51
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
52
|
Yu XW, Li TT, Du XM, Shen QY, Zhang MF, Wei YD, Yang DH, Xu WJ, Chen WB, Bai CL, Li XL, Li GP, Li N, Peng S, Liao MZ, Hua JL. Single-cell RNA sequencing reveals atlas of dairy goat testis cells. Zool Res 2021; 42:401-405. [PMID: 34047080 PMCID: PMC8317185 DOI: 10.24272/j.issn.2095-8137.2020.373] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/07/2021] [Indexed: 11/07/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is useful for exploring cell heterogeneity. For large animals, however, little is known regarding spermatogonial stem cell (SSC) self-renewal regulation, especially in dairy goats. In this study, we described a high-resolution scRNA-seq atlas derived from a dairy goat. We identified six somatic cell and five spermatogenic cell subtypes. During spermatogenesis, genes with significantly changed expression were mainly enriched in the Notch, TGF-β, and Hippo signaling pathways as well as the signaling pathway involved in the regulation of stem cell pluripotency. We detected and screened specific candidate marker genes ( TKTL1 and AES) for spermatogonia. Our study provides new insights into goat spermatogenesis and the development of testicular somatic cells.
Collapse
Affiliation(s)
- Xiu-Wei Yu
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Tong-Tong Li
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Min Du
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Meng-Fei Zhang
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Yu-Dong Wei
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Dong-Hui Yang
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Wen-Jing Xu
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Wen-Bo Chen
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chun-Ling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Xue-Ling Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Guang-Peng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Na Li
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China. E-mail:
| | - Ming-Zhi Liao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Jin-Lian Hua
- College of Veterinary Medicine, Northwest A & F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
53
|
Abstract
Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.
Collapse
|
54
|
Xia Q, Cui G, Fan Y, Wang X, Hu G, Wang L, Luo X, Yang L, Cai Q, Xu K, Guo W, Gao M, Li Y, Wu J, Li W, Chen J, Qi H, Peng G, Yao H. RNA helicase DDX5 acts as a critical regulator for survival of neonatal mouse gonocytes. Cell Prolif 2021; 54:e13000. [PMID: 33666296 PMCID: PMC8088469 DOI: 10.1111/cpr.13000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Mammalian spermatogenesis is a biological process of male gamete formation. Gonocytes are the only precursors of spermatogonial stem cells (SSCs) which develop into mature spermatozoa. DDX5 is one of DEAD-box RNA helicases and expresses in male germ cells, suggesting that Ddx5 plays important functions during spermatogenesis. Here, we explore the functions of Ddx5 in regulating the specification of gonocytes. MATERIALS AND METHODS Germ cell-specific Ddx5 knockout (Ddx5-/- ) mice were generated. The morphology of testes and epididymides and fertility in both wild-type and Ddx5-/- mice were analysed. Single-cell RNA sequencing (scRNA-seq) was used to profile the transcriptome in testes from wild-type and Ddx5-/- mice at postnatal day (P) 2. Dysregulated genes were validated by single-cell qRT-PCR and immunofluorescent staining. RESULTS In male mice, Ddx5 was expressed in germ cells at different stages of development. Germ cell-specific Ddx5 knockout adult male mice were sterile due to completely devoid of germ cells. Male germ cells gradually disappeared in Ddx5-/- mice from E18.5 to P6. Single-cell transcriptome analysis showed that genes involved in cell cycle and glial cell line-derived neurotrophic factor (GDNF) pathway were significantly decreased in Ddx5-deficient gonocytes. Notably, Ddx5 ablation impeded the proliferation of gonocytes. CONCLUSIONS Our study reveals the critical roles of Ddx5 in fate determination of gonocytes, offering a novel insight into the pathogenesis of male sterility.
Collapse
|
55
|
Frost ER, Taylor G, Baker MA, Lovell-Badge R, Sutherland JM. Establishing and maintaining fertility: the importance of cell cycle arrest. Genes Dev 2021; 35:619-634. [PMID: 33888561 PMCID: PMC8091977 DOI: 10.1101/gad.348151.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, Frost et al. summarize the current knowledge on the Cip/Kip family of cyclin-dependent kinase inhibitors in mouse gonad development and highlight new roles for cell cycle inhibitors in controlling and maintaining female fertility. Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia.,Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Güneş Taylor
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
56
|
Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ, Oliver E, Plath K, Hotaling JM, Stukenborg JB, Clark AT, Cairns BR. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 2021; 28:764-778.e4. [PMID: 33453151 PMCID: PMC8026516 DOI: 10.1016/j.stem.2020.12.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023]
Abstract
Human testis development in prenatal life involves complex changes in germline and somatic cell identity. To better understand, we profiled and analyzed ∼32,500 single-cell transcriptomes of testicular cells from embryonic, fetal, and infant stages. Our data show that at 6-7 weeks postfertilization, as the testicular cords are established, the Sertoli and interstitial cells originate from a common heterogeneous progenitor pool, which then resolves into fetal Sertoli cells (expressing tube-forming genes) or interstitial cells (including Leydig-lineage cells expressing steroidogenesis genes). Almost 10 weeks later, beginning at 14-16 weeks postfertilization, the male primordial germ cells exit mitosis, downregulate pluripotent transcription factors, and transition into cells that strongly resemble the state 0 spermatogonia originally defined in the infant and adult testes. Therefore, we called these fetal spermatogonia "state f0." Overall, we reveal multiple insights into the coordinated and temporal development of the embryonic, fetal, and postnatal male germline together with the somatic niche.
Collapse
Affiliation(s)
- Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Enrique Sosa
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tsotne Chitiashvili
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ernesto Javier Rojas
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth Oliver
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna 17164, Sweden
| | - Amander T Clark
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
57
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
58
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
59
|
Peng Y, Qiao H. The Application of Single-Cell RNA Sequencing in Mammalian Meiosis Studies. Front Cell Dev Biol 2021; 9:673642. [PMID: 34485276 PMCID: PMC8416306 DOI: 10.3389/fcell.2021.673642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Meiosis is a cellular division process that produces gametes for sexual reproduction. Disruption of complex events throughout meiosis, such as synapsis and homologous recombination, can lead to infertility and aneuploidy. To reveal the molecular mechanisms of these events, transcriptome studies of specific substages must be conducted. However, conventional methods, such as bulk RNA-seq and RT-qPCR, are not able to detect the transcriptional variations effectively and precisely, especially for identifying cell types and stages with subtle differences. In recent years, mammalian meiotic transcriptomes have been intensively studied at the single-cell level by using single-cell RNA-seq (scRNA-seq) approaches, especially through two widely used platforms, Smart-seq2 and Drop-seq. The scRNA-seq protocols along with their downstream analysis enable researchers to accurately identify cell heterogeneities and investigate meiotic transcriptomes at a higher resolution. In this review, we compared bulk RNA-seq and scRNA-seq to show the advantages of the scRNA-seq in meiosis studies; meanwhile, we also pointed out the challenges and limitations of the scRNA-seq. We listed recent findings from mammalian meiosis (male and female) studies where scRNA-seq applied. Next, we summarized the scRNA-seq analysis methods and the meiotic marker genes from spermatocytes and oocytes. Specifically, we emphasized the different features of the two scRNA-seq protocols (Smart-seq2 and Drop-seq) in the context of meiosis studies and discussed their strengths and weaknesses in terms of different research purposes. Finally, we discussed the future applications of scRNA-seq in the meiosis field.
Collapse
Affiliation(s)
- Yiheng Peng
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
60
|
Li K, Xu J, Luo Y, Zou D, Han R, Zhong S, Zhao Q, Mang X, Li M, Si Y, Lu Y, Li P, Jin C, Wang Z, Wang F, Miao S, Wen B, Wang L, Ma Y, Yu J, Song W. Panoramic transcriptome analysis and functional screening of long noncoding RNAs in mouse spermatogenesis. Genome Res 2020; 31:13-26. [PMID: 33328167 PMCID: PMC7849387 DOI: 10.1101/gr.264333.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as diverse functional regulators involved in mammalian development; however, large-scale functional investigation of lncRNAs in mammalian spermatogenesis in vivo is lacking. Here, we delineated the global lncRNA expression landscape in mouse spermatogenesis and identified 968 germ cell signature lncRNAs. By combining bioinformatics and functional screening, we identified three functional lncRNAs (Gm4665, 1700027A15Rik, and 1700052I22Rik) that directly influence spermatogenesis in vivo. Knocking down Gm4665 hampered the development of round spermatids into elongating spermatids and disrupted key spermatogenic gene expression. Mechanistically, lncRNA Gm4665 localized in the nucleus of round spermatids and occupied the genomic regulatory region of important spermatogenic genes including Ip6k1 and Akap3. These findings provide a valuable resource and framework for future functional analysis of lncRNAs in spermatogenesis and their potential roles in other biological processes.
Collapse
Affiliation(s)
- Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jiayue Xu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanyun Luo
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ruiqin Han
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shunshun Zhong
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qing Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanmin Si
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Bo Wen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Ma
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
61
|
Desimio MG, Cesari E, Sorrenti M, De Felici M, Farini D. Stimulated by retinoic acid gene 8 (STRA8) interacts with the germ cell specific bHLH factor SOHLH1 and represses c-KIT expression in vitro. J Cell Mol Med 2020; 25:383-396. [PMID: 33236849 PMCID: PMC7810945 DOI: 10.1111/jcmm.16087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022] Open
Abstract
STRA8 (Stimulated by Retinoic Acid Gene 8) controls the crucial decision of germ cells to engage meiotic division up and down‐regulating genes involved in the meiotic programme. It has been proven as an amplifier of genes involved in cell cycle control and chromosome events, however, how STRA8 functions as negative regulator are not well understood. In this study, we demonstrate that STRA8 can interact with itself and with other basic Helix‐Loop‐Helix (bHLH) transcription factors through its HLH domain and that this domain is important for its ability to negatively interfere with the Ebox‐mediated transcriptional activity of bHLH transcription factors. Significantly, we show that STRA8 interacts with TCF3/E47, a class I bHLH transcription factors, and with SOHLH1, a gonadal‐specific bHLH, in male germ cells obtained from prepuberal mouse testis. We demonstrated that STRA8, indirectly, is able to exert a negative control on the SOHLH1‐dependent stimulation of c‐KIT expression in late differentiating spermatogonia and preleptotene spermatocytes. Although part of this results were obtained only ‘in vitro’, they support the notion that STRA8 interacting with different transcription factors, besides its established role as ‘amplifier’ of meiotic programme, is able to finely modulate the balance between spermatogonia proliferation, differentiation and acquisition of meiotic competence.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Sorrenti
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| |
Collapse
|
62
|
Hwang YS, Suzuki S, Seita Y, Ito J, Sakata Y, Aso H, Sato K, Hermann BP, Sasaki K. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat Commun 2020; 11:5656. [PMID: 33168808 PMCID: PMC7653920 DOI: 10.1038/s41467-020-19350-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Establishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we establish a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells differentiated from human induced pluripotent stem cells are further induced into M-prospermatogonia-like cells and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing is used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibit gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enables us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro. Spermatogonia establishment in the fetal and postnatal period is essential for spermatozoa production. Here the authors present a protocol for in vitro reconstitution of human prospermatogonial specification and perform single cell RNA-sequencing to delineate lineage trajectories.
Collapse
Affiliation(s)
- Young Sun Hwang
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shinnosuke Suzuki
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Yasunari Seita
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of infectious Disease Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Yuka Sakata
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hirofumi Aso
- Division of Systems Virology, Department of infectious Disease Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Kei Sato
- Division of Systems Virology, Department of infectious Disease Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kotaro Sasaki
- Institute for Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
63
|
Unique Epigenetic Programming Distinguishes Regenerative Spermatogonial Stem Cells in the Developing Mouse Testis. iScience 2020; 23:101596. [PMID: 33083754 PMCID: PMC7552105 DOI: 10.1016/j.isci.2020.101596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Spermatogonial stem cells (SSCs) both self-renew and give rise to progenitors that initiate spermatogenic differentiation in the mammalian testis. Questions remain regarding the extent to which the SSC and progenitor states are functionally distinct. Here we provide the first multiparametric integrative analysis of mammalian germ cell epigenomes comparable with that done for >100 somatic cell types by the ENCODE Project. Differentially expressed genes distinguishing SSC- and progenitor-enriched spermatogonia showed distinct histone modification patterns, particularly for H3K27ac and H3K27me3. Motif analysis predicted transcription factors that may regulate spermatogonial subtype-specific fate, and immunohistochemistry and gene-specific chromatin immunoprecipitation analyses confirmed subtype-specific differences in target gene binding of a subset of these factors. Taken together, these results show that SSCs and progenitors display distinct epigenetic profiling consistent with these spermatogonial subtypes being differentially programmed to either self-renew and maintain regenerative capacity as SSCs or lose regenerative capacity and initiate lineage commitment as progenitors.
Collapse
|
64
|
Tan K, Wilkinson MF. A single-cell view of spermatogonial stem cells. Curr Opin Cell Biol 2020; 67:71-78. [PMID: 32950921 DOI: 10.1016/j.ceb.2020.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Spermatogonial stem cells (SSCs) are essential for long-term spermatogenesis and are the subject of considerable clinical interest, as 'SSC therapy' has the potential to cure some forms of male infertility. Recently, we have learned more about SSCs and spermatogenesis in general from a plethora of studies that performed single-cell RNA sequencing (scRNAseq) analysis on dissociated cells from human, macaque, and/or mice testes. Here, we discuss what scRNAseq analysis has revealed about SSC precursor cells, the initial generation of SSCs during perinatal development, and their heterogeneity once established. scRNAseq studies have also uncovered unexpected heterogeneity of the larger class of cells that includes SSCs - undifferentiated spermatogonia. This raises the controversial possibility that multiple SSC subsets exist, which has implications for mechanisms underlying spermatogenesis and future SSC therapeutic approaches.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
65
|
Estermann MA, Smith CA. Applying Single-Cell Analysis to Gonadogenesis and DSDs (Disorders/Differences of Sex Development). Int J Mol Sci 2020; 21:E6614. [PMID: 32927658 PMCID: PMC7555471 DOI: 10.3390/ijms21186614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The gonads are unique among the body's organs in having a developmental choice: testis or ovary formation. Gonadal sex differentiation involves common progenitor cells that form either Sertoli and Leydig cells in the testis or granulosa and thecal cells in the ovary. Single-cell analysis is now shedding new light on how these cell lineages are specified and how they interact with the germline. Such studies are also providing new information on gonadal maturation, ageing and the somatic-germ cell niche. Furthermore, they have the potential to improve our understanding and diagnosis of Disorders/Differences of Sex Development (DSDs). DSDs occur when chromosomal, gonadal or anatomical sex are atypical. Despite major advances in recent years, most cases of DSD still cannot be explained at the molecular level. This presents a major pediatric concern. The emergence of single-cell genomics and transcriptomics now presents a novel avenue for DSD analysis, for both diagnosis and for understanding the molecular genetic etiology. Such -omics datasets have the potential to enhance our understanding of the cellular origins and pathogenesis of DSDs, as well as infertility and gonadal diseases such as cancer.
Collapse
Affiliation(s)
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia;
| |
Collapse
|
66
|
Tan K, Jones SH, Lake BB, Chousal JN, Shum EY, Zhang L, Chen S, Sohni A, Pandya S, Gallo RL, Zhang K, Cook-Andersen H, Wilkinson MF. The role of the NMD factor UPF3B in olfactory sensory neurons. eLife 2020; 9:e57525. [PMID: 32773035 PMCID: PMC7452722 DOI: 10.7554/elife.57525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Samantha H Jones
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Blue B Lake
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Eleen Y Shum
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Lingjuan Zhang
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Song Chen
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Shivam Pandya
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Richard L Gallo
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Kun Zhang
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Institute of Genomic Medicine, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
67
|
Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proc Natl Acad Sci U S A 2020; 117:17832-17841. [PMID: 32661178 DOI: 10.1073/pnas.2000362117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for the generation of sperm and have potential therapeutic value for treating male infertility, which afflicts >100 million men world-wide. While much has been learned about rodent SSCs, human SSCs remain poorly understood. Here, we molecularly characterize human SSCs and define conditions favoring their culture. To achieve this, we first identified a cell-surface protein, PLPPR3, that allowed purification of human primitive undifferentiated spermatogonia (uSPG) highly enriched for SSCs. Comparative RNA-sequencing analysis of these enriched SSCs with differentiating SPG (KIT+ cells) revealed the full complement of genes that shift expression during this developmental transition, including genes encoding key components in the TGF-β, GDNF, AKT, and JAK-STAT signaling pathways. We examined the effect of manipulating these signaling pathways on cultured human SPG using both conventional approaches and single-cell RNA-sequencing analysis. This revealed that GDNF and BMP8B broadly support human SPG culture, while activin A selectively supports more advanced human SPG. One condition-AKT pathway inhibition-had the unique ability to selectively support the culture of primitive human uSPG. This raises the possibility that supplementation with an AKT inhibitor could be used to culture human SSCs in vitro for therapeutic applications.
Collapse
|
68
|
Zhu Q, Li X, Ge RS. Toxicological Effects of Cadmium on Mammalian Testis. Front Genet 2020; 11:527. [PMID: 32528534 PMCID: PMC7265816 DOI: 10.3389/fgene.2020.00527] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal, and people are exposed to it through contaminated foods and smoking. In humans and other mammals, cadmium causes damage to male testis. In this review, we summarize the effects of cadmium on the development and function of the testis. Cadmium causes severe structural damage to the seminiferous tubules, Sertoli cells, and blood-testis barrier, thus leading to the loss of sperm. Cadmium hinders Leydig cell development, inhibits Leydig cell function, and induces Leydig cell tumors. Cadmium also disrupts the vascular system of the testis. Cadmium is a reactive oxygen species inducer and possibly induces DNA damage, thus epigenetically regulating somatic cell and germ cell function, leading to male subfertility/infertility.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
69
|
Law NC, Oatley JM. Developmental underpinnings of spermatogonial stem cell establishment. Andrology 2020; 8:852-861. [PMID: 32356598 DOI: 10.1111/andr.12810] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The germline serves as a conduit for transmission of genetic and epigenetic information from one generation to the next. In males, spermatozoa are the final carriers of inheritance and their continual production is supported by a foundational population of spermatogonial stem cells (SSCs) that forms from prospermatogonial precursors during the early stages of neonatal development. In mammals, the timing for which SSCs are specified and the underlying mechanisms guiding this process remain to be completely understood. OBJECTIVES To propose an evolving concept for how the foundational SSC population is established. MATERIALS AND METHODS This review summarizes recent and historical findings from peer-reviewed publications made primarily with mouse models while incorporating limited studies from humans and livestock. RESULTS AND CONCLUSION Establishment of the SSC population appears to follow a biphasic pattern involving a period of fate programming followed by an establishment phase that culminates in formation of the SSC population. This model for establishment of the foundational SSC population from precursors is anticipated to extend across mammalian species and include humans and livestock, albeit on different timescales.
Collapse
Affiliation(s)
- Nathan C Law
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
70
|
Li X, Wang Y, Zhu Q, Yuan K, Su Z, Ge F, Ge RS, Huang Y. Epidermal growth factor regulates the development of stem and progenitor Leydig cells in rats. J Cell Mol Med 2020; 24:7313-7330. [PMID: 32441057 PMCID: PMC7339176 DOI: 10.1111/jcmm.15302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor (EGF) has many physiological roles. However, its effects on stem and progenitor Leydig cell development remain unclear. Rat stem and progenitor Leydig cells were cultured with different concentrations of EGF alone or in combination with EGF antagonist, erlotinib or cetuximab. EGF (1 and 10 ng/mL) stimulated the proliferation of stem Leydig cells on the surface of seminiferous tubules and isolated CD90+ stem Leydig cells and progenitor Leydig cells but it blocked their differentiation. EGF also exerted anti‐apoptotic effects of progenitor Leydig cells. Erlotinib and cetuximab are able to reverse EGF‐mediated action. Gene microarray and qPCR of EGF‐treated progenitor Leydig cells revealed that the down‐regulation of steroidogenesis‐related proteins (Star and Hsd3b1) and antioxidative genes. It was found that EGF acted as a proliferative agent via increasing phosphorylation of AKT1. In conclusion, EGF stimulates the proliferation of rat stem and progenitor Leydig cells but blocks their differentiation.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiming Yuan
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Su
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Fei Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yadong Huang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| |
Collapse
|