51
|
Vallejo-Giraldo C, Genta M, Cauvi O, Goding J, Green R. Hydrogels for 3D Neural Tissue Models: Understanding Cell-Material Interactions at a Molecular Level. Front Bioeng Biotechnol 2020; 8:601704. [PMID: 33240868 PMCID: PMC7677185 DOI: 10.3389/fbioe.2020.601704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
The development of 3D neural tissue analogs is of great interest to a range of biomedical engineering applications including tissue engineering of neural interfaces, treatment of neurodegenerative diseases and in vitro assessment of cell-material interactions. Despite continued efforts to develop synthetic or biosynthetic hydrogels which promote the development of complex neural networks in 3D, successful long-term 3D approaches have been restricted to the use of biologically derived constructs. In this study a poly (vinyl alcohol) biosynthetic hydrogel functionalized with gelatin and sericin (PVA-SG), was used to understand the interplay between cell-cell communication and cell-material interaction. This was used to probe critical short-term interactions that determine the success or failure of neural network growth and ultimately the development of a useful model. Complex primary ventral mesencephalic (VM) neural cells were encapsulated in PVA-SG hydrogels and critical molecular cues that demonstrate mechanosensory interaction were examined. Neuronal presence was constant over the 10 day culture, but the astrocyte population decreased in number. The lack of astrocytic support led to a reduction in neural process outgrowth from 24.0 ± 1.3 μm on Day 7 to 7.0 ± 0.1 μm on Day 10. Subsequently, purified astrocytes were studied in isolation to understand the reasons behind PVA-SG hydrogel inability to support neural network development. It was proposed that the spatially restrictive nature (or tight mesh size) of PVA-SG hydrogels limited the astrocytic actin polymerization together with a cytoplasmic-nuclear translocation of YAP over time, causing an alteration in their cell cycle. This was confirmed by the evaluation of p27/Kip1 gene that was found to be upregulated by a twofold increase in expression at both Days 7 and 10 compared to Day 3, indicating the quiescent stage of the astrocytes in PVA-SG hydrogel. Cell migration was further studied by the quantification of MMP-2 production that was negligible compared to 2D controls, ranging from 2.7 ± 2.3% on Day 3 to 5.3 ± 2.9% on Day 10. This study demonstrates the importance of understanding astrocyte-material interactions at the molecular level, with the need to address spatial constraints in the 3D hydrogel environment. These findings will inform the design of future hydrogel constructs with greater capacity for remodeling by the cell population to create space for cell migration and neural process extension.
Collapse
Affiliation(s)
| | | | | | | | - Rylie Green
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
52
|
Robledinos-Antón N, Escoll M, Guan KL, Cuadrado A. TAZ Represses the Neuronal Commitment of Neural Stem Cells. Cells 2020; 9:cells9102230. [PMID: 33023162 PMCID: PMC7600930 DOI: 10.3390/cells9102230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms involved in regulation of quiescence, proliferation, and reprogramming of Neural Stem Progenitor Cells (NSPCs) of the mammalian brain are still poorly defined. Here, we studied the role of the transcriptional co-factor TAZ, regulated by the WNT and Hippo pathways, in the homeostasis of NSPCs. We found that, in the murine neurogenic niches of the striatal subventricular zone and the dentate gyrus granular zone, TAZ is highly expressed in NSPCs and declines with ageing. Moreover, TAZ expression is lost in immature neurons of both neurogenic regions. To characterize mechanistically the role of TAZ in neuronal differentiation, we used the midbrain-derived NSPC line ReNcell VM to replicate in a non-animal model the factors influencing NSPC differentiation to the neuronal lineage. TAZ knock-down and forced expression in NSPCs led to increased and reduced neuronal differentiation, respectively. TEADs-knockdown indicated that these TAZ co-partners are required for the suppression of NSPCs commitment to neuronal differentiation. Genetic manipulation of the TAZ/TEAD system showed its participation in transcriptional repression of SOX2 and the proneuronal genes ASCL1, NEUROG2, and NEUROD1, leading to impediment of neurogenesis. TAZ is usually considered a transcriptional co-activator promoting stem cell proliferation, but our study indicates an additional function as a repressor of neuronal differentiation.
Collapse
Affiliation(s)
- Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Maribel Escoll
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-383; Fax: +34-915-854-401
| |
Collapse
|
53
|
Feng X, Liu J, Xu Y, Zhu J, Chen W, Feng B, Pan Q, Yu J, Shi X, Yang J, Li Y, Li L, Cao H. Molecular mechanism underlying the difference in proliferation between placenta-derived and umbilical cord-derived mesenchymal stem cells. J Cell Physiol 2020; 235:6779-6793. [PMID: 31990045 DOI: 10.1002/jcp.29572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
The placenta and umbilical cord are pre-eminent candidate sources of mesenchymal stem cells (MSCs). However, placenta-derived MSCs (P-MSCs) showed greater proliferation capacity than umbilical cord-derived MSCs (UC-MSCs) in our study. We investigated the drivers of this proliferation difference and elucidated the mechanisms of proliferation regulation. Proteomic profiling and Gene Ontology (GO) functional enrichment were conducted to identify candidate proteins that may influence proliferation. Using lentiviral or small interfering RNA infection, we established overexpression and knockdown models and observed changes in cell proliferation to examine whether a relationship exists between the candidate proteins and proliferation capacity. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence assays were conducted to elucidate the mechanisms underlying proliferation. Six candidate proteins were selected based on the results of proteomic profiling and GO functional enrichment. Through further validation, yes-associated protein 1 (YAP1) and β-catenin were confirmed to affect MSCs proliferation rates. YAP1 and β-catenin showed increased nuclear colocalization during cell expansion. YAP1 overexpression significantly enhanced proliferation capacity and upregulated the expression of both β-catenin and the transcriptional targets of Wnt signaling, CCND1, and c-MYC, whereas silencing β-catenin attenuated this influence. We found that YAP1 directly interacts with β-catenin in the nucleus to form a transcriptional YAP/β-catenin/TCF4 complex. Our study revealed that YAP1 and β-catenin caused the different proliferation capacities of P-MSCs and UC-MSCs. Mechanism analysis showed that YAP1 stabilized the nuclear β-catenin protein, and also triggered the Wnt/β-catenin pathway, promoting proliferation.
Collapse
Affiliation(s)
- Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingqi Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaowei Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yang Li
- Department of Obstetrical, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory For Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, 310003, China
| |
Collapse
|
54
|
Wu Z, Guan KL. Hippo Signaling in Embryogenesis and Development. Trends Biochem Sci 2020; 46:51-63. [PMID: 32928629 DOI: 10.1016/j.tibs.2020.08.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Hippo pathway components are structurally and functionally conserved and are notable for their role in controlling organ size. More diverse functions of the Hippo pathway have been recognized, including development, tissue homeostasis, wound healing and regeneration, immunity, and tumorigenesis. During embryogenesis, different signaling pathways are repeatedly and cooperatively activated, leading to differential gene expression in specific developmental contexts. In this article, we present an overview on the regulation and function of the Hippo pathway in mammalian early development. We introduce the Hippo pathway components and major upstream signals that act through this pathway to influence embryogenesis. We also discuss the roles of Hippo pathway in tissue specification and organ development during organogenesis.
Collapse
Affiliation(s)
- Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
55
|
Hiepen C, Mendez PL, Knaus P. It Takes Two to Tango: Endothelial TGFβ/BMP Signaling Crosstalk with Mechanobiology. Cells 2020; 9:E1965. [PMID: 32858894 PMCID: PMC7564048 DOI: 10.3390/cells9091965] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGFβ) superfamily of cytokines. While some ligand members are potent inducers of angiogenesis, others promote vascular homeostasis. However, the precise understanding of the molecular mechanisms underlying these functions is still a growing research field. In bone, the tissue in which BMPs were first discovered, crosstalk of TGFβ/BMP signaling with mechanobiology is well understood. Likewise, the endothelium represents a tissue that is constantly exposed to multiple mechanical triggers, such as wall shear stress, elicited by blood flow or strain, and tension from the surrounding cells and to the extracellular matrix. To integrate mechanical stimuli, the cytoskeleton plays a pivotal role in the transduction of these forces in endothelial cells. Importantly, mechanical forces integrate on several levels of the TGFβ/BMP pathway, such as receptors and SMADs, but also global cell-architecture and nuclear chromatin re-organization. Here, we summarize the current literature on crosstalk mechanisms between biochemical cues elicited by TGFβ/BMP growth factors and mechanical cues, as shear stress or matrix stiffness that collectively orchestrate endothelial function. We focus on the different subcellular compartments in which the forces are sensed and integrated into the TGFβ/BMP growth factor signaling.
Collapse
Affiliation(s)
| | | | - Petra Knaus
- Knaus-Lab/Signal Transduction, Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (C.H.); (P.-L.M.)
| |
Collapse
|
56
|
Habowski AN, Flesher JL, Bates JM, Tsai CF, Martin K, Zhao R, Ganesan AK, Edwards RA, Shi T, Wiley HS, Shi Y, Hertel KJ, Waterman ML. Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt. Commun Biol 2020; 3:453. [PMID: 32814826 PMCID: PMC7438495 DOI: 10.1038/s42003-020-01181-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal stem cells are non-quiescent, dividing epithelial cells that rapidly differentiate into progenitor cells of the absorptive and secretory cell lineages. The kinetics of this process is rapid such that the epithelium is replaced weekly. To determine how the transcriptome and proteome keep pace with rapid differentiation, we developed a new cell sorting method to purify mouse colon epithelial cells. Here we show that alternative mRNA splicing and polyadenylation dominate changes in the transcriptome as stem cells differentiate into progenitors. In contrast, as progenitors differentiate into mature cell types, changes in mRNA levels dominate the transcriptome. RNA processing targets regulators of cell cycle, RNA, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, global proteome profiling detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.
Collapse
Affiliation(s)
- Amber N Habowski
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Jessica L Flesher
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Jennifer M Bates
- Institute for Immunology, University of California Irvine, Irvine, CA, 92697, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kendall Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Anand K Ganesan
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Dermatology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
57
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
58
|
Najas S, Pijuan I, Esteve-Codina A, Usieto S, Martinez JD, Zwijsen A, Arbonés ML, Martí E, Le Dréau G. A SMAD1/5-YAP signalling module drives radial glia self-amplification and growth of the developing cerebral cortex. Development 2020; 147:dev.187005. [PMID: 32541003 DOI: 10.1242/dev.187005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
The growth and evolutionary expansion of the cerebral cortex are defined by the spatial-temporal production of neurons, which itself depends on the decision of radial glial cells (RGCs) to self-amplify or to switch to neurogenic divisions. The mechanisms regulating these RGC fate decisions are still incompletely understood. Here, we describe a novel and evolutionarily conserved role of the canonical BMP transcription factors SMAD1/5 in controlling neurogenesis and growth during corticogenesis. Reducing the expression of both SMAD1 and SMAD5 in neural progenitors at early mouse cortical development caused microcephaly and an increased production of early-born cortical neurons at the expense of late-born ones, which correlated with the premature differentiation and depletion of the pool of cortical progenitors. Gain- and loss-of-function experiments performed during early cortical neurogenesis in the chick revealed that SMAD1/5 activity supports self-amplifying RGC divisions and restrains the neurogenic ones. Furthermore, we demonstrate that SMAD1/5 stimulate RGC self-amplification through the positive post-transcriptional regulation of the Hippo signalling effector YAP. We anticipate this SMAD1/5-YAP signalling module to be fundamental in controlling growth and evolution of the amniote cerebral cortex.
Collapse
Affiliation(s)
- Sonia Najas
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Isabel Pijuan
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| | - Juan D Martinez
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Maria L Arbonés
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| | - Gwenvael Le Dréau
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028 Barcelona, Spain
| |
Collapse
|
59
|
Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cell Mol Neurobiol 2020; 40:495-510. [PMID: 31768921 PMCID: PMC11448948 DOI: 10.1007/s10571-019-00762-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is highly conserved from Drosophila melanogaster to mammals and plays a crucial role in organ size control, tissue regeneration, and tumor suppression. The Yes-associated protein (YAP) is an important transcriptional co-activator that is negatively regulated by the Hippo signaling pathway. The Hippo signaling pathway is also regulated by various upstream regulators, such as cell polarity, adhesion proteins, and other signaling pathways (the Wnt/β-catenin, Notch, and MAPK pathways). Recently, accumulated evidence suggests that the Hippo/YAP signaling pathway plays important roles in central nervous system development and brain tumor, including glioma. In this review, we summarize the results of recent studies on the physiological effect of the Hippo/YAP signaling pathway in neural stem cells, neural progenitor cells, and glial cells. In particular, we also focus on the expression of MST1/2, LATS1/2, and the downstream effector YAP, in glioma, and offer a review of the latest research of the Hippo/YAP signaling pathway in glioma pathogenesis. Finally, we also present future research directions and potential therapeutic strategies for targeting the Hippo/YAP signaling in glioma.
Collapse
Affiliation(s)
- Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, No.17, Yongwai Street, Nanchang, 336000, China.
| |
Collapse
|
60
|
Non-cell autonomous promotion of astrogenesis at late embryonic stages by constitutive YAP activation. Sci Rep 2020; 10:7041. [PMID: 32341445 PMCID: PMC7184574 DOI: 10.1038/s41598-020-63890-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/08/2020] [Indexed: 01/08/2023] Open
Abstract
Although astrocytes have gained increased recognition as an important regulator in normal brain function and pathology, the mechanisms underlying their genesis are not well understood. In this study, we show that constitutive YAP activation by in utero introduction of a non-degradable form of the YAP gene (YAP 5SA) causes productive GFAP+ cell generation at late embryonic periods, and this activity is nuclear localization- and TEAD transcription factor-dependent. Moreover, we found that the GFAP+ cells were not YAP 5SA-expressing cells themselves but cells in the vicinity in vivo. Conditioned medium prepared from YAP 5SA-expressing cells induced GFAP+ cell production in vitro, suggesting that a soluble factor(s) was mediating the astrogenic activity of YAP 5SA. Indeed, YAP 5SA expression greatly increased CNTF and BMP4 transcription in neural progenitor cells, and a neutralizing antibody against CNTF reduced the astrogenic effects of YAP 5SA-conditioned medium. Furthermore, the YAP 5SA-expressing cells were identified as FN1+ mesenchymal cells which are responsible for the precocious astrogenesis. These results suggest a novel molecular mechanism by which YAP activation can induce astrogenesis in a non-cell autonomous manner.
Collapse
|
61
|
Abstract
Astrocytes are the most abundant cell type in the central nervous system and have diverse functions in blood–brain barrier maintenance, neural circuitry formation and function, and metabolic regulation. To better understand the diverse roles of astrocytes, we will summarize what is known about astrocyte development and the challenges limiting our understanding of this process. We will also discuss new approaches and technologies advancing the field.
Collapse
Affiliation(s)
- Ekin Su Akdemir
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
62
|
Zou R, Xu Y, Feng Y, Shen M, Yuan F, Yuan Y. YAP nuclear‐cytoplasmic translocation is regulated by mechanical signaling, protein modification, and metabolism. Cell Biol Int 2020; 44:1416-1425. [DOI: 10.1002/cbin.11345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rong Zou
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yahui Xu
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| |
Collapse
|
63
|
Tead transcription factors differentially regulate cortical development. Sci Rep 2020; 10:4625. [PMID: 32170161 PMCID: PMC7070074 DOI: 10.1038/s41598-020-61490-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neural stem cells (NSCs) generate neurons of the cerebral cortex with distinct morphologies and functions. How specific neuron production, differentiation and migration are orchestrated is unclear. Hippo signaling regulates gene expression through Tead transcription factors (TFs). We show that Hippo transcriptional coactivators Yap1/Taz and the Teads have distinct functions during cortical development. Yap1/Taz promote NSC maintenance and Satb2+ neuron production at the expense of Tbr1+ neuron generation. However, Teads have moderate effects on NSC maintenance and do not affect Satb2+ neuron differentiation. Conversely, whereas Tead2 blocks Tbr1+ neuron formation, Tead1 and Tead3 promote this early fate. In addition, we found that Hippo effectors regulate neuronal migration to the cortical plate (CP) in a reciprocal fashion, that ApoE, Dab2 and Cyr61 are Tead targets, and these contribute to neuronal fate determination and migration. Our results indicate that multifaceted Hippo signaling is pivotal in different aspects of cortical development.
Collapse
|
64
|
Cheng J, Wang S, Dong Y, Yuan Z. The Role and Regulatory Mechanism of Hippo Signaling Components in the Neuronal System. Front Immunol 2020; 11:281. [PMID: 32140159 PMCID: PMC7042394 DOI: 10.3389/fimmu.2020.00281] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
The Hippo signaling pathway, an evolutionarily conserved protein kinase cascade, plays a critical role in controlling organ size, cancer development, and tissue regeneration. Recently, mounting evidence has suggested that Hippo signaling also has an important role in regulating immunity, including innate and adaptive immune activation. In the neuronal system, Our laboratory results, together with those from other studies, demonstrate that the Hippo signaling pathway is involved in neuroinflammation, neuronal cell differentiation, and neuronal death. In the present review, we summarize the recent findings pertaining to the function and regulatory mechanism of Hippo signaling components in the neuronal system, implicating the potential of Hippo signaling as a therapeutic target for the treatment of neuronal system diseases.
Collapse
Affiliation(s)
- Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
65
|
Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury. J Neurosci 2020; 40:2644-2662. [PMID: 32066583 DOI: 10.1523/jneurosci.2229-19.2020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Yes-associated protein (YAP) transcriptional coactivator is negatively regulated by the Hippo pathway and functions in controlling the size of multiple organs, such as liver during development. However, it is not clear whether YAP signaling participates in the process of the formation of glia scars after spinal cord injury (SCI). In this study, we found that YAP was upregulated and activated in astrocytes of C57BL/6 male mice after SCI in a Hippo pathway-dependent manner. Conditional knockout (KO) of yap in astrocytes significantly inhibited astrocytic proliferation, impaired the formation of glial scars, inhibited the axonal regeneration, and impaired the behavioral recovery of C57BL/6 male mice after SCI. Mechanistically, the bFGF was upregulated after SCI and induced the activation of YAP through RhoA pathways, thereby promoting the formation of glial scars. Additionally, YAP promoted bFGF-induced proliferation by negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Finally, bFGF or XMU-MP-1 (an inhibitor of Hippo kinase MST1/2 to activate YAP) injection indeed activated YAP signaling and promoted the formation of glial scars and the functional recovery of mice after SCI. These findings suggest that YAP promotes the formation of glial scars and neural regeneration of mice after SCI, and that the bFGF-RhoA-YAP-p27Kip1 pathway positively regulates astrocytic proliferation after SCI.SIGNIFICANCE STATEMENT Glial scars play critical roles in neuronal regeneration of CNS injury diseases, such as spinal cord injury (SCI). Here, we provide evidence for the function of Yes-associated protein (YAP) in the formation of glial scars after SCI through regulation of astrocyte proliferation. As a downstream of bFGF (which is upregulated after SCI), YAP promotes the proliferation of astrocytes through negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Activation of YAP by bFGF or XMU-MP-1 injection promotes the formation of glial scar and the functional recovery of mice after SCI. These results suggest that the bFGF-RhoA-YAP-p27Kip1 axis for the formation of glial scars may be a potential therapeutic strategy for SCI patients.
Collapse
|
66
|
Bao X, Xu X, Wu Q, Zhang J, Feng W, Yang D, Li F, Lu S, Liu H, Shen X, Zhang F, Xie C, Wu S, Lv Z, Wang W, Li H, Fang Y, Wang Y, Teng H, Huang Z. Sphingosine 1-phosphate promotes the proliferation of olfactory ensheathing cells through YAP signaling and participates in the formation of olfactory nerve layer. Glia 2020; 68:1757-1774. [PMID: 32057144 DOI: 10.1002/glia.23803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Olfactory ensheathing cells (OECs) are unique glial cells with axonal growth-promoting properties in the olfactory epithelium and olfactory bulb, covering the entire length of the olfactory nerve. The proliferation of OECs is necessary for the formation of the presumptive olfactory nerve layer (ONL) during development and OECs transplantation. However, the molecular mechanism underlying the regulation of OEC proliferation in the ONL still remains unknown. In the present study, we examined the role of sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) on OEC proliferation. Initially, reverse transcription-PCR (RT-PCR), western blot and immunostaining revealed that S1PRs were highly expressed in the OECs in vitro and in vivo. Furthermore, we found that S1P treatment promoted the proliferation of primary cultured OECs mediated by S1PR1. Mechanistically, yes-associated protein (YAP) was required for S1P-induced OEC proliferation through RhoA signaling. Finally, conditional knockout of YAP in OECs reduced OEC proliferation in ONL, which impaired the axonal projection and growth of olfactory sensory neurons, and olfactory functions. Taken together, these results reveal a previously unrecognized function of S1P/RhoA/YAP pathway in the proliferation of OECs, contributing to the formation of ONL and the projection, growth, and function of olfactory sensory neurons during development.
Collapse
Affiliation(s)
- Xiaomei Bao
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China.,School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Obstetrics and Gynecology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd., Wenzhou, Zhejiang, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fayi Li
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Sheng Lu
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Huitao Liu
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changnan Xie
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Shiyang Wu
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Zhaoting Lv
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjuan Li
- Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Yuanyuan Fang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wang
- Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Zhihui Huang
- Department of Orthopedics (Spine Surgery), Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China.,School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
67
|
Shen X, Xu X, Xie C, Liu H, Yang D, Zhang J, Wu Q, Feng W, Wang L, Du L, Xuan L, Meng C, Zhang H, Wang W, Wang Y, Xie T, Huang Z. YAP promotes the proliferation of neuroblastoma cells through decreasing the nuclear location of p27 Kip1 mediated by Akt. Cell Prolif 2019; 53:e12734. [PMID: 31863533 PMCID: PMC7046475 DOI: 10.1111/cpr.12734] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
Objective We aimed to investigate the roles and underlying mechanisms of YAP in the proliferation of neuroblastoma cells. Methods The expression level of YAP was evaluated by Western blotting and immunocytochemistry. Cell viability, cell proliferation and growth were detected by CCK‐8, PH3 and Ki67 immunostaining, and the real‐time cell analyser system. The nuclear and cytoplasmic proteins of p27Kip1 were dissociated by the nuclear‐cytosol extraction kit and were detected by Western blotting and immunocytochemistry. mRNA levels of Akt, CDK5 and CRM1 were determined by qRT‐PCR. Results YAP was enriched in SH‐SY5Y cells (a human neuroblastoma cell line). Knock‐down of YAP in SH‐SY5Y cells or SK‐N‐SH cell line (another human neuroblastoma cell line) significantly decreased cell viability, inhibited cell proliferation and growth. Mechanistically, knock‐down of YAP increased the nuclear location of p27Kip1, whereas serum‐induced YAP activation decreased the nuclear location of p27Kip1 and was required for cell proliferation. Meanwhile, overexpression of YAP in these serum‐starved SH‐SY5Y cells decreased the nuclear location of p27Kip1, promoted cell proliferation and overexpression of p27Kip1 in YAP‐activated cells inhibited cell proliferation. Furthermore, knock‐down of YAP reduced Akt mRNA and protein levels. Overexpression of Akt in YAP‐downregulated cells decreased the nuclear location of p27Kip1 and accelerated the proliferation of SH‐SY5Y cells. Conclusions Our studies suggest that YAP promotes the proliferation of neuroblastoma cells through negatively controlling the nuclear location of p27Kip1 mediated by Akt.
Collapse
Affiliation(s)
- Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Changnan Xie
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Liu
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd. Wenzhou, Zhejiang, China
| | - Ling Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Leilei Du
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lina Xuan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaobo Meng
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haitao Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Ying Wang
- Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Tian Xie
- Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Zhihui Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
68
|
Hughes LJ, Park R, Lee MJ, Terry BK, Lee DJ, Kim H, Cho SH, Kim S. Yap/Taz are required for establishing the cerebellar radial glia scaffold and proper foliation. Dev Biol 2019; 457:150-162. [PMID: 31586559 DOI: 10.1016/j.ydbio.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 01/20/2023]
Abstract
Yap/Taz are well-established downstream effectors of the Hippo pathway, known to regulate organ size by directing proliferation and apoptosis. Although the functions of Yap/Taz have been extensively studied, little is known about their role in brain development. Here, through genetic ablation, we show that Yap/Taz are required for cerebellar morphogenesis. Yap/Taz deletion in neural progenitors causes defects in secondary fissure formation, leading to abnormal folia development. Although they seemed very likely to serve an important function in the development of cerebellar granule cell precursors, Yap/Taz are dispensable for their proliferation. Furthermore, Yap/Taz loss does not rescue the medulloblastoma phenotype caused by constitutively active Smoothened. Importantly, Yap/Taz are highly expressed in radial glia and play a crucial role in establishing the radial scaffold and cellular polarity of neural progenitors during embryogenesis. We found that Yap/Taz are necessary to establish and maintain junctional integrity of cerebellar neuroepithelium as prominent junction proteins are not maintained at the apical junction in the absence of Yap/Taz. Our study identifies a novel function of Yap/Taz in cerebellar foliation and finds that they are required to establish the radial glia scaffold and junctional stability.
Collapse
Affiliation(s)
- Lucinda J Hughes
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Graduate Program of Biomedical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Raehee Park
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Min Jung Lee
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Bethany K Terry
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Graduate Program of Biomedical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - David J Lee
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Hansol Kim
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Seo-Hee Cho
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
69
|
Tsoi M, Morin M, Rico C, Johnson RL, Paquet M, Gévry N, Boerboom D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance. FASEB J 2019; 33:10819-10832. [PMID: 31268774 PMCID: PMC6766663 DOI: 10.1096/fj.201900609r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023]
Abstract
Recent reports suggest that the Hippo signaling pathway influences ovarian follicle development; however, its exact roles remain unknown. Here, we examined the ovarian functions of the Hippo kinases large tumor suppressors (LATS)1 and 2, which serve to inactivate the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Inactivation of Lats1/2 in murine granulosa cells either in vitro or in vivo resulted in a loss of granulosa cell morphology, function, and gene expression. Mutant cells further underwent changes in structure and gene expression suggestive of epithelial-to-mesenchymal transition and transdifferentiation into multiple lineages. In vivo, granulosa cell-specific loss of Lats1/2 caused the ovarian parenchyma to be mostly replaced by bone tissue and seminiferous tubule-like structures. Transdifferentiation into Sertoli-like cells and osteoblasts was attributed in part to the increased recruitment of YAP and TAZ to the promoters of sex-determining region Y box 9 and bone γ-carboxyglutamate protein, key mediators of male sex determination and osteogenesis, respectively. Together, these results demonstrate for the first time a critical role for Lats1/2 in the maintenance of the granulosa cell genetic program and further highlight the remarkable plasticity of granulosa cells.-Tsoi, M., Morin, M., Rico, C., Johnson, R. L., Paquet, M., Gévry, N., Boerboom, D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance.
Collapse
Affiliation(s)
- Mayra Tsoi
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Martin Morin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Randy L. Johnson
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
70
|
Kumar D, Nitzan E, Kalcheim C. YAP promotes neural crest emigration through interactions with BMP and Wnt activities. Cell Commun Signal 2019; 17:69. [PMID: 31228951 PMCID: PMC6589182 DOI: 10.1186/s12964-019-0383-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background Premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition and leave the neural tube as motile cells. Previously, we showed that BMP generates trunk neural crest emigration through canonical Wnt signaling which in turn stimulates G1/S transition. The molecular network underlying this process is, however, not yet completely deciphered. Yes-associated-protein (YAP), an effector of the Hippo pathway, controls various aspects of development including cell proliferation, migration, survival and differentiation. In this study, we examined the possible involvement of YAP in neural crest emigration and its relationship with BMP and Wnt. Methods We implemented avian embryos in which levels of YAP gene activity were either reduced or upregulated by in ovo plasmid electroporation, and monitored effects on neural crest emigration, survival and proliferation. Neural crest-derived sensory neuron and melanocyte development were assessed upon gain of YAP function. Imunohistochemistry was used to assess YAP expression. In addition, the activity of specific signaling pathways including YAP, BMP and Wnt was monitored with specific reporters. Results We find that the Hippo pathway transcriptional co-activator YAP is expressed and is active in premigratory crest of avian embryos. Gain of YAP function stimulates neural crest emigration in vivo, and attenuating YAP inhibits cell exit. This is associated with an accumulation of FoxD3-expressing cells in the dorsal neural tube, with reduced proliferation, and enhanced apoptosis. Furthermore, gain of YAP function inhibits differentiation of Islet-1-positive sensory neurons and augments the number of EdnrB2-positive melanocytes. Using specific in vivo reporters, we show that loss of YAP function in the dorsal neural tube inhibits BMP and Wnt activities whereas gain of YAP function stimulates these pathways. Reciprocally, inhibition of BMP and Wnt signaling by noggin or Xdd1, respectively, downregulates YAP activity. In addition, YAP-dependent stimulation of neural crest emigration is compromised upon inhibition of either BMP or Wnt activities. Together, our results suggest a positive bidirectional cross talk between these pathways. Conclusions Our data show that YAP is necessary for emigration of neural crest progenitors. In addition, they incorporate YAP signaling into a BMP/Wnt-dependent molecular network responsible for emigration of trunk-level neural crest.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
71
|
Hamon A, García-García D, Ail D, Bitard J, Chesneau A, Dalkara D, Locker M, Roger JE, Perron M. Linking YAP to Müller Glia Quiescence Exit in the Degenerative Retina. Cell Rep 2019; 27:1712-1725.e6. [DOI: 10.1016/j.celrep.2019.04.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
|
72
|
Rojek KO, Krzemień J, Doleżyczek H, Boguszewski PM, Kaczmarek L, Konopka W, Rylski M, Jaworski J, Holmgren L, Prószyński TJ. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol 2019; 17:e3000253. [PMID: 31042703 PMCID: PMC6513106 DOI: 10.1371/journal.pbio.3000253] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
The angiomotin (Amot)-Yes-associated protein 1 (Yap1) complex plays a major role in regulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. However, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the central nervous system remains unclear. We found that Amot is a critical mediator of dendritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot function in developing neurons depends on interactions with Yap1, which is also indispensable for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1 in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cerebellar morphology, and impairments in motor coordination. Our results indicate that the function of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain (TEAD) transcription factors or the expression of Hippo pathway-dependent genes. Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of S6 kinase and its target S6 ribosomal protein.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Krzemień
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Doleżyczek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł M. Boguszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Rylski
- Centre of Postgraduate Medical Education, Warsaw, Poland
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
73
|
Farahani R, Rezaei-Lotfi S, Simonian M, Hunter N. Bi-modal reprogramming of cell cycle by MiRNA-4673 amplifies human neurogenic capacity. Cell Cycle 2019; 18:848-868. [PMID: 30907228 DOI: 10.1080/15384101.2019.1595873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular mechanisms that inform heterochronic adaptations of neurogenesis in Homo sapiens remain largely unknown. Here, we uncover a signature in the cell cycle that amplifies the proliferative capacity of human neural progenitors by input from microRNA4673 encoded in Notch-1. The miRNA instructs bimodal reprogramming of the cell cycle, leading to initial synchronization of neural precursors at the G0 phase of the cell cycle followed by accelerated progression through interphase. The key event in G0 synchronization is transient inhibition by miR4673 of cyclin-dependent kinase-18, a member of an ancient family of cyclins that license M-G1 transition. In parallel, autophagic degradation of p53/p21 and transcriptional silencing of XRCC3/BRCA2 relax G1/S cell cycle checkpoint and accelerate interphase by ≈2.8-fold. The resultant reprogrammed cell cycle amplifies the proliferative capacity and delays the differentiation of human neural progenitors.
Collapse
Affiliation(s)
- Ramin Farahani
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia.,b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Saba Rezaei-Lotfi
- b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Mary Simonian
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia
| | - Neil Hunter
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia.,b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| |
Collapse
|
74
|
Abstract
Skeletal development is exquisitely controlled both spatially and temporally by cell signaling networks. Gαs is the stimulatory α-subunit in a heterotrimeric G protein complex transducing the signaling of G-protein-coupled receptors (GPCRs), responsible for controlling both skeletal development and homeostasis. Gαs, encoded by the GNAS gene in humans, plays critical roles in skeletal development and homeostasis by regulating commitment, differentiation and maturation of skeletal cells. Gαs-mediated signaling interacts with the Wnt and Hedgehog signaling pathways, both crucial regulators of skeletal development, remodeling and injury repair. Genetic mutations that disrupt Gαs functions cause human disorders with severe skeletal defects, such as fibrous dysplasia of bone and heterotopic bone formation. This chapter focuses on the crucial roles of Gαs signaling during skeletal development and homeostasis, and the pathological mechanisms underlying skeletal diseases caused by GNAS mutations.
Collapse
Affiliation(s)
- Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
75
|
Bardella C, Al-Shammari AR, Soares L, Tomlinson I, O'Neill E, Szele FG. The role of inflammation in subventricular zone cancer. Prog Neurobiol 2018; 170:37-52. [PMID: 29654835 DOI: 10.1016/j.pneurobio.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/10/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies.
Collapse
Affiliation(s)
- Chiara Bardella
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Abeer R Al-Shammari
- Research and Development, Qatar Research Leadership Program, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luana Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| | - Ian Tomlinson
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
76
|
Pan JX, Xiong L, Zhao K, Zeng P, Wang B, Tang FL, Sun D, Guo HH, Yang X, Cui S, Xia WF, Mei L, Xiong WC. YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling. Bone Res 2018; 6:18. [PMID: 29872550 PMCID: PMC5984632 DOI: 10.1038/s41413-018-0018-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
YAP (yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone homeostasis remains controversial. Here we provide evidence for YAP's function in promoting osteogenesis, suppressing adipogenesis, and thus maintaining bone homeostasis. YAP is selectively expressed in osteoblast (OB)-lineage cells. Conditionally knocking out Yap in the OB lineage in mice reduces cell proliferation and OB differentiation and increases adipocyte formation, resulting in a trabecular bone loss. Mechanistically, YAP interacts with β-catenin and is necessary for maintenance of nuclear β-catenin level and Wnt/β-catenin signaling. Expression of β-catenin in YAP-deficient BMSCs (bone marrow stromal cells) diminishes the osteogenesis deficit. These results thus identify YAP-β-catenin as an important pathway for osteogenesis during adult bone remodeling and uncover a mechanism underlying YAP regulation of bone homeostasis.
Collapse
Affiliation(s)
- Jin-Xiu Pan
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
- Louis Stokes Cleveland VAMC, Cleveland, OH USA
| | - Lei Xiong
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
- Louis Stokes Cleveland VAMC, Cleveland, OH USA
| | - Kai Zhao
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Peng Zeng
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Bo Wang
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Fu-Lei Tang
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Dong Sun
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hao-han Guo
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Shun Cui
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430072 Wuhan, Hubei China
| | - Wen-Fang Xia
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430072 Wuhan, Hubei China
| | - Lin Mei
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
- Louis Stokes Cleveland VAMC, Cleveland, OH USA
| | - Wen-Cheng Xiong
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
- Louis Stokes Cleveland VAMC, Cleveland, OH USA
| |
Collapse
|
77
|
Fukui H, Miyazaki T, Chow RWY, Ishikawa H, Nakajima H, Vermot J, Mochizuki N. Hippo signaling determines the number of venous pole cells that originate from the anterior lateral plate mesoderm in zebrafish. eLife 2018; 7:29106. [PMID: 29809141 PMCID: PMC5995544 DOI: 10.7554/elife.29106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/26/2018] [Indexed: 12/11/2022] Open
Abstract
The differentiation of the lateral plate mesoderm cells into heart field cells constitutes a critical step in the development of cardiac tissue and the genesis of functional cardiomyocytes. Hippo signaling controls cardiomyocyte proliferation, but the role of Hippo signaling during early cardiogenesis remains unclear. Here, we show that Hippo signaling regulates atrial cell number by specifying the developmental potential of cells within the anterior lateral plate mesoderm (ALPM), which are incorporated into the venous pole of the heart tube and ultimately into the atrium of the heart. We demonstrate that Hippo signaling acts through large tumor suppressor kinase 1/2 to modulate BMP signaling and the expression of hand2, a key transcription factor that is involved in the differentiation of atrial cardiomyocytes. Collectively, these results demonstrate that Hippo signaling defines venous pole cardiomyocyte number by modulating both the number and the identity of the ALPM cells that will populate the atrium of the heart.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,AMED-Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
78
|
Mediator kinase CDK8/CDK19 drives YAP1-dependent BMP4-induced EMT in cancer. Oncogene 2018; 37:4792-4808. [PMID: 29780169 DOI: 10.1038/s41388-018-0316-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023]
Abstract
CDK8 is a transcription-regulating kinase that controls TGF-β/BMP-responsive SMAD transcriptional activation and turnover through YAP1 recruitment. However, how the CDK8/YAP1 pathway influences SMAD1 response in cancer remains unclear. Here we report that SMAD1-driven epithelial-to-mesenchymal transition (EMT) is critically dependent on matrix rigidity and YAP1 in a wide spectrum of cancer models. We find that both genetic and pharmacological inhibition of CDK8 and its homologous twin kinase CDK19 leads to abrogation of BMP-induced EMT. Notably, selectively blocking CDK8/19 specifically abrogates tumor cell invasion, changes in EMT-associated transcription factors, E-cadherin expression and YAP nuclear localization both in vitro and in vivo in a murine syngeneic EMT model. Furthermore, RNA-seq meta-analysis reveals a direct correlation between CDK8 and EMT-associated transcription factors in patients. Our findings demonstrate that CDK8, an emerging therapeutic target, coordinates growth factor and mechanical cues during EMT and invasion.
Collapse
|
79
|
Ricci L, Srivastava M. Wound-induced cell proliferation during animal regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e321. [PMID: 29719123 DOI: 10.1002/wdev.321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Many animal species are capable of replacing missing tissues that are lost upon injury or amputation through the process of regeneration. Although the extent of regeneration is variable across animals, that is, some animals can regenerate any missing cell type whereas some can only regenerate certain organs or tissues, regulated cell proliferation underlies the formation of new tissues in most systems. Notably, many species display an increase in proliferation within hours or days upon wounding. While different cell types proliferate in response to wounding in various animal taxa, comparative molecular data are beginning to point to shared wound-induced mechanisms that regulate cell division during regeneration. Here, we synthesize current insights about early molecular pathways of regeneration from diverse model and emerging systems by considering these species in their evolutionary contexts. Despite the great diversity of mechanisms underlying injury-induced cell proliferation across animals, and sometimes even in the same species, similar pathways for proliferation have been implicated in distantly related species (e.g., small diffusible molecules, signaling from apoptotic cells, growth factor signaling, mTOR and Hippo signaling, and Wnt and Bmp pathways). Studies that explicitly interrogate molecular and cellular regenerative mechanisms in understudied animal phyla will reveal the extent to which early pathways in the process of regeneration are conserved or independently evolved. This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
80
|
Molecular mechanisms underlying TGF-ß/Hippo signaling crosstalks – Role of baso-apical epithelial cell polarity. Int J Biochem Cell Biol 2018; 98:75-81. [DOI: 10.1016/j.biocel.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
|
81
|
Papaspyropoulos A, Bradley L, Thapa A, Leung CY, Toskas K, Koennig D, Pefani DE, Raso C, Grou C, Hamilton G, Vlahov N, Grawenda A, Haider S, Chauhan J, Buti L, Kanapin A, Lu X, Buffa F, Dianov G, von Kriegsheim A, Matallanas D, Samsonova A, Zernicka-Goetz M, O'Neill E. RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73. Nat Commun 2018; 9:424. [PMID: 29382819 PMCID: PMC5789973 DOI: 10.1038/s41467-017-02786-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022] Open
Abstract
Transition from pluripotency to differentiation is a pivotal yet poorly understood developmental step. Here, we show that the tumour suppressor RASSF1A is a key player driving the early specification of cell fate. RASSF1A acts as a natural barrier to stem cell self-renewal and iPS cell generation, by switching YAP from an integral component in the β-catenin-TCF pluripotency network to a key factor that promotes differentiation. We demonstrate that epigenetic regulation of the Rassf1A promoter maintains stemness by allowing a quaternary association of YAP-TEAD and β-catenin-TCF3 complexes on the Oct4 distal enhancer. However, during differentiation, promoter demethylation allows GATA1-mediated RASSF1A expression which prevents YAP from contributing to the TEAD/β-catenin-TCF3 complex. Simultaneously, we find that RASSF1A promotes a YAP-p73 transcriptional programme that enables differentiation. Together, our findings demonstrate that RASSF1A mediates transcription factor selection of YAP in stem cells, thereby acting as a functional "switch" between pluripotency and initiation of differentiation.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Leanne Bradley
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Asmita Thapa
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Chuen Yan Leung
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Konstantinos Toskas
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Delia Koennig
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Dafni-Eleftheria Pefani
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Cinzia Raso
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Claudia Grou
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Garth Hamilton
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Nikola Vlahov
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anna Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Syed Haider
- Applied Computational Genomics, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jagat Chauhan
- Applied Computational Genomics, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ludovico Buti
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alexander Kanapin
- Bioinformatics Research Core, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francesca Buffa
- Applied Computational Genomics, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Grigory Dianov
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | | | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Anastasia Samsonova
- Bioinformatics Research Core, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Magdalena Zernicka-Goetz
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
82
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
83
|
Ye XC, Hu JX, Li L, Li Q, Tang FL, Lin S, Sun D, Sun XD, Cui GY, Mei L, Xiong WC. Astrocytic Lrp4 (Low-Density Lipoprotein Receptor-Related Protein 4) Contributes to Ischemia-Induced Brain Injury by Regulating ATP Release and Adenosine-A 2AR (Adenosine A2A Receptor) Signaling. Stroke 2018; 49:165-174. [PMID: 29212737 PMCID: PMC5742060 DOI: 10.1161/strokeaha.117.018115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Lrp4 (low-density lipoprotein receptor-related protein 4) is predominantly expressed in astrocytes, where it regulates glutamatergic neurotransmission by suppressing ATP release. Here, we investigated Lrp4's function in ischemia/stroke-induced brain injury response, which includes glutamate-induced neuronal death and reactive astrogliosis. METHODS The brain-specific Lrp4 conditional knockout mice (Lrp4GFAP-Cre), astrocytic-specific Lrp4 conditional knockout mice (Lrp4GFAP-creER), and their control mice (Lrp4f/f) were subjected to photothrombotic ischemia and the transient middle cerebral artery occlusion. After ischemia/stroke, mice or their brain samples were subjected to behavior tests, brain histology, immunofluorescence staining, Western blot, and quantitative real-time polymerase chain reaction. In addition, primary astrocytes and neurons were cocultured with or without oxygen and glucose deprivation and in the presence or absence of the antagonist for adenosine-A2AR (adenosine A2A receptor) or ATP-P2X7R (P2X purinoceptor 7) signaling. Gliotransmitters, such as glutamate, d-serine, ATP, and adenosine, in the condition medium of cultured astrocytes were also measured. RESULTS Lrp4, largely expressed in astrocytes, was increased in response to ischemia/stroke. Both Lrp4GFAP-Cre and Lrp4GFAP-creER mice showed less brain injury, including reduced neuronal death, and impaired reactive astrogliosis. Mechanistically, Lrp4 conditional knockout in astrocytes increased ATP release and the production of ATP derivative, adenosine, which were further elevated by oxygen and glucose deprivation. Pharmacological inhibition of ATP-P2X7R or adenosine-A2AR signaling diminished Lrp4GFAP-creER's protective effect. CONCLUSIONS The astrocytic Lrp4 plays an important role in ischemic brain injury response. Lrp4 deficiency in astrocytes seems to be protective in response to ischemic brain injury, likely because of the increased ATP release and adenosine-A2AR signaling.
Collapse
Affiliation(s)
- Xin-Chun Ye
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Jin-Xia Hu
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Lei Li
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Qiang Li
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Fu-Lei Tang
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Sen Lin
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Dong Sun
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Xiang-Dong Sun
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Gui-Yun Cui
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Lin Mei
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.)
| | - Wen-Cheng Xiong
- From the Department of Neuroscience and Regenerative Medicine (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.) and Department of Neurology (X.-C.Y., J.-X.H., L.L., Q.L., F.-L.T., S.L., D.S., X.-D.S., L.M., W.-C.X.), Medical College of Georgia, Augusta University; Institute of Nervous System Diseases (X.-C.Y., J.-X.H.) and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University (X.-C.Y., J.-X.H., G.-Y.C.), Xuzhou Medical University, Jiangsu, China; and Department of Hand Surgery, China Japan Union Hospital, Jilin University, Changchun (Q.L.).
| |
Collapse
|
84
|
Yang B, Sun H, Song F, Wu Y, Wang J. Yes-associated protein 1 promotes the differentiation and mineralization of cementoblast. J Cell Physiol 2017; 233:2213-2224. [DOI: 10.1002/jcp.26089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Fangfang Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan Hubei China
| |
Collapse
|
85
|
Xu M, Zhang D, Luo R, Wu Y, Zhou H, Kong L, Bi R, Yao Y. A systematic integrated analysis of brain expression profiles reveals
YAP1
and other prioritized hub genes as important upstream regulators in Alzheimer's disease. Alzheimers Dement 2017; 14:215-229. [DOI: 10.1016/j.jalz.2017.08.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming Yunnan China
| | - Deng‐Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming Yunnan China
| | - Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming Yunnan China
| | - Hejiang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
| | - Li‐Li Kong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
- Institute of Health Science Anhui University Hefei Anhui China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
| | - Yong‐Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province Kunming Institute of Zoology Kunming Yunnan China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming Yunnan China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences Shanghai China
| |
Collapse
|
86
|
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8:349-359. [PMID: 28130761 PMCID: PMC5413598 DOI: 10.1007/s13238-017-0371-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration. In this review, with a general focus on the Hippo pathway, we will discuss its major components, functions in stem cell biology, involvement in tissue regeneration in different organs, and potential strategies for developing Hippo pathway-targeted regenerative medicines.
Collapse
Affiliation(s)
- Yu Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Aijuan Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
87
|
Ahmed AA, Mohamed AD, Gener M, Li W, Taboada E. YAP and the Hippo pathway in pediatric cancer. Mol Cell Oncol 2017; 4:e1295127. [PMID: 28616573 DOI: 10.1080/23723556.2017.1295127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
The Hippo pathway is an important signaling pathway that controls cell proliferation and apoptosis. It is evolutionarily conserved in mammals and is stimulated by cell-cell contact, inhibiting cell proliferation in response to increased cell density. During early embryonic development, the Hippo signaling pathway regulates organ development and size, and its functions result in the coordinated balance between proliferation, apoptosis, and differentiation. Its principal effectors, YAP and TAZ, regulate signaling by the embryonic stem cells and determine cell fate and histogenesis. Dysfunction of this pathway contributes to cancer development in adults and children. Emerging studies have shed light on the upregulation of Hippo pathway members in several pediatric cancers and may offer prognostic information on rhabdomyosarcoma, osteosarcoma, Wilms tumor, neuroblastoma, medulloblastoma, and other brain gliomas. We review the results of such published studies and highlight the potential clinical application of this pathway in pediatric oncologic and pathologic studies. These studies support targeting this pathway as a novel treatment strategy.
Collapse
Affiliation(s)
- Atif A Ahmed
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Melissa Gener
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Weijie Li
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Eugenio Taboada
- Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| |
Collapse
|
88
|
Pfleger CM. The Hippo Pathway: A Master Regulatory Network Important in Development and Dysregulated in Disease. Curr Top Dev Biol 2017; 123:181-228. [PMID: 28236967 DOI: 10.1016/bs.ctdb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Hippo Pathway is a master regulatory network that regulates proliferation, cell growth, stemness, differentiation, and cell death. Coordination of these processes by the Hippo Pathway throughout development and in mature organisms in response to diverse external and internal cues plays a role in morphogenesis, in controlling organ size, and in maintaining organ homeostasis. Given the importance of these processes, the Hippo Pathway also plays an important role in organismal health and has been implicated in a variety of diseases including eye disease, cardiovascular disease, neurodegeneration, and cancer. This review will focus on Drosophila reports that identified the core components of the Hippo Pathway revealing specific downstream biological outputs of this complicated network. A brief description of mammalian reports will complement review of the Drosophila studies. This review will also survey upstream regulation of the core components with a focus on feedback mechanisms.
Collapse
Affiliation(s)
- Cathie M Pfleger
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
89
|
Chen M, Wang J, Yao SF, Zhao Y, Liu L, Li LW, Xu T, Gan LG, Xiao CL, Shan ZL, Zhong L, Liu BZ. Effect of YAP Inhibition on Human Leukemia HL-60 Cells. Int J Med Sci 2017; 14:902-910. [PMID: 28824329 PMCID: PMC5562199 DOI: 10.7150/ijms.19965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/17/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Yes-associated protein (YAP), the nuclear effector of the Hippo pathway, is a candidate oncoprotein and participates in the progression of various malignancies. However, few reports have examined the effect of YAP inhibition in human leukemia HL-60 cells. Methods: We examined the effects of YAP knockdown or inhibition using short hairpin RNA (shRNA) or verteporfin (VP), respectively. Western blot assays were used to determine the expression levels of YAP, Survivin, cyclinD1, PARP, Bcl-2, and Bax. Cell proliferation was assessed using the cell counting kit (CCK-8) assay. Cell cycle progression and apoptosis were evaluated by flow cytometry, and apoptotic cell morphology was observed by Hoechst 33342 staining. Results: Knockdown or inhibition of YAP led to cell cycle arrest at the G0/G1 phase and increased apoptosis, inhibited cell proliferation, increased levels of Bax and cleaved PARP, and decreased levels of PARP, Bcl-2, Survivin, and cyclinD1. Moreover, Hoechst 33342 staining revealed increased cell nuclear fragmentation. Conclusion: Collectively, these results show that inhibition of YAP inhibits proliferation and induces apoptosis in HL-60 cells. Therefore, a novel treatment regime involving genetic or pharmacological inhibition of YAP could be established for acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Min Chen
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shi-Fei Yao
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Zhao
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lian-Wen Li
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Xu
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liu-Gen Gan
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Lan Xiao
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Ling Shan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bei-Zhong Liu
- Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
90
|
Huang Z, Xiong WC. Neogenin-YAP signaling in neocortical astrocytic differentiation. NEUROGENESIS 2016; 3:e1248735. [PMID: 28405584 DOI: 10.1080/23262133.2016.1248735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 10/20/2022]
Abstract
Astrocytes, a major type of glial cells in the mammalian central nervous system (CNS), have a wide variety of physiological functions, including formation of the blood brain barrier, and modulation of synaptic transmission and information processing, and maintenance of CNS homeostasis. The signaling pathway initiated by bone morphogenetic protein (BMP) is critical for astrogliogenesis. However, exactly how this pathway regulates astrogliogenesis remains poorly understood. We have recently provided in vitro and in vivo evidence for neogenin's function in neural stem cells (NSCs) to promote neocortical astrogliogenesis. Neogenin in NSCs as well as astrocytes is required for BMP2 activation of RhoA that promotes YAP (yes-associated protein) nuclear translocation, consequently, YAP interaction with nuclear p-Smad1/5/8, and stabilization of Smad1/5/8 signaling. We have also provided evidence that YAP in NSCs is necessary for neocortical astrogliogenesis, and expression of YAP in neogenin deficient NSCs diminishes the astrogliogenesis deficit. These recent findings identify an unrecognized function of neogenin in promoting neocortical astrogliogenesis, and reveal a pathway of BMP2-neogenin-YAP-Smad1 underlying astrogliogenesis in developing mouse neocortex.
Collapse
Affiliation(s)
- Zhihui Huang
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Institute of Hypoxia Medicine and Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University , Augusta, GA, USA
| |
Collapse
|