51
|
Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002; 21:3368-76. [PMID: 12032775 DOI: 10.1038/sj.onc.1205326] [Citation(s) in RCA: 454] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous work has demonstrated that lineage-specific transcription factors play essential roles in red blood cell development. More recent studies have shown that these factors participate in critical protein-protein interactions in addition to binding DNA. The zinc finger transcription factor GATA-1, a central mediator of erythroid gene expression, interacts with multiple proteins including FOG-1, EKLF, SP1, CBP/p300 and PU.1. The mechanisms by which these interactions influence GATA-1 function, as well as any possible relationships between these seemingly disparate complexes, remain incompletely understood. However, several new findings have provided further insight into the functional significance of some of these interactions. Studies involving point mutants of GATA-1 have shown that a direct physical interaction between GATA-1 and FOG-1 is essential for normal human erythroid and megakaryocyte maturation in vivo. In addition, evidence has emerged that physical interaction between GATA-1 and the myeloid/lymphoid specific factor PU.1, an oncogene implicated in murine erythroleukemia, acts to functionally cross-antagonize one another. This provides a possible mechanism by which dysregulated expression of hematopoietic transcription factors leads to lineage maturation arrest in leukemias.
Collapse
Affiliation(s)
- Alan B Cantor
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Boston and the Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
52
|
Lyons SE, Lawson ND, Lei L, Bennett PE, Weinstein BM, Liu PP. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc Natl Acad Sci U S A 2002; 99:5454-9. [PMID: 11960002 PMCID: PMC122790 DOI: 10.1073/pnas.082695299] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vlad tepes (vlt(m651)) is one of only five "bloodless" zebrafish mutants isolated through large-scale chemical mutagenesis screening. It is characterized by a severe reduction in blood cell progenitors and few or no blood cells at the onset of circulation. We now report characterization of the mutant phenotype and the identification of the gene mutated in vlt(m651). Embryos homozygous for the vlt(m651) mutation had normal expression of hematopoietic stem cell markers through 24 h postfertilization, as well as normal expression of myeloid and lymphoid markers. Analysis of erythroid development revealed variable expression of erythroid markers. Through positional and candidate gene cloning approaches we identified a nonsense mutation in the gata1 gene, 1015C --> T (Arg-339 --> Stop), in vlt(m651). The nonsense mutation was located C-terminal to the two zinc fingers and resulted in a truncated protein that was unable to bind DNA or mediate GATA-specific transactivation. A BAC clone containing the zebrafish gata1 gene was able to rescue the bloodless phenotype in vlt(m651). These results show that the vlt(m651) mutation is a previously uncharacterized gata1 allele in the zebrafish. The vlt(m651) mutation sheds new light on Gata1 structure and function in vivo, demonstrates that Gata1 plays an essential role in zebrafish hematopoiesis with significant conservation of function between mammals and zebrafish, and offers a powerful tool for future studies of the hematopoietic pathway.
Collapse
Affiliation(s)
- Susan E Lyons
- National Human Genome Research Institute, National Institutes of Health, Building 49, Room 3A18, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
53
|
Liao EC, Trede NS, Ransom D, Zapata A, Kieran M, Zon LI. Non-cell autonomous requirement for thebloodlessgene in primitive hematopoiesis of zebrafish. Development 2002; 129:649-59. [PMID: 11830566 DOI: 10.1242/dev.129.3.649] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate hematopoiesis occurs in two distinct phases, primitive (embryonic) and definitive (adult). Genes that are required specifically for the definitive program, or for both phases of hematopoiesis, have been described. However, a specific regulator of primitive hematopoiesis has yet to be reported. The zebrafish bloodless (bls) mutation causes absence of embryonic erythrocytes in a dominant but incompletely penetrant manner. Primitive macrophages appear to develop normally in bls mutants. Although the thymic epithelium forms normally in bls mutants, lymphoid precursors are absent. Nonetheless, the bloodless mutants can progress through embryogenesis, where red cells begin to accumulate after 5 days post-fertilization (dpf). Lymphocytes also begin to populate the thymic organs by 7.5 dpf. Expression analysis of hematopoietic genes suggests that formation of primitive hematopoietic precursors is deficient in bls mutants and those few blood precursors that are specified fail to differentiate and undergo apoptosis. Overexpression of scl, but not bmp4 or gata1, can lead to partial rescue of embryonic blood cells in bls. Cell transplantation experiments show that cells derived from bls mutant donors can differentiate into blood cells in a wild-type host, but wild-type donor cells fail to form blood in the mutant host. These observations demonstrate that the bls gene product is uniquely required in a non-cell autonomous manner for primitive hematopoiesis, potentially acting via regulation of scl.
Collapse
Affiliation(s)
- Eric C Liao
- Division of Hematology/Oncology, Children's Hospital, Department of Pediatrics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
Organs are specialized tissues used for enhanced physiology and environmental adaptation. The cells of the embryo are genetically programmed to establish organ form and function through conserved developmental modules. The zebrafish is a powerful model system that is poised to contribute to our basic understanding of vertebrate organogenesis. This review develops the theme of modules and illustrates how zebrafish have been particularly useful for understanding heart and blood formation.
Collapse
Affiliation(s)
- Christine Thisse
- Institut de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université Louis Pasteur, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C. U. de Strasbourg, France
| | | |
Collapse
|
55
|
Hukriede N, Fisher D, Epstein J, Joly L, Tellis P, Zhou Y, Barbazuk B, Cox K, Fenton-Noriega L, Hersey C, Miles J, Sheng X, Song A, Waterman R, Johnson SL, Dawid IB, Chevrette M, Zon LI, McPherson J, Ekker M. The LN54 radiation hybrid map of zebrafish expressed sequences. Genome Res 2001; 11:2127-32. [PMID: 11731504 PMCID: PMC311215 DOI: 10.1101/gr.210601] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2001] [Accepted: 09/20/2001] [Indexed: 11/25/2022]
Abstract
To increase the density of a gene map of the zebrafish, Danio rerio, we have placed 3119 expressed sequence tags (ESTs) and cDNA sequences on the LN54 radiation hybrid (RH) panel. The ESTs and genes mapped here join 748 SSLp markers and 459 previously mapped genes and ESTs, bringing the total number of markers on the LN54 RH panel to 4226. Addition of these new markers brings the total LN54 map size to 14,372 cR, with 118 kb/cR. The distribution of ESTs according to linkage groups shows relatively little variation (minimum, 73; maximum, 201). This observation, combined with a relatively uniform size for zebrafish chromosomes, as previously indicated by karyotyping, indicates that there are no especially gene-rich or gene-poor chromosomes in this species. We developed an algorithm to provide a semiautomatic method for the selection of additional framework markers for the LN54 map. This algorithm increased the total number of framework markers to 1150 and permitted the mapping of a high percentage of sequences that could not be placed on a previous version of the LN54 map. The increased concentration of expressed sequences on the LN54 map of the zebrafish genome will facilitate the molecular characterization of mutations in this species.
Collapse
Affiliation(s)
- N Hukriede
- Laboratory of Molecular Genetics and Unit of Biological Computation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 2001; 98:3087-96. [PMID: 11698295 DOI: 10.1182/blood.v98.10.3087] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The zebrafish is a useful model organism for developmental and genetic studies. The morphology and function of zebrafish myeloid cells were characterized. Adult zebrafish contain 2 distinct granulocytes, a heterophil and a rarer eosinophil, both of which circulate and are generated in the kidney, the adult hematopoietic organ. Heterophils show strong histochemical myeloperoxidasic activity, although weaker peroxidase activity was observed under some conditions in eosinophils and erythrocytes. Embryonic zebrafish have circulating immature heterophils by 48 hours after fertilization (hpf). A zebrafish myeloperoxidase homologue (myeloid-specific peroxidase; mpx) was isolated. Phylogenetic analysis suggested it represented a gene ancestral to the mammalian myeloperoxidase gene family. It was expressed in adult granulocytes and in embryos from 18 hpf, first diffusely in the axial intermediate cell mass and then discretely in a dispersed cell population. Comparison of hemoglobinized cell distribution, mpx gene expression, and myeloperoxidase histochemistry in wild-type and mutant embryos confirmed that the latter reliably identified a population of myeloid cells. Studies in embryos after tail transection demonstrated that mpx- and peroxidase-expressing cells were mobile and localized to a site of inflammation, indicating functional capability of these embryonic granulocytes. Embryonic macrophages removed carbon particles from the circulation by phagocytosis. Collectively, these observations have demonstrated the early onset of zebrafish granulopoiesis, have proved that granulocytes circulate by 48 hpf, and have demonstrated the functional activity of embryonic granulocytes and macrophages. These observations will facilitate the application of this genetically tractable organism to the study of myelopoiesis.
Collapse
Affiliation(s)
- G J Lieschke
- Ludwig Institute for Cancer Research, The Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
57
|
Abstract
The zebrafish is a useful model organism for developmental and genetic studies. The morphology and function of zebrafish myeloid cells were characterized. Adult zebrafish contain 2 distinct granulocytes, a heterophil and a rarer eosinophil, both of which circulate and are generated in the kidney, the adult hematopoietic organ. Heterophils show strong histochemical myeloperoxidasic activity, although weaker peroxidase activity was observed under some conditions in eosinophils and erythrocytes. Embryonic zebrafish have circulating immature heterophils by 48 hours after fertilization (hpf). A zebrafish myeloperoxidase homologue (myeloid-specificperoxidase; mpx) was isolated. Phylogenetic analysis suggested it represented a gene ancestral to the mammalian myeloperoxidase gene family. It was expressed in adult granulocytes and in embryos from 18 hpf, first diffusely in the axial intermediate cell mass and then discretely in a dispersed cell population. Comparison of hemoglobinized cell distribution,mpx gene expression, and myeloperoxidase histochemistry in wild-type and mutant embryos confirmed that the latter reliably identified a population of myeloid cells. Studies in embryos after tail transection demonstrated that mpx- and peroxidase-expressing cells were mobile and localized to a site of inflammation, indicating functional capability of these embryonic granulocytes. Embryonic macrophages removed carbon particles from the circulation by phagocytosis. Collectively, these observations have demonstrated the early onset of zebrafish granulopoiesis, have proved that granulocytes circulate by 48 hpf, and have demonstrated the functional activity of embryonic granulocytes and macrophages. These observations will facilitate the application of this genetically tractable organism to the study of myelopoiesis.
Collapse
|
58
|
Oates AC, Pratt SJ, Vail B, Ho RK, Johnson SL, Postlethwait JH, Zon LI. The zebrafish klf gene family. Blood 2001; 98:1792-801. [PMID: 11535513 DOI: 10.1182/blood.v98.6.1792] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like factor (KLF) family of genes encodes transcriptional regulatory proteins that play roles in differentiation of a diverse set of cells in mammals. For instance, the founding member KLF1 (also known as EKLF) is required for normal globin production in mammals. Five new KLF genes have been isolated from the zebrafish, Danio rerio, and the structure of their products, their genetic map positions, and their expression during development of the zebrafish have been characterized. Three genes closely related to mammalian KLF2 and KLF4 were found, as was an ortholog of mammalian KLF12. A fifth gene, apparently missing from the genome of mammals and closely related to KLF1 and KLF2, was also identified. Analysis demonstrated the existence of novel conserved domains in the N-termini of these proteins. Developmental expression patterns suggest potential roles for these zebrafish genes in diverse processes, including hematopoiesis, blood vessel function, and fin and epidermal development. The studies imply a high degree of functional conservation of the zebrafish genes with their mammalian homologs. These findings further the understanding of the KLF genes in vertebrate development and indicate an ancient role in hematopoiesis for the Krüppel-like factor gene family.
Collapse
Affiliation(s)
- A C Oates
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
59
|
Bennett CM, Kanki JP, Rhodes J, Liu TX, Paw BH, Kieran MW, Langenau DM, Delahaye-Brown A, Zon LI, Fleming MD, Look AT. Myelopoiesis in the zebrafish, Danio rerio. Blood 2001; 98:643-51. [PMID: 11468162 DOI: 10.1182/blood.v98.3.643] [Citation(s) in RCA: 354] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide chemical mutagenesis screens in the zebrafish (Danio rerio) have led to the identification of novel genes affecting vertebrate erythropoiesis. In determining if this approach could also be used to clarify the molecular genetics of myelopoiesis, it was found that the developmental hierarchy of myeloid precursors in the zebrafish kidney is similar to that in human bone marrow. Zebrafish neutrophils resembled human neutrophils, possessing segmented nuclei and myeloperoxidase-positive cytoplasmic granules. The zebrafish homologue of the human myeloperoxidase (MPO) gene, which is specific to cells of the neutrophil lineage, was cloned and used to synthesize antisense RNA probes for in situ hybridization analyses of zebrafish embryos. Granulocytic cells expressing zebrafish mpo were first evident at 18 hours after fertilization (hpf) in the posterior intermediate cell mass (ICM) and on the anterior yolk sac by 20 hpf. By 24 hpf, mpo-expressing cells were observed along the ICM and within the developing vascular system. Thus, the mpo gene should provide a useful molecular probe for identifying zebrafish mutants with defects in granulopoiesis. The expression of zebrafish homologues was also examined in 2 other mammalian hematopoietic genes, Pu.1, which appears to initiate a commitment step in normal mammalian myeloid development, and L-Plastin, a gene expressed by human monocytes and macrophages. The results demonstrate a high level of conservation of the spatio-temporal expression patterns of these genes between zebrafish and mammals. The morphologic and molecular genetic evidence presented here supports the zebrafish as an informative model system for the study of normal and aberrant human myelopoiesis. (Blood. 2001;98:643-651)
Collapse
Affiliation(s)
- C M Bennett
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
The zebrafish (Danio rerio) animal model offers a unique opportunity to discover novel genes required for the control of normal vertebrate myeloid cell development. It is well suited for both developmental and genetic analyses: eg, genome-wide chemical mutagenesis screens have led to the identification of specific new genes affecting vertebrate erythropoiesis. Mutants defective in one or more hematopoietic functions will be useful as models of human disease and will assist in the elucidation of lineage-specific developmental programs. By using a combination of forward genetic mutagenesis screens and emerging strategies based on transgenic and antisense knockdown approaches, it should be possible to dissect the genetic programs that lead to myeloproliferative/myelodysplastic syndromes and to acute myeloid leukemia.
Collapse
Affiliation(s)
- K Hsu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
61
|
Abstract
Thymic organogenesis and T-cell lymphopoiesis are crucial interdependent processes that establish a functional vertebrate immune system. The current understanding of vertebrate thymic development during embryogenesis remains incomplete and would benefit from novel approaches. The zebrafish Danio rerio is a powerful developmental and genetic system for the dissection of early events in the ontogeny of the immune system. Forward genetic screens have uncovered genes involved in hematopoiesis, and specific screens are being designed to examine the genes that regulate T-cell development and the origin of the thymus. Studies of the zebrafish should improve our understanding of lymphoid development in vertebrates.
Collapse
Affiliation(s)
- N S Trede
- Division of Hematology, Children's Hospital and Howard Hughes Medical Institute, 320 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
62
|
Paw BH. Cloning of the Zebrafish retsina Blood Mutation: A Genetic Model for Dyserythropoiesis and Erythroid Cytokinesis. Blood Cells Mol Dis 2001; 27:62-4. [PMID: 11358361 DOI: 10.1006/bcmd.2000.0354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- B H Paw
- Division of Hematology-Oncology, Department of Pediatric Oncology, Children's Hospital, Dana-Farber Cancer Institute, 320 Longwood Avenue, Enders 7, Boston, Massachusetts 02115, USA.
| |
Collapse
|