI: 10.1007/s10585-018-9912-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Distinct members of the Ets family of transcription factors act as positive or negative regulators of genes involved in cellular proliferation, development, and tumorigenesis. In human lung cancer, increased ETS1 expression is associated with poor prognosis and metastasis. We tested whether ETS1 contributes to lung tumorigenesis by binding to Twist1, a gene involved in tumor cell motility and dissemination. We used a mouse lung cancer model with metastasis driven by conditionally activated Kras and concurrent tumor suppressor Lkb1 loss (KrasG12D/ Lkb1-/- model) and a similar model of lung cancer that does not metastasize, driven by conditionally activated Kras alone (KrasG12D model). We show that Ets1 and Twist1 gene expression differs between KrasG12D tumors (low Ets1 and Twist1 expression) and KrasG12D/Lkb1-/- tumors (high Ets1 and Twist1 expression). In human lung tumors, ETS1 and TWIST1 expression positively correlates and low combined ETS1 and TWIST1 levels are associated with improved survival compared to high levels. Using mouse cell lines derived from KrasG12D and KrasG12D/Lkb1-/- mouse models and the human lung cancer (A549) cell line, we show that ETS1 regulates Twist1 expression. Chromatin immunoprecipitation assays confirm binding of ETS1 to the Twist1 promoter. Overexpression studies show that ETS1 transactivates Twist1 promoter activity in mouse and human cells. Silencing endogenous Ets1 by siRNA in mouse cell lines decreases Twist1 mRNA levels, decreases invasion, and increases cell growth. Ets1 and Twist1 are at the crossroad of several signaling pathways in cancer. Understanding their regulation may inform the development of therapies to impair lung tumor metastasis.
Collapse
|
53
|
Cui M, Lin CY, Su YH. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development. Brief Funct Genomics 2018; 16:309-318. [PMID: 28605407 DOI: 10.1093/bfgp/elx011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development.
Collapse
|
54
|
Genome-wide use of high- and low-affinity Tbrain transcription factor binding sites during echinoderm development. Proc Natl Acad Sci U S A 2018; 114:5854-5861. [PMID: 28584099 DOI: 10.1073/pnas.1610611114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea stars and sea urchins are model systems for interrogating the types of deep evolutionary changes that have restructured developmental gene regulatory networks (GRNs). Although cis-regulatory DNA evolution is likely the predominant mechanism of change, it was recently shown that Tbrain, a Tbox transcription factor protein, has evolved a changed preference for a low-affinity, secondary binding motif. The primary, high-affinity motif is conserved. To date, however, no genome-wide comparisons have been performed to provide an unbiased assessment of the evolution of GRNs between these taxa, and no study has attempted to determine the interplay between transcription factor binding motif evolution and GRN topology. The study here measures genome-wide binding of Tbrain orthologs by using ChIP-sequencing and associates these orthologs with putative target genes to assess global function. Targets of both factors are enriched for other regulatory genes, although nonoverlapping sets of functional enrichments in the two datasets suggest a much diverged function. The number of low-affinity binding motifs is significantly depressed in sea urchins compared with sea star, but both motif types are associated with genes from a range of functional categories. Only a small fraction (∼10%) of genes are predicted to be orthologous targets. Collectively, these data indicate that Tbr has evolved significantly different developmental roles in these echinoderms and that the targets and the binding motifs in associated cis-regulatory sequences are dispersed throughout the hierarchy of the GRN, rather than being biased toward terminal process or discrete functional blocks, which suggests extensive evolutionary tinkering.
Collapse
|
55
|
Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci U S A 2018; 114:5862-5869. [PMID: 28584110 DOI: 10.1073/pnas.1610616114] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene regulatory networks (GRNs) provide a transformation function between the static genomic sequence and the primary spatial specification processes operating development. The regulatory information encompassed in developmental GRNs thus goes far beyond the control of individual genes. We here address regulatory information at different levels of network organization, from single node to subcircuit to large-scale GRNs and discuss how regulatory design features such as network architecture, hierarchical organization, and cis-regulatory logic contribute to the developmental function of network circuits. Using specific subcircuits from the sea urchin endomesoderm GRN, for which both circuit design and biological function have been described, we evaluate by Boolean modeling and in silico perturbations the import of given circuit features on developmental function. The examples include subcircuits encoding positive feedback, mutual repression, and coherent feedforward, as well as signaling interaction circuitry. Within the hierarchy of the endomesoderm GRN, these subcircuits are organized in an intertwined and overlapping manner. Thus, we begin to see how regulatory information encoded at individual nodes is integrated at all levels of network organization to control developmental process.
Collapse
|
56
|
Balestrieri C, Alfarano G, Milan M, Tosi V, Prosperini E, Nicoli P, Palamidessi A, Scita G, Diaferia GR, Natoli G. Co-optation of Tandem DNA Repeats for the Maintenance of Mesenchymal Identity. Cell 2018; 173:1150-1164.e14. [DOI: 10.1016/j.cell.2018.03.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/16/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
|
57
|
Anello L, Cavalieri V, Di Bernardo M. Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:36-44. [PMID: 29128602 DOI: 10.1016/j.cbpc.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023]
Abstract
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli.
Collapse
Affiliation(s)
- Letizia Anello
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Maria Di Bernardo
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
58
|
Martik ML, McClay DR. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus. Mech Dev 2017; 148:3-10. [PMID: 28684256 PMCID: PMC5705275 DOI: 10.1016/j.mod.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/27/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gastrulation is a complex orchestration of movements by cells that are specified early in development. Until now, classical convergent extension was considered to be the main contributor to sea urchin archenteron extension, and the relative contributions of cell divisions were unknown. Active migration of cells along the axis of extension was also not considered as a major factor in invagination. RESULTS Cell transplantations plus live imaging were used to examine endoderm cell morphogenesis during gastrulation at high-resolution in the optically clear sea urchin embryo. The invagination sequence was imaged throughout gastrulation. One of the eight macromeres was replaced by a fluorescently labeled macromere at the 32 cell stage. At gastrulation those patches of fluorescent endoderm cell progeny initially about 4 cells wide, released a column of cells about 2 cells wide early in gastrulation and then often this column narrowed to one cell wide by the end of archenteron lengthening. The primary movement of the column of cells was in the direction of elongation of the archenteron with the narrowing (convergence) occurring as one of the two cells moved ahead of its neighbor. As the column narrowed, the labeled endoderm cells generally remained as a contiguous population of cells, rarely separated by intrusion of a lateral unlabeled cell. This longitudinal cell migration mechanism was assessed quantitatively and accounted for almost 90% of the elongation process. Much of the extension was the contribution of Veg2 endoderm with a minor contribution late in gastrulation by Veg1 endoderm cells. We also analyzed the contribution of cell divisions to elongation. Endoderm cells in Lytechinus variagatus were determined to go through approximately one cell doubling during gastrulation. That doubling occurs without a net increase in cell mass, but the question remained as to whether oriented divisions might contribute to archenteron elongation. We learned that indeed there was a biased orientation of cell divisions along the plane of archenteron elongation, but when the impact of that bias was analyzed quantitatively, it contributed a maximum 15% to the total elongation of the gut. CONCLUSIONS The major driver of archenteron elongation in the sea urchin, Lytechinus variagatus, is directed movement of Veg2 endoderm cells as a narrowing column along the plane of elongation. The narrowing occurs as cells in the column converge as they migrate, so that the combination of migration and the angular convergence provide the major component of the lengthening. A minor contributor to elongation is oriented cell divisions that contribute to the lengthening but no more than about 15%.
Collapse
Affiliation(s)
- Megan L Martik
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
59
|
Medwig TN, Matus DQ. Breaking down barriers: the evolution of cell invasion. Curr Opin Genet Dev 2017; 47:33-40. [PMID: 28881331 PMCID: PMC5716887 DOI: 10.1016/j.gde.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Cell invasion is a specialized cell behavior that likely co-evolved with the emergence of basement membranes in metazoans as a mechanism to break down the barriers that separate tissues. A variety of conserved and lineage-specific biological processes that occur during development and homeostasis rely on cell invasive behavior. Recent innovations in genome editing and live-cell imaging have shed some light on the programs that mediate acquisition of an invasive phenotype; however, comparative approaches among species are necessary to understand how this cell behavior evolved. Here, we discuss the contexts of cell invasion, highlighting both established and emerging model systems, and underscore gaps in our understanding of the evolution of this key cellular behavior.
Collapse
Affiliation(s)
- Taylor N Medwig
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
60
|
EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers (Basel) 2017; 9:cancers9080098. [PMID: 28758926 PMCID: PMC5575601 DOI: 10.3390/cancers9080098] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET). In the saving economy of the living organisms, the same (Ying-Yang) tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs) have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D) cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This latter, in particular, for its ability to convey multiple types of stimuli into relevant changes of the cell transcriptional program, can be regarded as a heterogeneous "stress-sensor" for EMT-related inducers (growth factor, hypoxia, mechano-stress), and thus as a therapeutic target.
Collapse
|
61
|
Tan RZ, Lai T, Chiam KH. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes. Phys Biol 2017. [PMID: 28639563 DOI: 10.1088/1478-3975/aa7afc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.
Collapse
Affiliation(s)
- Rui Zhen Tan
- Bioinformatics Institute, A*STAR, Singapore, 30 Biopolis St, #07-01 Matrix, 138671, Singapore
| | | | | |
Collapse
|
62
|
Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017; 11:755-769. [PMID: 28548345 PMCID: PMC5496498 DOI: 10.1002/1878-0261.12083] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Kathryn E Ware
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shivee Gilja
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jason A Somarelli
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
63
|
Influence of TGF-β1 on tumor transition in oral cancer cell and BMSC co-cultures. J Craniomaxillofac Surg 2017; 45:731-740. [DOI: 10.1016/j.jcms.2017.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
|
64
|
Romancino DP, Anello L, Lavanco A, Buffa V, Di Bernardo M, Bongiovanni A. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition. Dev Growth Differ 2017; 59:141-151. [PMID: 28436008 DOI: 10.1111/dgd.12353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved cellular program, which is a prerequisite for the metastatic cascade in carcinoma progression. Here, we evaluate the EMT process using the sea urchin Paracentrotus lividus embryo. In sea urchin embryos, the earliest EMT event is related to the acquisition of a mesenchymal phenotype by the spiculogenetic primary mesenchyme cells (PMCs) and their migration into the blastocoel. We investigated the effect of inhibiting the epidermal growth factor (EGF) signaling pathway on this process, and we observed that mesenchyme cell differentiation was blocked. In order to extend and validate our studies, we investigated the migratory capability and the level of potential epidermal growth factor receptor (EGFr) targets in a breast cancer cell line after EGF modulation. Altogether, our data highlight the sensitivity of the sea urchin embryo to anti-EMT drugs and pinpoint the sea urchin embryo as a valuable in vivo model system for studying EMT and the screening of anti-EMT candidates.
Collapse
Affiliation(s)
- Daniele P Romancino
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR), via Ugo La Malfa, 153 - 90146, Palermo, Italy
| | - Letizia Anello
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR), via Ugo La Malfa, 153 - 90146, Palermo, Italy
| | - Antonella Lavanco
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR), via Ugo La Malfa, 153 - 90146, Palermo, Italy
| | - Valentina Buffa
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR), via Ugo La Malfa, 153 - 90146, Palermo, Italy
| | - Maria Di Bernardo
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR), via Ugo La Malfa, 153 - 90146, Palermo, Italy
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR), via Ugo La Malfa, 153 - 90146, Palermo, Italy
| |
Collapse
|
65
|
Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol 2017; 427:203-211. [PMID: 28185788 DOI: 10.1016/j.ydbio.2017.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
The highly recognizable animals within the phylum Echinodermata encompass an enormous disparity of adult and larval body plans. The extensive knowledge of sea urchin development has culminated in the description of the exquisitely detailed gene regulatory network (GRN) that governs the specification of various embryonic territories. This information provides a unique opportunity for comparative studies in other echinoderm taxa to understand the evolution and developmental mechanisms underlying body plan change. This review focuses on recent work that has utilized new genomic resources and systems-level experiments to address questions of evolutionary developmental biology. In particular, we synthesize the results of several recent studies from various echinoderm classes that have explored the development and evolution of the larval skeleton, which is a major feature that distinguishes the two predominant larval subtypes within the Phylum. We specifically examine the ways in which GRNs can evolve, either through cis regulatory and/or protein-level changes in transcription factors. We also examine recent work comparing evolution across shorter time scales that occur within and between species of sea urchin, and highlight the kinds of questions that can be addressed by these comparisons. The advent of new genomic and transcriptomic datasets in additional species from all classes of echinoderm will continue to empower the use of these taxa for evolutionary developmental studies.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States.
| |
Collapse
|
66
|
Abstract
The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
Collapse
|
67
|
Kohrman AQ, Matus DQ. Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends Cell Biol 2017; 27:12-25. [PMID: 27634432 PMCID: PMC5186408 DOI: 10.1016/j.tcb.2016.08.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/30/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Cell invasion through the basement membrane (BM) occurs during normal embryonic development and is a fundamental feature of cancer metastasis. The underlying cellular and genetic machinery required for invasion has been difficult to identify, due to a lack of adequate in vivo models to accurately examine invasion in single cells at subcellular resolution. Recent evidence has documented a functional link between cell cycle arrest and invasive activity. While cancer progression is traditionally thought of as a disease of uncontrolled cell proliferation, cancer cell dissemination, a critical aspect of metastasis, may require a switch from a proliferative to an invasive state. In this work, we review evidence that BM invasion requires cell cycle arrest and discuss the implications of this concept with regard to limiting the lethality associated with cancer metastasis.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
68
|
Huang Y, Chen Y, Lin X, Lin Q, Han M, Guo G. Clinical significance of SLP-2 in hepatocellular carcinoma tissues and its regulation in cancer cell proliferation, migration, and EMT. Onco Targets Ther 2017; 10:4665-4673. [PMID: 29033585 PMCID: PMC5614784 DOI: 10.2147/ott.s144638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stomatin-like protein 2 (SLP-2) gene was significantly upregulated in a variety of tumor tissues and found to be involved in proliferation and metastasis. However, its functional role in hepatocellular carcinoma (HCC) remains unknown. Our study was to investigate the function of SLP-2 in cell proliferation, migration, invasion, cell apoptosis, and the process of epithelial-mesenchymal transition (EMT) in HCC. SLP-2 mRNA and protein expression in HCC were assessed by qRT-PCR and immunohistochemical staining. In vitro, we determined cell proliferation, migration, invasion, and cell apoptosis by CCK-8, transwell, and flow cytometry assays, respectively. SLP-2 was found to be upregulated at both mRNA and protein levels in HCC tissues, and its aberrant overexpression was linked with poor prognosis in patients with HCC. SLP-2 downregulation by siRNAs significantly suppressed cell proliferation, migration, invasion, anti-apoptosis abilities, and inhibited EMT process in vitro. In conclusion, the present study demonstrated the overexpression of SLP-2 in HCC tissues for the first time. As an effective regulator involved in cell proliferation, migration, invasion, cell apoptosis, and EMT, SLP-2 could be a novel therapeutic target for patients with HCC who express high levels of SLP-2.
Collapse
Affiliation(s)
- Yijie Huang
- Department of General Surgery, Guangdong General Hospital, Guangzhou
| | - Yexi Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoqi Lin
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Qingjun Lin
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
| | - Ming Han
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Guohu Guo; Ming Han, Department of General Surgery, The Second Affiliated Hospital of Shantou University, 69 Dongxia North Road, Shantou 515100, People’s Republic of China, Tel +86 135 0299 3993, Fax +86 754 8314 1101, Email ;
| | - Guohu Guo
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Guohu Guo; Ming Han, Department of General Surgery, The Second Affiliated Hospital of Shantou University, 69 Dongxia North Road, Shantou 515100, People’s Republic of China, Tel +86 135 0299 3993, Fax +86 754 8314 1101, Email ;
| |
Collapse
|
69
|
Mishra S, Tripathi R, Singh S. Crosstalk of proteins, miRNAs involved in metastatic and epithelial–mesenchymal transition pathways. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1256843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Ettensohn CA, Dey D. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo. Dev Biol 2016; 421:258-270. [PMID: 27866905 DOI: 10.1016/j.ydbio.2016.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/25/2022]
Abstract
In the sea urchin embryo, primary mesenchyme cells (PMCs) adhere to one another and fuse via filopodia, forming cable-like structures within which skeletal rods are deposited. Although this process was first described more than a century ago, molecules that participate in PMC adhesion and fusion have not been identified. Here we show that KirrelL, a PMC-specific, Ig domain-containing transmembrane protein, is essential for PMC fusion, probably by mediating filopodial adhesions that are a pre-requisite for subsequent membrane fusion. We show that KirrelL is not required for PMC specification, migration, or for direct filopodial contacts between PMCs. In the absence of KirrelL, however, filopodial contacts do not result in fusion. kirrelL is a member of a family of closely related, intronless genes that likely arose through an echinoid-specific gene expansion, possibly via retrotransposition. Our findings are significant in that they establish a direct linkage between the transcriptional network deployed in the PMC lineage and an effector molecule required for a critically important PMC morphogenetic process. In addition, our results point to a conserved role for Ig domain-containing adhesion proteins in facilitating cell fusion in both muscle and non-muscle cell lineages during animal development.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States.
| | - Debleena Dey
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| |
Collapse
|
71
|
Kitazawa C, Fujii T, Egusa Y, Komatsu M, Yamanaka A. Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins. Biol Open 2016; 5:1555-1566. [PMID: 27591193 PMCID: PMC5155528 DOI: 10.1242/bio.019018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/31/2016] [Indexed: 11/21/2022] Open
Abstract
Embryos of temnopleurid sea urchins exhibit species-specific morphologies. While Temnopleurus toreumaticus has a wrinkled blastula and then invaginates continuously at gastrulation, others have a smooth blastula and their invagination is stepwise. We studied blastula and gastrula formation in four temnopleurids using light and scanning electron microscopy to clarify the mechanisms producing these differences. Unlike T. toreumaticus, blastomeres of mid-blastulae in T. reevesii, T. hardwickii and Mespilia globulus formed pseudopods. Before primary mesenchyme cells ingressed, embryos developed an area of orbicular cells in the vegetal plate. The cells surrounding the orbicular cells extended pseudopods toward the orbicular cell area in three Temnopleurus species. In T. toreumaticus, the extracellular matrix was well-developed and developed a hole-like structure that was not formed in others. Gastrulation of T. reevesii, T. hardwickii and M. globulus was stepwise, suggesting that differences of gastrulation are caused by all or some of the following factors: change of cell shape, rearrangement, pushing up and towing of cells. We conclude that (1) many aspects of early morphogenesis differ even among very closely related sea urchins with indirect development and (2) many of these differences may be caused by the cell shape and structure of blastomeres or by differences in extracellular matrix composition.
Collapse
Affiliation(s)
- Chisato Kitazawa
- Biological Institute, Faculty of Education, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8513, Japan
| | - Tsubasa Fujii
- Biological Institute, Graduate School of Education, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8513, Japan
| | - Yuji Egusa
- Biological Institute, Faculty of Education, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8513, Japan
| | - Miéko Komatsu
- Department of Biology, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
| | - Akira Yamanaka
- Laboratory of Environmental Biology, Graduate School of Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan
| |
Collapse
|
72
|
Abstract
Tissue-specific transcription regulators emerged as key developmental control genes, which operate in the context of complex gene regulatory networks (GRNs) to coordinate progressive cell fate specification and tissue morphogenesis. We discuss how GRNs control the individual cell behaviors underlying complex morphogenetic events. Cell behaviors classically range from mesenchymal cell motility to cell shape changes in epithelial sheets. These behaviors emerge from the tissue-specific, multiscale integration of the local activities of universal and pleiotropic effectors, which underlie modular subcellular processes including cytoskeletal dynamics, cell-cell and cell-matrix adhesion, signaling, polarity, and vesicle trafficking. Extrinsic cues and intrinsic cell competence determine the subcellular spatiotemporal patterns of effector activities. GRNs influence most subcellular activities by controlling only a fraction of the effector-coding genes, which we argue is enriched in effectors involved in reading and processing the extrinsic cues to contextualize intrinsic subcellular processes and canalize developmental cell behaviors. The properties of the transcription-cell behavior interface have profound implications for evolution and disease.
Collapse
Affiliation(s)
- Yelena Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003
| |
Collapse
|
73
|
STEPICHEVA NADEZDAA, SONG JIAL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev 2016; 83:654-74. [PMID: 27405090 PMCID: PMC6040227 DOI: 10.1002/mrd.22678] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that orchestrate numerous cellular processes both under normal physiological conditions as well as in diseases. This review summarizes the functional roles and transcriptional regulation of the highly evolutionarily conserved miRNA, microRNA-31 (miR-31). miR-31 is an important regulator of embryonic implantation, development, bone and muscle homeostasis, and immune system function. Its own regulation is disrupted during the onset and progression of cancer and autoimmune disorders such as psoriasis and systemic lupus erythematosus. Limited studies suggest that miR-31 is transcriptionally regulated by epigenetics, such as methylation and acetylation, as well as by a number of transcription factors. Overall, miR-31 regulates diverse cellular and developmental processes by targeting genes involved in cell proliferation, apoptosis, cell differentiation, and cell motility. Mol. Reprod. Dev. 83: 654-674, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - JIA L. SONG
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
74
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
75
|
Schrankel CS, Solek CM, Buckley KM, Anderson MK, Rast JP. A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Dev Biol 2016; 416:149-161. [PMID: 27265865 DOI: 10.1016/j.ydbio.2016.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
Abstract
E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.
Collapse
Affiliation(s)
- Catherine S Schrankel
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Cynthia M Solek
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Katherine M Buckley
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jonathan P Rast
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
76
|
Hardy K, Wu F, Tu W, Zafar A, Boulding T, McCuaig R, Sutton CR, Theodoratos A, Rao S. Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus 2016; 7:50-67. [PMID: 26962893 PMCID: PMC4916893 DOI: 10.1080/19491034.2016.1150392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is physiological in embryogenesis and wound healing but also associated with the formation of cancer stem cells (CSCs). Many EMT signaling pathways are implicated in CSC formation, but the precise underlying mechanisms of CSC formation remain elusive. We have previously demonstrated that PKC is critical for EMT induction and CSC formation in inducible breast EMT/CSC models. Here, we used formaldehyde-assisted isolation of regulatory elements-sequencing (FAIRE-seq) to investigate DNA accessibility changes after PKC activation and determine how they influence EMT and CSC formation. During EMT, DNA accessibility principally increased in regions distant from transcription start sites, low in CpG content, and enriched with chromatin enhancer marks. ChIP-sequencing revealed that a subset of these regions changed from poised to active enhancers upon stimulation, with some even more acteylated in CSCs. While regions with increased accessibility were enriched for FOX, AP-1, TEAD, and TFAP2 motifs, those containing FOX and AP-1 motif were associated with increased expression of CSC-associated genes, while those with TFAP2 were associated with genes with increased expression in non-CSCs. Silencing of 2 members of the FOX family, FOXN2 and FOXQ1, repressed CSCs and the mesenchymal phenotype and inhibited the CSC gene signature. These novel, PKC-induced DNA accessibility regions help explain how the epigenomic plasticity of cells undergoing EMT leads to CSC gene activation.
Collapse
Affiliation(s)
- K Hardy
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| | - F Wu
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| | - W Tu
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| | - A Zafar
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| | - T Boulding
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| | - R McCuaig
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| | - C R Sutton
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| | - A Theodoratos
- b JCSMR, Australian National University , Canberra, Australia
| | - S Rao
- a HRI, Faculty of ESTeM, University of Canberra , Bruce , Australia
| |
Collapse
|
77
|
Martik ML, Lyons DC, McClay DR. Developmental gene regulatory networks in sea urchins and what we can learn from them. F1000Res 2016; 5. [PMID: 26962438 PMCID: PMC4765714 DOI: 10.12688/f1000research.7381.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized. Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation. Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model. That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource. Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development. We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work.
Collapse
Affiliation(s)
- Megan L Martik
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - Deirdre C Lyons
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - David R McClay
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
78
|
Abstract
In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future discoveries.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
79
|
Katow H. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers 2015; 3:e1059004. [PMID: 26716069 PMCID: PMC4681286 DOI: 10.1080/21688370.2015.1059004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology; Tohoku University; Asamushi, Aomori, Japan
| |
Collapse
|
80
|
Martik ML, McClay DR. Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo. eLife 2015; 4. [PMID: 26402456 PMCID: PMC4621380 DOI: 10.7554/elife.08827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) provide a systems-level orchestration of an organism's genome encoded anatomy. As biological networks are revealed, they continue to answer many questions including knowledge of how GRNs control morphogenetic movements and how GRNs evolve. The migration of the small micromeres to the coelomic pouches in the sea urchin embryo provides an exceptional model for understanding the genomic regulatory control of morphogenesis. An assay using the robust homing potential of these cells reveals a ‘coherent feed-forward’ transcriptional subcircuit composed of Pax6, Six3, Six1/2, Eya, and Dach1 that is responsible for the directed homing mechanism of these multipotent progenitors. The linkages of that circuit are strikingly similar to a circuit involved in retinal specification in Drosophila suggesting that systems-level tasks can be highly conserved even though the tasks drive unrelated processes in different animals. DOI:http://dx.doi.org/10.7554/eLife.08827.001 Within an animal embryo, groups of cells tend to move, or migrate, between different areas before they form into tissues and organs. These cell migrations are regulated by hundreds of genes, which must be expressed at the right time and in the right place. Cells use proteins called transcription factors to regulate the expression of genes. These proteins work together in circuit board-like networks called gene regulatory networks in order to drive different aspects of development, including cell migration. The sea urchin is a useful model organism to study how animals develop. This is because these marine animals express many of the same genes as humans, but they can be easily manipulated and studied in the laboratory. In a developing sea urchin embryo, cells called the small micromeres move towards one end of animal and get incorporated into a pocket-like structure known as the coelomic pouch. From this pouch, these cells mature and eventually contribute to the adult germ cells (the precursors to the sperm and eggs). Martik and McClay have now analyzed how small micromeres make their way to their final location in the coelomic pouch. Micromeres were labeled with a dye that fluoresces green so that they could be tracked under a microscope. This revealed that, like other moving cells, micromeres actively change their shape as they migrate. Furthermore, when micromeres were experimentally moved to abnormal locations in the sea urchin embryo, they were still able to actively home in on the coelomic pouch no matter their starting location. Martik and McClay then identified five transcription factors expressed in the coelomic pouch in the sea urchin that are involved in this homing activity. Reducing the expression of any of these transcription factors was enough to hinder the ability of the micromeres to find their way to the coelomic pouch. Further experiments and analysis then revealed that these five transcription factors work together in a sub-circuit, which is in turn embedded in a larger gene regulatory network. This sub-circuit that drives cell migration is unexpectedly similar to another circuit in the fruit fly Drosophila. Intriguingly, the sub-circuit in the fly controls eye development, which is unrelated to cell homing and migration. These observations raise the possibility that this circuit has been conserved as a unit over millions of years of evolution and redeployed in new networks under completely different circumstances. The data also suggest the possibility that additional conserved sub-circuits will be identified as more systems are analyzed in detail. DOI:http://dx.doi.org/10.7554/eLife.08827.002
Collapse
Affiliation(s)
- Megan L Martik
- University Program in Genetics and Genomics, Duke University, Durham, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, United States
| |
Collapse
|
81
|
Stepicheva NA, Song JL. microRNA-31 modulates skeletal patterning in the sea urchin embryo. Development 2015; 142:3769-80. [PMID: 26400092 DOI: 10.1242/dev.127969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that repress the translation and reduce the stability of target mRNAs in animal cells. microRNA-31 (miR-31) is known to play a role in cancer, bone formation and lymphatic development. However, studies to understand the function of miR-31 in embryogenesis have been limited. We examined the regulatory role of miR-31 in early development using the sea urchin as a model. miR-31 is expressed at all stages of development and its knockdown (KD) disrupts the patterning and function of primary mesenchyme cells (PMCs), which form the embryonic skeleton spicules. We identified that miR-31 directly represses Pmar1, Alx1, Snail and VegfR7 within the PMC gene regulatory network using reporter constructs. Further, blocking the miR-31-mediated repression of Alx1 and/or VegfR7 in the developing embryo resulted in defects in PMC patterning and skeletogenesis. The majority of the mislocalized PMCs in miR-31 KD embryos did not express VegfR10, indicating that miR-31 regulates VegfR gene expression within PMCs. In addition, miR-31 indirectly suppresses Vegf3 expression in the ectoderm. These results indicate that miR-31 coordinately suppresses genes within the PMCs and in the ectoderm to impact PMC patterning and skeletogenesis. This study identifies the novel function and molecular mechanism of miR-31-mediated regulation in the developing embryo.
Collapse
Affiliation(s)
- Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
82
|
Manning AJ, Kimelman D. Tbx16 and Msgn1 are required to establish directional cell migration of zebrafish mesodermal progenitors. Dev Biol 2015; 406:172-85. [PMID: 26368502 DOI: 10.1016/j.ydbio.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
The epithelial to mesenchymal transition (EMT) is an essential process that occurs repeatedly during embryogenesis whereby stably adherent cells convert to an actively migrating state. While much is known about the factors and events that initiate the EMT, the steps that cells undergo to become directionally migratory are far less well understood. Zebrafish embryos lacking the transcription factors Tbx16/Spadetail and Mesogenin1 (Msgn1) are a valuable system for investigating the EMT. Mesodermal cells in these embryos are unable to perform the EMT necessary to leave the most posterior end of the body (the tailbud) and join the pre-somitic mesoderm, a process that is conserved in all vertebrates. It has previously been very difficult to study this EMT in vertebrates because of the multiple cell types in the tailbud and the morphogenetic changes the whole embryo undergoes. Here, we describe a novel tissue explant system for imaging the mesodermal cell EMT in vivo that allows us to investigate the requirements for cells to acquire migratory properties during the EMT with high spatio-temporal resolution. This method revealed that, despite the inability of tbx16;msgn1-deficient cells to leave the tailbud, actin-based protrusions form surprisingly normally in these cells and they become highly motile. However, tbx16;msgn1-deficient cells have specific cell-autonomous defects in the persistence and anterior direction of migration because the lamellipodia they form are not productive in driving anteriorward migration. Additionally, we show that mesoderm morphogenesis and differentiation are separable and that there is a migratory cue that directs mesodermal cell migration that is independent of Tbx16 and Msgn1. This work defines changes that cells undergo as they complete the EMT and provides new insight into the mechanisms required in vivo for cells to become mesenchymal.
Collapse
Affiliation(s)
- Alyssa J Manning
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
83
|
Schatzberg D, Lawton M, Hadyniak SE, Ross EJ, Carney T, Beane WS, Levin M, Bradham CA. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos. Dev Biol 2015; 406:259-70. [PMID: 26282894 DOI: 10.1016/j.ydbio.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/26/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles.
Collapse
Affiliation(s)
| | - Matthew Lawton
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Erik J Ross
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Tamara Carney
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Wendy S Beane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
84
|
Liang B, Jia C, Huang Y, He H, Li J, Liao H, Liu X, Liu X, Bai X, Yang D. TPX2 Level Correlates with Hepatocellular Carcinoma Cell Proliferation, Apoptosis, and EMT. Dig Dis Sci 2015; 60:2360-72. [PMID: 26025609 DOI: 10.1007/s10620-015-3730-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/23/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Targeting protein for Xklp2 (TPX2) is a microtubule-associated protein involved in targeting the motor protein Xklp2 to microtubules. TPX2 overexpression plays a key role in the progression of human cancers. But the underlying mechanism remains unclear. AIMS This study aimed to investigate the effects and mechanisms of TPX2 on the cell cycle, apoptosis, and epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC). METHODS The tissue TPX2 mRNA and protein were assessed by quantitative reverse transcriptase PCR and immunoblot. Cell proliferation, cell cycle, apoptosis, and invasion were determined by CCK-8, FACS, TdT-UTP nick end-labeling, and transwell assays. Immunoblotting was performed to detect the expression of target proteins. RESULTS TPX2 was highly expressed in tumor tissues compared with non-tumoral tissues, and TPX2 overexpression was positively correlated with poor prognosis. Knockdown TPX2 effectively reduced cell growth, G2/M arrest, induced apoptosis and cell death, and inhibited EMT. Mechanistically, in the TPX2-siRNA-treated groups, cell-cycle-related proteins cyclin A1, cyclin B1, cyclin E1, and cdk4 were up-regulated, while cyclin D1, cdk2, and p21 proteins were down-regulated. Cell-apoptosis-related proteins Bax, p53, caspase-3, and caspase-8 levels were increased. EMT-related proteins E-cadherin was up-regulated, while N-cadherin, β-catenin, MMP-9, MMP-2, and Slug were down-regulated. We also found that knockdown TPX2 in HCC cell lines caused a significant decrease in the level of p-Akt and p-ERK which are important signaling pathways in tumor formation. CONCLUSIONS TPX2 expression is associated with proliferation, apoptosis, and EMT in hepatocellular carcinoma cell and patients.
Collapse
Affiliation(s)
- Bo Liang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Lyons DC, Perry KJ, Henry JQ. Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata. EvoDevo 2015; 6:24. [PMID: 26664718 PMCID: PMC4673862 DOI: 10.1186/s13227-015-0019-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/15/2015] [Indexed: 12/14/2022] Open
Abstract
Background Gastrulation is a critical step in bilaterian development, directly linked to the segregation of germ layers, establishment of axes, and emergence of the through-gut. Theories about the evolution of gastrulation often concern the fate of the blastopore (site of endomesoderm internalization), which varies widely in a major branch of bilaterians, the Spiralia. In this group, the blastopore has been said to become the mouth, the anus, both, or neither. Different developmental explanations for this variation exist, yet no modern lineage tracing study has ever correlated the position of cells surrounding the blastopore with their contribution to tissues of the mouth, foregut, and anus in a spiralian. This is the first study to do so, using the gastropod Crepidula fornicata. Results Crepidula gastrulation occurs by epiboly: the first through third quartet micromeres form an epithelial animal cap that expands to cover vegetal endomesodermal precursors. Initially, descendants of the second and third quartet micromeres (2a–2d, 3a–3d) occupy a portion of the blastopore lip. As the blastopore narrows, the micromeres’ progeny exhibit lineage-specific behaviors that result in certain sublineages leaving the lip’s edge. Anteriorly, cells derived from 3a2 and 3b2 undergo a unique epithelial-to-mesenchymal transition involving proliferation and a collective movement of cells into the archenteron. These cells make a novel spiralian germ layer, the ectomesoderm. Posteriorly, cells derived from 3c2 and 3d2 undergo a form of convergence and extension that involves zippering of cells and their intercalation across the ventral midline. During this process, several of these cells, as well as the 2d clone, become displaced posteriorly, away from the blastopore. Progeny of 2a-2c and 3a-3d make the mouth and foregut, and the blastopore becomes the opening to the mouth. The anus forms days later, as a secondary opening within the 2d2 clone, and not from the classically described “anal cells”, which we identify as the 3c221 and 3d221 cells. Conclusions Our analysis of Crepidula gastrulation constitutes the first description of blastopore lip morphogenesis and fates using lineage tracing and live imaging. These data have profound implications for hypotheses about the evolution of the bilaterian gut and help explain observed variation in blastopore morphogenesis among spiralians. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0019-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Biology Department, Duke University, 124 Science Drive, Durham, NC 27708 USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801 USA
| |
Collapse
|
86
|
Ottewell PD, O'Donnell L, Holen I. Molecular alterations that drive breast cancer metastasis to bone. BONEKEY REPORTS 2015; 4:643. [PMID: 25848532 DOI: 10.1038/bonekey.2015.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022]
Abstract
Epithelial cancers including breast and prostate commonly progress to form incurable bone metastases. For this to occur, cancer cells must adapt their phenotype and behaviour to enable detachment from the primary tumour, invasion into the vasculature, and homing to and subsequent colonisation of bone. It is widely accepted that the metastatic process is driven by the transformation of cancer cells from a sessile epithelial to a motile mesenchymal phenotype through epithelial-mesenchymal transition (EMT). Dissemination of these motile cells into the circulation provides the conduit for cells to metastasise to distant organs. However, accumulating evidence suggests that EMT is not sufficient for metastasis to occur and that specific tissue-homing factors are required for tumour cells to lodge and grow in bone. Once tumour cells are disseminated in the bone environment, they can revert into an epithelial phenotype through the reverse process of mesenchymal-epithelial transition (MET) and form secondary tumours. In this review, we describe the molecular alterations undertaken by breast cancer cells at each stage of the metastatic cascade and discuss how these changes facilitate bone metastasis.
Collapse
Affiliation(s)
- Penelope D Ottewell
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| | - Liam O'Donnell
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| | - Ingunn Holen
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| |
Collapse
|
87
|
Bogachek MV, De Andrade JP, Weigel RJ. Regulation of epithelial-mesenchymal transition through SUMOylation of transcription factors. Cancer Res 2014; 75:11-5. [PMID: 25524900 DOI: 10.1158/0008-5472.can-14-2824] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carcinoma cells can transition from an epithelial-to-mesenchymal differentiation state through a process known as epithelial-mesenchymal transition (EMT). The process of EMT is characterized by alterations in the pattern of gene expression and is associated with a loss of cell polarity, an increase in invasiveness, and an increase in cells expressing cancer stem cell (CSC) markers. The reverse process of mesenchymal-to-epithelial transition (MET) can also occur, though the transitions characterizing EMT and MET can be incomplete. A growing number of transcription factors have been identified that influence the EMT/MET processes. Interestingly, SUMOylation regulates the functional activity of many of the transcription factors governing transitions between epithelial and mesenchymal states. In some cases, the transcription factor is a small ubiquitin-like modifier conjugated directly, thus altering its transcriptional activity or cell trafficking. In other cases, SUMOylation alters transcriptional mechanisms through secondary effects. This review explores the role of SUMOylation in controlling transcriptional mechanisms that regulate EMT/MET in cancer. Developing new drugs that specifically target SUMOylation offers a novel therapeutic approach to block tumor growth and metastasis.
Collapse
Affiliation(s)
| | | | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, Iowa. Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa. Department of Biochemistry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
88
|
Böhrnsen F, Fricke M, Sander C, Leha A, Schliephake H, Kramer FJ. Interactions of human MSC with head and neck squamous cell carcinoma cell line PCI-13 reduce markers of epithelia-mesenchymal transition. Clin Oral Investig 2014; 19:1121-8. [DOI: 10.1007/s00784-014-1338-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/14/2014] [Indexed: 11/28/2022]
|
89
|
Lyons DC, Martindale MQ, Srivastava M. The cell's view of animal body-plan evolution. Integr Comp Biol 2014; 54:658-66. [PMID: 25108284 DOI: 10.1093/icb/icu108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An adult animal's form is shaped by the collective behavior of cells during embryonic development. To understand the forces that drove the divergence of animal body-plans, evolutionary developmental biology has focused largely on studying genetic networks operating during development. However, it is less well understood how these networks modulate characteristics at the cellular level, such as the shape, polarity, or migration of cells. We organized the "Cell's view of animal body plan evolution" symposium for the 2014 The Society for Integrative and Comparative Biology meeting with the explicit goal of bringing together researchers studying the cell biology of embryonic development in diverse animal taxa. Using a broad range of established and emerging technologies, including live imaging, single-cell analysis, and mathematical modeling, symposium participants revealed mechanisms underlying cells' behavior, a few of which we highlight here. Shape, adhesion, and movements of cells can be modulated over the course of evolution to alter adult body-plans and a major theme explored during the symposium was the role of actomyosin in coordinating diverse behaviors of cells underlying morphogenesis in a myriad of contexts. Uncovering whether conserved or divergent genetic mechanisms guide the contractility of actomyosin in these systems will be crucial to understanding the evolution of the body-plans of animals from a cellular perspective. Many speakers presented research describing developmental phenomena in which cell division and tissue growth can control the form of the adult, and other presenters shared work on studying cell-fate specification, an important source of novelty in animal body-plans. Participants also presented studies of regeneration in annelids, flatworms, acoels, and cnidarians, and provided a unifying view of the regulation of cellular behavior during different life-history stages. Additionally, several presentations highlighted technological advances that glean mechanistic insights from new and emerging model systems, thereby providing the phylogenetic breadth so essential for studying animal evolution. Thus, we propose that an explicit study of cellular phenomena is now possible for a wide range of taxa, and that it will be highly informative for understanding the evolution of animal body-plans.
Collapse
Affiliation(s)
- Deirdre C Lyons
- *Department of Biology, 4115 French Family Science Center, Duke University, Durham, NC 27708, USA; Whitney Laboratory for Marine Biosciences, University of Florida, St Augustine, FL 32080, USA; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Mark Q Martindale
- *Department of Biology, 4115 French Family Science Center, Duke University, Durham, NC 27708, USA; Whitney Laboratory for Marine Biosciences, University of Florida, St Augustine, FL 32080, USA; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Mansi Srivastava
- *Department of Biology, 4115 French Family Science Center, Duke University, Durham, NC 27708, USA; Whitney Laboratory for Marine Biosciences, University of Florida, St Augustine, FL 32080, USA; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
90
|
Lyons DC, Martik ML, Saunders LR, McClay DR. Specification to biomineralization: following a single cell type as it constructs a skeleton. Integr Comp Biol 2014; 54:723-33. [PMID: 25009306 DOI: 10.1093/icb/icu087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The sea urchin larva is shaped by a calcite endoskeleton. That skeleton is built by 64 primary mesenchyme cells (PMCs) in Lytechinus variegatus. The PMCs originate as micromeres due to an unequal fourth cleavage in the embryo. Micromeres are specified in a well-described molecular sequence and enter the blastocoel at a precise time using a classic epithelial-mesenchymal transition. To make the skeleton, the PMCs receive signaling inputs from the overlying ectoderm, which provides positional information as well as control of the growth of initial skeletal tri-radiates. The patterning of the skeleton is the result both of autonomous inputs from PMCs, including production of proteins that are included in the skeletal matrix, and of non-autonomous dynamic information from the ectoderm. Here, we summarize the wealth of information known about how a PMC contributes to the skeletal structure. The larval skeleton is a model for understanding how information encoded in DNA is translated into a three-dimensional crystalline structure.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Department of Biology, Duke University, 124 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Megan L Martik
- Department of Biology, Duke University, 124 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Lindsay R Saunders
- Department of Biology, Duke University, 124 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R McClay
- Department of Biology, Duke University, 124 Science Drive, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
91
|
Goltzman D, Hendy GN, White JH. Vitamin D and its receptor during late development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:171-80. [PMID: 24939836 DOI: 10.1016/j.bbagrm.2014.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
Expression of the vitamin D receptor (VDR) is widespread but may vary depending on the developmental stage of the animal, and therefore may differentially influence phenotypic function. Thus, the major role of the 1,25-dihydroxyvitamin D [1,25(OH)2D]/VDR system is to regulate mineral and skeletal homeostasis, although mainly after birth. Post-natally, under conditions of low dietary calcium, the 1,25(OH)2D/VDR system enhances intestinal transcellular transport of calcium and possibly paracellular calcium entry by regulating genes that are critical for these functions. This process, by providing adequate calcium, is essential for normal development of the skeletal growth plate and mineralization of bone. Furthermore, blood calcium and phosphorus homeostasis is maintained by an interplay between feedback loops of the 1,25(OH)2D/VDR system with parathyroid hormone and with fibroblast-growth factor (FGF) 23 respectively. The 1,25(OH)2D/VDR system can also modulate the expression of genes involved in both bone formation and resorption post-natally. Ligand independent activity of the VDR normally influences mammalian hair cycling after birth by potentiating Wnt and bone morphogenetic protein (BMP) signaling. Nevertheless ligand bound VDR may also modulate epidermal cell proliferation/differentiation by regulating the balance in function of c-MYC and its antagonist the transcriptional repressor MAD1/MXD1 in skin epithelia. The 1,25(OH)2D/VDR system can also modulate innate immune cells and promote a more tolerogenic immunological status and may therefore influence inflammation and the development of autoimmunity; whether this impacts the fetus is uncertain. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- D Goltzman
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| | - G N Hendy
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| | - J H White
- Department of Medicine, McGill University, Montreal, QC H3A1A1, Canada; Department of Physiology, McGill University, Montreal, QC H3A1A1, Canada
| |
Collapse
|