51
|
Bargagna-Mohan P, Lei L, Thompson A, Shaw C, Kasahara K, Inagaki M, Mohan R. Vimentin Phosphorylation Underlies Myofibroblast Sensitivity to Withaferin A In Vitro and during Corneal Fibrosis. PLoS One 2015; 10:e0133399. [PMID: 26186445 PMCID: PMC4506086 DOI: 10.1371/journal.pone.0133399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Vimentin is a newly recognized target for corneal fibrosis. Using primary rabbit corneal fibroblasts and myofibroblasts we show that myofibroblasts, unlike fibroblasts, display impaired cell spreading and cell polarization, which is associated with increased levels of soluble serine-38 phosphorylated vimentin (pSer38Vim). This pSer38Vim isoform is inefficiently incorporated into growing vimentin intermediate filaments (IFs) of myofibroblasts during cell spreading, and as a result, myofibroblasts maintain higher soluble pSer38Vim levels compared to fibroblasts. Moreover, the soluble vimentin-targeting small molecule and fibrotic inhibitor withaferin A (WFA) causes a potent blockade of cell spreading selectively in myofibroblasts by targeting soluble pSer38Vim for hyperphosphorylation. WFA treatment does not induce vimentin hyperphosphorylation in fibroblasts. This hyperphosphorylated pSer38Vim species in WFA-treated myofibroblasts becomes complexed with adaptor protein filamin A (FlnA), and these complexes appear as short squiggles when displaced from focal adhesions. The extracellular-signal regulated kinase (ERK) is also phosphorylated (pERK) in response to WFA, but surprisingly, pERK does not enter the nucleus but remains bound to pSer38Vim in cytoplasmic complexes. Using a model of corneal alkali injury, we show that fibrotic corneas of wild type mice possess high levels of pERK, whereas injured corneas of vimentin-deficient (Vim KO) mice that heal with reduced fibrosis have highly reduced pERK expression. Finally, WFA treatment causes a decrease in pERK and pSer38Vim expression in healing corneas of wild type mice. Taken together, these findings identify a hereto-unappreciated role for pSer38Vim as an important determinant of myofibroblast sensitivity to WFA.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Ling Lei
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alexis Thompson
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Camille Shaw
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Royce Mohan
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
52
|
Robert A, Rossow MJ, Hookway C, Adam SA, Gelfand VI. Vimentin filament precursors exchange subunits in an ATP-dependent manner. Proc Natl Acad Sci U S A 2015; 112:E3505-14. [PMID: 26109569 PMCID: PMC4500282 DOI: 10.1073/pnas.1505303112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermediate filaments (IFs) are a component of the cytoskeleton capable of profound reorganization in response to specific physiological situations, such as differentiation, cell division, and motility. Various mechanisms were proposed to be responsible for this plasticity depending on the type of IF polymer and the biological context. For example, recent studies suggest that mature vimentin IFs (VIFs) undergo rearrangement by severing and reannealing, but direct subunit exchange within the filament plays little role in filament dynamics at steady state. Here, we studied the dynamics of subunit exchange in VIF precursors, called unit-length filaments (ULFs), formed by the lateral association of eight vimentin tetramers. To block vimentin assembly at the ULF stage, we used the Y117L vimentin mutant (vimentin(Y117L)). By tagging vimentin(Y117L) with a photoconvertible protein mEos3.2 and photoconverting ULFs in a limited area of the cytoplasm, we found that ULFs, unlike mature filaments, were highly dynamic. Subunit exchange among ULFs occurred within seconds and was limited by the diffusion of soluble subunits in the cytoplasm rather than by the association and dissociation of subunits from ULFs. Our data demonstrate that cells expressing vimentin(Y117L) contained a large pool of soluble vimentin tetramers that was in rapid equilibrium with ULFs. Furthermore, vimentin exchange in ULFs required ATP, and ATP depletion caused a dramatic reduction of the soluble tetramer pool. We believe that the dynamic exchange of subunits plays a role in the regulation of ULF assembly and the maintenance of a soluble vimentin pool during the reorganization of filament networks.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Molly J Rossow
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
53
|
Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding. Nat Commun 2015; 6:7287. [PMID: 26031447 PMCID: PMC4458873 DOI: 10.1038/ncomms8287] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/24/2015] [Indexed: 12/30/2022] Open
Abstract
The vimentin filament network plays a key role in cell architecture and signalling, as well as in epithelial-mesenchymal transition. Vimentin C328 is targeted by various oxidative modifications, but its role in vimentin organization is not known. Here we show that C328 is essential for vimentin network reorganization in response to oxidants and electrophiles, and is required for optimal vimentin performance in network expansion, lysosomal distribution and aggresome formation. C328 may fulfil these roles through interaction with zinc. In vitro, micromolar zinc protects vimentin from iodoacetamide modification and elicits vimentin polymerization into optically detectable structures; in cells, zinc closely associates with vimentin and its depletion causes reversible filament disassembly. Finally, zinc transport-deficient human fibroblasts show increased vimentin solubility and susceptibility to disruption, which are restored by zinc supplementation. These results unveil a critical role of C328 in vimentin organization and open new perspectives for the regulation of intermediate filaments by zinc.
Collapse
|
54
|
Shuto M, Warigaya K, Watanabe H, Shimizu M, Fukuda T, Murata SI. Correlation analysis of nuclear morphology, cytokeratin and Ki-67 expression of urothelial carcinoma cells. Pathol Int 2015; 63:311-7. [PMID: 23782333 DOI: 10.1111/pin.12066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022]
Abstract
We aimed to delineate the morphogenesis of aberrant nuclear features of urothelial carcinoma (UC) cells in association with cytokeratin (CK) expression patterns and cell proliferation activity. Correlation analysis of the nuclear area by morphometry and the expression patterns of CK5, CK20 and Ki-67 by triple immunofluorescence analysis was applied to 1699 cells from five low-grade and seven high-grade cases of UC. The majority of UC cells showed aberrant cellular differentiation represented by abnormal CK expression patterns of CK5+ / CK20+ (40.5%) or CK5- / CK20+ (56.0%). CK5+ / CK20- cells, a phenotype of cancer stem/progenitor cells, represented a very small population (1.9%) and showed a low proliferation activity. Ki-67+ cells showed a significantly different CK expression pattern compared with that of Ki-67(-) cells. The nuclear areas of CK5- / CK20+ cells (71.3 ± 25.9 μm2) were significantly larger than those of CK5+ / CK20+ cells (66.6 ± 25.5 μm2). Negativity for CK5 was related to the grade of UC and an increased number of CK5- / CK20+ / Ki-67+ cells was related to a higher malignant potential. We conclude the nuclear morphology is related to cell differentiation represented by CK expression and cell proliferative activity.
Collapse
Affiliation(s)
- Masayo Shuto
- School of Medical Technology and Health, Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Japan
| | | | | | | | | | | |
Collapse
|
55
|
Portet S, Madzvamuse A, Chung A, Leube RE, Windoffer R. Keratin dynamics: modeling the interplay between turnover and transport. PLoS One 2015; 10:e0121090. [PMID: 25822661 PMCID: PMC4379186 DOI: 10.1371/journal.pone.0121090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022] Open
Abstract
Keratin are among the most abundant proteins in epithelial cells. Functions of the keratin network in cells are shaped by their dynamical organization. Using a collection of experimentally-driven mathematical models, different hypotheses for the turnover and transport of the keratin material in epithelial cells are tested. The interplay between turnover and transport and their effects on the keratin organization in cells are hence investigated by combining mathematical modeling and experimental data. Amongst the collection of mathematical models considered, a best model strongly supported by experimental data is identified. Fundamental to this approach is the fact that optimal parameter values associated with the best fit for each model are established. The best candidate among the best fits is characterized by the disassembly of the assembled keratin material in the perinuclear region and an active transport of the assembled keratin. Our study shows that an active transport of the assembled keratin is required to explain the experimentally observed keratin organization.
Collapse
Affiliation(s)
- Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Anotida Madzvamuse
- Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Brighton, United Kingdom
| | - Andy Chung
- Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Brighton, United Kingdom
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
56
|
Schwarz N, Windoffer R, Magin TM, Leube RE. Dissection of keratin network formation, turnover and reorganization in living murine embryos. Sci Rep 2015; 5:9007. [PMID: 25759143 PMCID: PMC4355630 DOI: 10.1038/srep09007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/10/2015] [Indexed: 11/09/2022] Open
Abstract
Epithelial functions are fundamentally determined by cytoskeletal keratin network organization. However, our understanding of keratin network plasticity is only based on analyses of cultured cells overexpressing fluorescently tagged keratins. In order to learn how keratin network organization is affected by various signals in functional epithelial tissues in vivo, we generated a knock-in mouse that produces fluorescence-tagged keratin 8. Homozygous keratin 8-YFP knock-in mice develop normally and show the expected expression of the fluorescent keratin network both in fixed and in vital tissues. In developing embryos, we observe for the first time de novo keratin network biogenesis in close proximity to desmosomal adhesion sites, keratin turnover in interphase cells and keratin rearrangements in dividing cells at subcellular resolution during formation of the first epithelial tissue. This mouse model will help to further dissect keratin network dynamics in its native tissue context during physiological and also pathological events.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas M Magin
- Translational Center for Regenerative Medicine and Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
57
|
Dawson H, Lugli A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med (Lausanne) 2015; 2:11. [PMID: 25806371 PMCID: PMC4354406 DOI: 10.3389/fmed.2015.00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
In recent years, tumor budding in colorectal cancer has gained much attention as an indicator of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival, and as an independent prognostic factor. Tumor buds, defined as the presence of single tumor cells or small clusters of up to five tumor cells at the peritumoral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds), are thought to represent the morphological correlate of cancer cells having undergone epithelial–mesenchymal transition (EMT), an important mechanism for the progression of epithelial cancers. In contrast to their undisputed prognostic power and potential to influence clinical management, our current understanding of the biological background of tumor buds is less established. Most studies examining tumor buds have attempted to recapitulate findings of mechanistic EMT studies using immunohistochemical markers. The aim of this review is to provide a comprehensive summary of studies examining protein expression profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved in their formation and maintenance.
Collapse
Affiliation(s)
- Heather Dawson
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| | - Alessandro Lugli
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|
58
|
Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation 2015; 21:333-44. [PMID: 24387004 DOI: 10.1111/micc.12111] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a multistep process that requires intricate changes in cell shape to generate new blood vessels. IF are a large family of proteins that play an important structural and functional role in forming and regulating the cytoskeleton. Vimentin, a major type III intermediate filament protein is expressed in endothelial and other mesenchymal cells. The structure of vimentin is conserved in mammals and shows dynamic expression profiles in various cell types and different developmental stages. Although initial studies with vimentin-deficient mice demonstrated a virtually normal phenotype, subsequent studies have revealed several defects in cell attachment, migration, signaling, neurite extension, and vascularization. Regulation of vimentin is highly complex and is driven by posttranslational modifications such as phosphorylation and cleavage by intracellular proteases. This review discusses various novel functions which are now known to be mediated by vimentin, summarizing structure, regulation and roles of vimentin in cell adhesion, migration, angiogenesis, neurite extension, and cancer. We specifically highlight a pathway involving growth factor-mediated calpain activation, vimentin cleavage, and MT1-MMP membrane translocation that is required for endothelial cell invasion in 3D environments. This pathway may also regulate the analogous processes of neurite extension and tumor cell invasion.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
59
|
García-Pelagio KP, Muriel J, O'Neill A, Desmond PF, Lovering RM, Lund L, Bond M, Bloch RJ. Myopathic changes in murine skeletal muscle lacking synemin. Am J Physiol Cell Physiol 2015; 308:C448-62. [PMID: 25567810 DOI: 10.1152/ajpcell.00331.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Joaquin Muriel
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Patrick F Desmond
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Linda Lund
- Merrick School of Business, University of Baltimore, Baltimore, Maryland; and
| | - Meredith Bond
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|
60
|
Zschemisch NH, Eisenblätter R, Rudolph C, Glage S, Dorsch M. Immortalized tumor derived rat fibroblasts as feeder cells facilitate the cultivation of male embryonic stem cells from the rat strain WKY/Ztm. SPRINGERPLUS 2014; 3:588. [PMID: 25332888 PMCID: PMC4197200 DOI: 10.1186/2193-1801-3-588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/22/2014] [Indexed: 01/02/2023]
Abstract
Feeder cells are essential for the establishment and culture of pluripotent rat embryonic stem cells (ESC) in vitro. Therefore, we tested several fibroblast and epithelial cell lines derived from the female genital tract as feeder cells to further improve ESC culture conditions. The immortalized tumor derived rat fibroblast TRF-O3 cells isolated from a Dnd1-deficient teratoma were identified as optimal feeder cells supporting stemness and proliferation of rat ESC. The TRF-O3 cells were characterized as myofibroblasts by expression of fibroblast specific genes alpha-2 type I collagen, collagen prolyl 4-hydroxylase alpha (II), vimentin, S100A4, and smooth muscle α-actin. Culture of inner cell masses (ICM) derived from WKY/Ztm rat blastocysts in 2i-LIF medium on TRF-O3 feeder cells lacking LIF, SCF and FGF2 expression resulted in pluripotent and germ-line competent rat ESC lines. Therein, genotyping confirmed up to 26% male ESC lines. On the other hand the TRF-O3 specific BMP4 expression was correlated with transcriptional activity of the mesodermal marker T-brachyury and the ectoderm specific nestin in the ESC line ES21 demonstrating mesodermal or ectodermal cell lineage differentiation processes within the ESC population. Substitution of 2i-LIF by serum-containing YPAC medium supplemented with TGF-β and rho kinase inhibitors or by 4i medium in combination with TRF-O3 feeder cells led to enhanced differentiation of ES21 cells and freshly isolated ICMs. These results suggest that the ESC culture conditions using TRF-O3 feeder cells and 2i-LIF medium supported the establishment of male ESC lines from WKY/Ztm rats, which represent a favored, permissive genetic background for rat ESC culture.
Collapse
Affiliation(s)
- Nils-Holger Zschemisch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Regina Eisenblätter
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Cornelia Rudolph
- Institute for Molecular and Cellular Pathology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Martina Dorsch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| |
Collapse
|
61
|
|
62
|
Signaling mechanisms and disrupted cytoskeleton in the diphenyl ditelluride neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:458601. [PMID: 25050142 PMCID: PMC4090446 DOI: 10.1155/2014/458601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 01/14/2023]
Abstract
Evidence from our group supports that diphenyl ditelluride (PhTe)2 neurotoxicity depends on modulation of signaling pathways initiated at the plasma membrane. The (PhTe)2-evoked signal is transduced downstream of voltage-dependent Ca2+ channels (VDCC), N-methyl-D-aspartate receptors (NMDA), or metabotropic glutamate receptors activation via different kinase pathways (protein kinase A, phospholipase C/protein kinase C, mitogen-activated protein kinases (MAPKs), and Akt signaling pathway). Among the most relevant cues of misregulated signaling mechanisms evoked by (PhTe)2 is the cytoskeleton of neural cells. The in vivo and in vitro exposure to (PhTe)2 induce hyperphosphorylation/hypophosphorylation of neuronal and glial intermediate filament (IF) proteins (neurofilaments and glial fibrillary acidic protein, resp.) in different brain structures of young rats. Phosphorylation of IFs at specific sites modulates their association/disassociation and interferes with important physiological roles, such as axonal transport. Disrupted cytoskeleton is a crucial marker of neurodegeneration and is associated with reactive astrogliosis and apoptotic cell death. This review focuses the current knowledge and important results on the mechanisms of (PhTe)2 neurotoxicity with special emphasis on the cytoskeletal proteins and their differential regulation by kinases/phosphatases and Ca2+-mediated mechanisms in developmental rat brain. We propose that the disrupted cytoskeletal homeostasis could support brain damage provoked by this neurotoxicant.
Collapse
|
63
|
Menko AS, Bleaken BM, Libowitz AA, Zhang L, Stepp MA, Walker JL. A central role for vimentin in regulating repair function during healing of the lens epithelium. Mol Biol Cell 2014; 25:776-90. [PMID: 24478454 PMCID: PMC3952848 DOI: 10.1091/mbc.e12-12-0900] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A unique ex vivo mock cataract surgery model is used to study the role of vimentin in repair cell function during wound healing within a clinically relevant setting. Vimentin is found to be critical for the function of repair cells in directing the collective migration of the epithelium during wound healing. Mock cataract surgery provides a unique ex vivo model for studying wound repair in a clinically relevant setting. Here wound healing involves a classical collective migration of the lens epithelium, directed at the leading edge by an innate mesenchymal subpopulation of vimentin-rich repair cells. We report that vimentin is essential to the function of repair cells as the directors of the wound-healing process. Vimentin and not actin filaments are the predominant cytoskeletal elements in the lamellipodial extensions of the repair cells at the wound edge. These vimentin filaments link to paxillin-containing focal adhesions at the lamellipodial tips. Microtubules are involved in the extension of vimentin filaments in repair cells, the elaboration of vimentin-rich protrusions, and wound closure. The requirement for vimentin in repair cell function is revealed by both small interfering RNA vimentin knockdown and exposure to the vimentin-targeted drug withaferin A. Perturbation of vimentin impairs repair cell function and wound closure. Coimmunoprecipitation analysis reveals for the first time that myosin IIB is associated with vimentin, linking vimentin function in cell migration to myosin II motor proteins. These studies reveal a critical role for vimentin in repair cell function in regulating the collective movement of the epithelium in response to wounding.
Collapse
Affiliation(s)
- A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 Wills Vision Research Center at Jefferson, Philadelphia, PA 19107 Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC 20037
| | | | | | | | | | | |
Collapse
|
64
|
Brauksiepe B, Baumgarten L, Reuss S, Schmidt ER. Co-localization of serine/threonine kinase 33 (Stk33) and vimentin in the hypothalamus. Cell Tissue Res 2013; 355:189-99. [PMID: 24057876 DOI: 10.1007/s00441-013-1721-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/16/2013] [Indexed: 01/04/2023]
Abstract
We investigate the immunoreactivity of serine/threonine kinase 33 (Stk33) and of vimentin in the brain of mouse, rat and hamster. Using a Stk33-specific polyclonal antibody, we show by immunofluorescence staining that Stk33 is present in a variety of brain regions. We found a strong staining in the ependymal lining of all cerebral ventricles and the central canal of the spinal cord as well as in hypothalamic tanycytes. Stk33 immunoreactivity was also found in circumventricular organs such as the area postrema, subfornical organ and pituitary and pineal glands. Double-immunostaining experiments with antibodies against Stk33 and vimentin showed a striking colocalization of Stk33 and vimentin. As shown previously, Stk33 phosphorylates recombinant vimentin in vitro. Co-immunoprecipitation experiments and co-sedimentation assays indicate that Stk33 and vimentin are associated in vivo and that this association does not depend on further interacting partners (Brauksiepe et al. in BMC Biochem 9:25, 2008). This indicates that Stk33 is involved in the dynamics of vimentin polymerization/depolymerization. Since in tanycytes the vimentin expression is regulated by the photoperiod (Kameda et al. in Cell Tissue Res 314:251-262, 2003), we determine whether this also holds true for Stk33. We study hypothalamic sections from adult Djungarian hamsters (Phodopus sungorus) held under either long photoperiods (L:D 16:8 h) or short photoperiods (L:D 8:16 h) for 2 months. In addition, we examine whether age-dependent changes in Stk33 protein content exist. Our results show that Stk33 in tanycytes is regulated by the photoperiod as is the case for vimentin. Stk33 may participate in photoperiodic regulation of the endocrine system.
Collapse
Affiliation(s)
- Bastienne Brauksiepe
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Johann-Joachim Becherweg 32, 55128, Mainz, Germany
| | | | | | | |
Collapse
|
65
|
Haase K, Pelling AE. Resiliency of the plasma membrane and actin cortex to large-scale deformation. Cytoskeleton (Hoboken) 2013; 70:494-514. [PMID: 23929821 DOI: 10.1002/cm.21129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
The tight coupling between the plasma membrane and actin cortex allows cells to rapidly change shape in response to mechanical cues and during physiological processes. Mechanical properties of the membrane are critical for organizing the actin cortex, which ultimately governs the conversion of mechanical information into signaling. The cortex has been shown to rapidly remodel on timescales of seconds to minutes, facilitating localized deformations and bundling dynamics that arise during the exertion of mechanical forces and cellular deformations. Here, we directly visualized and quantified the time-dependent deformation and recovery of the membrane and actin cortex of HeLa cells in response to externally applied loads both on- and off-nucleus using simultaneous confocal and atomic force microscopy. The local creep-like deformation of the membrane and actin cortex depends on both load magnitude and duration and does not appear to depend on cell confluency. The membrane and actin cortex rapidly recover their initial shape after prolonged loading (up to 10 min) with large forces (up to 20 nN) and high aspect ratio deformations. Cytoplasmic regions surrounding the nucleus are shown to be more resistant to long-term creep than nuclear regions. These dynamics are highly regulated by actomyosin contractility and an intact actin cytoskeleton. Results suggest that in response to local deformations, the nucleus does not appear to provide significant resistance or play a major role in cell shape recovery. The membrane and actin cortex clearly possess remarkable mechanical stability, critical for the transduction of mechanical deformation into long term biochemical signals and cellular remodeling.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada
| | | |
Collapse
|
66
|
Hułas-Stasiak M, Dobrowolski P, Tomaszewska E, Kostro K. Maternal acrylamide treatment reduces ovarian follicle number in newborn guinea pig offspring. Reprod Toxicol 2013; 42:125-31. [PMID: 23994668 DOI: 10.1016/j.reprotox.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/05/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023]
Abstract
Acrylamide is an industrial chemical which has toxic effects on reproduction. In this study, we investigated whether acrylamide administered prenatally can induce follicular atresia in the newborn guinea pig ovary. Another aim was to describe the localization of vimentin filaments and determine their participation in atresia. After prenatal acrylamide treatment, the pool of primordial and primary follicles was significantly reduced. The number of caspase 3 and TUNEL positive oocytes increased compared to the control group. There were no differences in Lamp1 (autophagy marker) staining. A vimentin immunosignal was present in the granulosa cells of primordial, primary and secondary follicles. Interestingly, in contrast to the control group, the oocytes from all follicles in the ACR-treated females were negative for vimentin. These data suggest that prenatal exposure to acrylamide reduced the number of ovarian follicles by inducing follicular atresia mediated by oocyte apoptosis. Acrylamide-induced apoptosis may be associated with destruction of vimentin filaments.
Collapse
Affiliation(s)
- Monika Hułas-Stasiak
- Department of Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | | | | | | |
Collapse
|
67
|
Abstract
The organization of the keratin intermediate filament cytoskeleton is closely linked to epithelial function. To study keratin network plasticity and its regulation at different levels, tools are needed to localize and measure local network dynamics. In this paper, we present image analysis methods designed to determine the speed and direction of keratin filament motion and to identify locations of keratin filament polymerization and depolymerization at subcellular resolution. Using these methods, we have analyzed time-lapse fluorescence recordings of fluorescent keratin 13 in human vulva carcinoma-derived A431 cells. The fluorescent keratins integrated into the endogenous keratin cytoskeleton, and thereby served as reliable markers of keratin dynamics. We found that increased times after seeding correlated with down-regulation of inward-directed keratin filament movement. Bulk flow analyses further revealed that keratin filament polymerization in the cell periphery and keratin depolymerization in the more central cytoplasm were both reduced. Treating these cells and other human keratinocyte-derived cells with EGF reversed all these processes within a few minutes, coinciding with increased keratin phosphorylation. These results highlight the value of the newly developed tools for identifying modulators of keratin filament network dynamics and characterizing their mode of action, which, in turn, contributes to understanding the close link between keratin filament network plasticity and epithelial physiology.
Collapse
|
68
|
|
69
|
Cardioprotective molecules are enriched in beating cardiomyocytes derived from human embryonic stem cells. Int J Cardiol 2013; 165:341-54. [DOI: 10.1016/j.ijcard.2012.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 07/16/2012] [Accepted: 07/21/2012] [Indexed: 01/11/2023]
|
70
|
Baker LK, Gillis DC, Sharma S, Ambrus A, Herrmann H, Conover GM. Nebulin binding impedes mutant desmin filament assembly. Mol Biol Cell 2013; 24:1918-32. [PMID: 23615443 PMCID: PMC3681697 DOI: 10.1091/mbc.e12-11-0840] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although a clear picture of the in vitro assembly process is established for vimentin, the role of associated partner proteins and their effect on intermediate filament assembly has not been fully examined. This study finds delayed dynamics of desminopathy-linked mutant desmin in myocytes and hindered assembly when associated to nebulin. Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle.
Collapse
Affiliation(s)
- Laura K Baker
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | | | |
Collapse
|
71
|
Mahammad S, Murthy SNP, Didonna A, Grin B, Israeli E, Perrot R, Bomont P, Julien JP, Kuczmarski E, Opal P, Goldman RD. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest 2013; 123:1964-75. [PMID: 23585478 DOI: 10.1172/jci66387] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/14/2013] [Indexed: 11/17/2022] Open
Abstract
Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature detected in neurons and other cell types, including patients' dermal fibroblasts. The molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using fibroblasts from patients and normal individuals, as well as Gan-/- mice, we demonstrated that gigaxonin was responsible for the degradation of vimentin IFs. Gigaxonin was similarly involved in the degradation of peripherin and neurofilament IF proteins in neurons. Furthermore, proteasome inhibition by MG-132 reversed the clearance of IF proteins in cells overexpressing gigaxonin, demonstrating the involvement of the proteasomal degradation pathway. Together, these findings identify gigaxonin as a major factor in the degradation of cytoskeletal IFs and provide an explanation for IF aggregate accumulation, the subcellular hallmark of this devastating human disease.
Collapse
Affiliation(s)
- Saleemulla Mahammad
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Steenhard BM, Vanacore R, Friedman D, Zelenchuk A, Stroganova L, Isom K, St. John PL, Hudson BG, Abrahamson DR. Upregulated expression of integrin α1 in mesangial cells and integrin α3 and vimentin in podocytes of Col4a3-null (Alport) mice. PLoS One 2012; 7:e50745. [PMID: 23236390 PMCID: PMC3517557 DOI: 10.1371/journal.pone.0050745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 01/19/2023] Open
Abstract
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.
Collapse
Affiliation(s)
- Brooke M. Steenhard
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Roberto Vanacore
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David Friedman
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adrian Zelenchuk
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Larysa Stroganova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kathryn Isom
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Patricia L. St. John
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Billy G. Hudson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dale R. Abrahamson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
74
|
The dermatan sulfate proteoglycan decorin modulates α2β1 integrin and the vimentin intermediate filament system during collagen synthesis. PLoS One 2012; 7:e50809. [PMID: 23226541 PMCID: PMC3513320 DOI: 10.1371/journal.pone.0050809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/25/2012] [Indexed: 11/23/2022] Open
Abstract
Decorin, a small leucine-rich proteoglycan harboring a dermatan sulfate chain at its N-terminus, is involved in regulating matrix organization and cell signaling. Loss of the dermatan sulfate of decorin leads to an Ehlers-Danlos syndrome characterized by delayed wound healing. Decorin-null (Dcn−/−) mice display a phenotype similar to that of EDS patients. The fibrillar collagen phenotype of Dcn−/− mice could be rescued in vitro by decorin but not with decorin lacking the glycosaminoglycan chain. We utilized a 3D cell culture model to investigate the impact of the altered extracellular matrix on Dcn−/− fibroblasts. Using 2D gel electrophoresis followed by mass spectrometry, we identified vimentin as one of the proteins that was differentially upregulated by the presence of decorin. We discovered that a decorin-deficient matrix leads to abnormal nuclear morphology in the Dcn−/− fibroblasts. This phenotype could be rescued by the decorin proteoglycan but less efficiently by the decorin protein core. Decorin treatment led to a significant reduction of the α2β1 integrin at day 6 in Dcn−/− fibroblasts, whereas the protein core had no effect on β1. Interestingly, only the decorin core induced mRNA synthesis, phosphorylation and de novo synthesis of vimentin indicating that the proteoglycan decorin in the extracellular matrix stabilizes the vimentin intermediate filament system. We could support these results in vivo, because the dermis of wild-type mice have more vimentin and less β1 integrin compared to Dcn−/−. Furthermore, the α2β1 null fibroblasts also showed a reduced amount of vimentin compared to wild-type. These data show for the first time that decorin has an impact on the biology of α2β1 integrin and the vimentin intermediate filament system. Moreover, our findings provide a mechanistic explanation for the reported defects in wound healing associated with the Dcn−/− phenotype.
Collapse
|
75
|
Vardjan N, Gabrijel M, Potokar M, Svajger U, Kreft M, Jeras M, de Pablo Y, Faiz M, Pekny M, Zorec R. IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. J Neuroinflammation 2012; 9:144. [PMID: 22734718 PMCID: PMC3423045 DOI: 10.1186/1742-2094-9-144] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022] Open
Abstract
Background In immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-γ (IFN-γ) can express major histocompatibility complex (MHC) class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF) proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT) astrocytes and in astrocytes devoid of IFs. Methods The identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-γ activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor546-dextran labeling of late endosomes/lysosomes in IFN-γ treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software. Results Confocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-γ induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor546-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-γ-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-γ-treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-γ-induced increase in the mobility of MHC class II compartments is IF-dependent. Conclusions Since reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a controlled manner to CNS inflammation.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical Center, Tehnološki Park 24, Ljubljana 1000, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol 2012; 44:1680-6. [PMID: 22683760 DOI: 10.1016/j.biocel.2012.05.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022]
Abstract
The cytoskeleton is a highly complex network of three major intracellular filaments, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs). This network plays a key role in the control of cell shape, division, functions and interactions in animal organs and tissues. Dysregulation of the network can contribute to numerous human diseases. Although small HSPs (sHSPs) and in particular HSP27 (HSPB1) or αB-crystallin (HSPB5) display a wide range of cellular properties, they are mostly known for their ability to protect cells under stress conditions. Mutations in some sHSPs have been found to affect their ability to interact with cytoskeleton proteins, leading to IF aggregation phenotypes that mimick diseases related to disorders in IF proteins (i.e. desmin, vimentin and neuro-filaments). The aim of this review is to discuss new findings that point towards the possible involvement of IFs in the cytoprotective functions of sHSPs, both in physiological and pathological settings, including the likelihood that sHSPs such as HSPB1 may play a role during epithelial-to-mesenchymal transition (EMT) during fibrosis or cancer progression. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
77
|
Yamamoto T, Kato Y, Hiroi A, Shibata N, Osawa M, Kobayashi M. Post-transcriptional regulation of fukutin in an astrocytoma cell line. Int J Exp Pathol 2012; 93:46-55. [PMID: 22264285 DOI: 10.1111/j.1365-2613.2011.00799.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fukutin is the gene responsible for Fukuyama-type congenital muscular dystrophy (FCMD), an autosomal recessive disease associated with central nervous system (CNS) and eye anomalies. Fukutin is involved in basement membrane formation via the glycosylation of α-dystroglycan (α-DG), and hypoglycosylation of α-DG provokes the muscular, CNS and eye lesions of FCMD. Astrocytes play an important role in the pathogenesis of the CNS lesions, but the post-transcriptional regulation of fukutin mRNA has not been elucidated. In this study, we investigated the characteristics of fukutin mRNA using an astrocytoma cell line that expresses fukutin and glycosylated α-DG. The glycosylation of α-DG was considered to be increased by over-expression of fukutin and decreased by knockdown of fukutin. Knockdown of Musashi-1, one of the RNA-binding proteins involved in the regulation of neuronal differentiation, induced a decrease in fukutin mRNA. Immunoprecipitation and ELISA-based RNA-binding assay demonstrated possible binding between fukutin mRNA and Musashi-1 protein. A relationship between fukutin mRNA and vimentin protein was also proposed. In situ hybridization for fukutin mRNA showed a positive cytoplasmic reaction including cytoplasmic processes. From these results, fukutin mRNA is suggested to be a localized mRNA up-regulated by Musashi-1 and to be a component of a mRNA-protein complex which includes Musashi-1 and (presumably) vimentin proteins.
Collapse
Affiliation(s)
- Tomoko Yamamoto
- Department of Pathology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
78
|
Martin M, Müller K, Cadenas C, Hermes M, Zink M, Hengstler JG, Käs JA. ERBB2 overexpression triggers transient high mechanoactivity of breast tumor cells. Cytoskeleton (Hoboken) 2012; 69:267-77. [PMID: 22407943 DOI: 10.1002/cm.21023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/30/2011] [Accepted: 02/22/2012] [Indexed: 01/15/2023]
Abstract
Biomechanical properties of tumor cells play an important role for the metastatic capacity of cancer. Cellular changes of viscoelastic features are prerequisite for cancer progression since they are essential for proliferation and metastasis. However, only little is known about the way how expression of oncogenes influences these biomechanical properties. To address this aspect we used a breast cancer cell line with inducible expression of an oncogenic version of ERBB2. ERBB2 is known to be correlated with bad prognosis in breast cancer. Cell elasticity was determined by the Optical Stretcher, where suspended cells are deformed by two slightly divergent laser beams. We found that induction of ERBB2 caused remarkable biomechanical alterations of the MCF-7 cells after 24 h: the cells actively contracted in response to mechanical stimuli, a phenomenon known as mechanoactivation. After this period, as the cells became senescent, the mechanoactivity returned to control levels. Time-resolved gene array analysis revealed that mechanoactivation was accompanied by temporal upregulation of 46 cytoskeletal genes. A possible role of these genes in tumor progression was investigated by expression analyses of 766 breast cancer patients. This showed an association of 12 out of these 46 genes with increased risk of metastasis. Our results demonstrate that overexpression of ERBB2 causes mechanoactivation of tumor cells, which may enhance tumor cell motility fostering distant metastasis.
Collapse
Affiliation(s)
- Mireille Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, and University Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
79
|
Windoffer R, Beil M, Magin TM, Leube RE. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. ACTA ACUST UNITED AC 2012; 194:669-78. [PMID: 21893596 PMCID: PMC3171125 DOI: 10.1083/jcb.201008095] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | |
Collapse
|
80
|
Harbaum L, Pollheimer MJ, Kornprat P, Lindtner RA, Schlemmer A, Rehak P, Langner C. Keratin 7 expression in colorectal cancer--freak of nature or significant finding? Histopathology 2012; 59:225-34. [PMID: 21884201 DOI: 10.1111/j.1365-2559.2011.03694.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS To assess the prevalence of keratin 7 (K7) expression in colorectal cancer and to correlate findings with clinicopathological parameters and patients' outcome. METHOD AND RESULTS A total of 370 patients were evaluated for K7 expression by immunohistochemistry using a tissue microarray technique. K7 expression was scored semiquantitatively as either focal (<10%), moderate (10-50%) or extensive (>50%). In all, 32 (9%) tumours were immunoreactive for K7, with five cases showing extensive, four moderate and 23 focal expression, respectively. K7 expression was associated with poor tumour differentiation (P = 0.005) and the extent of tumour budding (P = 0.02). In whole sections, K7 immunoreactivity prevailed in single cells and small clusters of cells at the invasion front. Analysis of serial sections showed that K7-positive cells colocalized with keratin 20, whereas they lacked immunoreactivity for E-cadherin, MUC2 and MIB-1. Disease progression occurred in 52% of patients with K7-positive tumours and 41% with K7-negative tumours (P = 0.19); 48% of patients with K7-positive tumours but only 33% with K7-negative tumours died of disease (P = 0.06). CONCLUSIONS Aberrant expression of K7 in budding cancer cells represents a modification of the epithelial phenotype ('epithelial-epithelial transition': EET) which may be linked to gains in motility and invasive potential.
Collapse
Affiliation(s)
- Lars Harbaum
- Institute of Pathology, Medical University of Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
81
|
Integration of cell biology, pharmacological modeling and statistical analysis: part I: cell biology and PK/PD in the Oncology paradigm. Crit Rev Oncol Hematol 2011; 83:153-69. [PMID: 22118941 DOI: 10.1016/j.critrevonc.2011.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/01/2011] [Accepted: 10/12/2011] [Indexed: 11/23/2022] Open
Abstract
The motivation of this two-part review article is to provide a comprehensive picture of cancer, cancer drugs and the detection and treatment of cancer. In order to do so, this article integrates the cell biology and biophysics of cancer as well as the modeling of preclinical Oncology drug data and statistical analysis of Oncology clinical trials data. It also discusses novel cancer diagnostic tools and standard and potential treatment options.
Collapse
|
82
|
Bargagna-Mohan P, Paranthan RR, Hamza A, Zhan CG, Lee DM, Kim KB, Lau DL, Srinivasan C, Nakayama K, Nakayama KI, Herrmann H, Mohan R. Corneal antifibrotic switch identified in genetic and pharmacological deficiency of vimentin. J Biol Chem 2011; 287:989-1006. [PMID: 22117063 DOI: 10.1074/jbc.m111.297150] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type III intermediate filaments (IFs) are essential cytoskeletal elements of mechanosignal transduction and serve critical roles in tissue repair. Mice genetically deficient for the IF protein vimentin (Vim(-/-)) have impaired wound healing from deficits in myofibroblast development. We report a surprising finding made in Vim(-/-) mice that corneas are protected from fibrosis and instead promote regenerative healing after traumatic alkali injury. This reparative phenotype in Vim(-/-) corneas is strikingly recapitulated by the pharmacological agent withaferin A (WFA), a small molecule that binds to vimentin and down-regulates its injury-induced expression. Attenuation of corneal fibrosis by WFA is mediated by down-regulation of ubiquitin-conjugating E3 ligase Skp2 and up-regulation of cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1). In cell culture models, WFA exerts G(2)/M cell cycle arrest in a p27(Kip1)- and Skp2-dependent manner. Finally, by developing a highly sensitive imaging method to measure corneal opacity, we identify a novel role for desmin overexpression in corneal haze. We demonstrate that desmin down-regulation by WFA via targeting the conserved WFA-ligand binding site shared among type III IFs promotes further improvement of corneal transparency without affecting cyclin-dependent kinase inhibitor levels in Vim(-/-) mice. This dissociates a direct role for desmin in corneal cell proliferation. Taken together, our findings illuminate a previously unappreciated pathogenic role for type III IF overexpression in corneal fibrotic conditions and also validate WFA as a powerful drug lead toward anti-fibrosis therapeutic development.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Heimfarth L, Loureiro SO, Reis KP, de Lima BO, Zamboni F, Lacerda S, Soska ÂK, Wild L, da Rocha JBT, Pessoa-Pureur R. Diphenyl ditelluride induces hypophosphorylation of intermediate filaments through modulation of DARPP-32-dependent pathways in cerebral cortex of young rats. Arch Toxicol 2011; 86:217-30. [DOI: 10.1007/s00204-011-0746-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/11/2011] [Indexed: 01/02/2023]
|
84
|
Park JE, Kim HT, Lee S, Lee YS, Choi UK, Kang JH, Choi SY, Kang TC, Choi MS, Kwon OS. Differential expression of intermediate filaments in the process of developing hepatic steatosis. Proteomics 2011; 11:2777-89. [DOI: 10.1002/pmic.201000544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 03/19/2011] [Accepted: 04/13/2011] [Indexed: 12/18/2022]
|
85
|
Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011; 48:369-85. [PMID: 21464572 DOI: 10.1159/000324751] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing structures, and is a key step in tissue and organ development, wound healing and pathological events. Changes in cell shape orchestrated by the cytoskeleton are integral to accomplishing the various steps of angiogenesis, and an intact cytoskeleton is also critical for maintaining newly formed structures. This review focuses on how the 3 main cytoskeletal elements--microfilaments, microtubules, and intermediate filaments--regulate the formation and maintenance of angiogenic sprouts. Multiple classes of compounds target microtubules and microfilaments, revealing much about the role of actin and tubulin and their associated molecules in angiogenic sprout formation and maintenance. In contrast, intermediate filaments are much less studied, yet intriguing evidence suggests a vital, but unresolved, role in angiogenic sprouting. This review discusses evidence for regulatory molecules and pharmacological compounds that affect actin, microtubule and intermediate filament dynamics to alter various steps of angiogenesis, including endothelial sprout formation and maintenance.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
86
|
Lee S, Sunil N, Tejada JM, Shea TB. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites. J Cell Sci 2011; 124:1022-31. [PMID: 21363889 DOI: 10.1242/jcs.079046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurofilament (NF) subunits translocate within axons as short NFs, non-filamentous punctate structures ('puncta') and diffuse material that might comprise individual subunits and/or oligomers. Transport of NFs into and along axons is mediated by the microtubule (MT) motor proteins kinesin and dynein. Despite being characterized as a retrograde motor, dynein nevertheless participates in anterograde NF transport through associating with long MTs or the actin cortex through its cargo domain; relatively shorter MTs associated with the motor domain are then propelled in an anterograde direction, along with any linked NFs. Here, we show that inhibition of dynein function, through dynamitin overexpression or intracellular delivery of anti-dynein antibody, selectively reduced delivery of GFP-tagged short NFs into the axonal hillock, with a corresponding increase in the delivery of puncta, suggesting that dynein selectively delivered short NFs into axonal neurites. Nocodazole-mediated depletion of short MTs had the same effect. By contrast, intracellular delivery of anti-kinesin antibody inhibited anterograde transport of short NFs and puncta to an equal extent. These findings suggest that anterograde axonal transport of linear NFs is more dependent upon association with translocating MTs (which are themselves translocated by dynein) than is transport of NF puncta or oligomers.
Collapse
Affiliation(s)
- Sangmook Lee
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
87
|
Ackbarow T, Buehler MJ. Hierarchical nanomechanics of vimentin alpha helical coiled-coil proteins. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-978-0978-gg10-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractCoiled-coil alpha-helical dimers are the elementary building blocks of intermediate filaments (IFs), an important component of the cell's cytoskeleton. Therefore, IFs play a leading role in the mechanical integrity of the cells. Here we use atomistic simulation to carry out tensile tests on coiled-coils as well as on single alpha-helices of the 2B segment of the vimentin dimer that has been shown to control the large-deformation behavior of cells. We compare the characteristic force-strain curves of both structures and suggest explanations for the differences on this fundamental level of hierarchical assembly. We further systematically explore the strain rate dependence of the mechanical properties of the vimentin coiled-coil protein. We develop a simple continuum model capable of reproducing the atomistic modeling results. The model enables us to extrapolate to much lower deformation rates approaching those used in experiment.
Collapse
|
88
|
Lovering RM, O'Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ. Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments. Am J Physiol Cell Physiol 2011; 300:C803-13. [PMID: 21209367 DOI: 10.1152/ajpcell.00394.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. Our previous results show that the tibialis anterior (TA) muscles of mice lacking keratin 19 (K19) lose costameres, accumulate mitochondria under the sarcolemma, and generate lower specific tension than controls. Here we compare the physiology and morphology of TA muscles of mice lacking K19 with muscles lacking desmin or both proteins [double knockout (DKO)]. K19-/- mice and DKO mice showed a threefold increase in the levels of creatine kinase (CK) in the serum. The absence of desmin caused a larger change in specific tension (-40%) than the absence of K19 (-19%) and played the predominant role in contractile function (-40%) and decreased tolerance to exercise in the DKO muscle. By contrast, the absence of both proteins was required to obtain a significantly greater loss of contractile torque after injury (-48%) compared with wild type (-39%), as well as near-complete disruption of costameres. The DKO muscle also showed a significantly greater misalignment of myofibrils than either mutant alone. In contrast, large subsarcolemmal gaps and extensive accumulation of mitochondria were only seen in K19-null TA muscles, and the absence of both K19 and desmin yielded milder phenotypes. Our results suggest that keratin filaments containing K19- and desmin-based intermediate filaments can play independent, complementary, or antagonistic roles in the physiology and morphology of fast-twitch skeletal muscle.
Collapse
Affiliation(s)
- Richard M Lovering
- Department of Physiology, University of Maryland, Baltimore, 21201, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Hnia K, Tronchère H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 2010; 121:70-85. [PMID: 21135508 DOI: 10.1172/jci44021] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/13/2010] [Indexed: 12/27/2022] Open
Abstract
Muscle contraction relies on a highly organized intracellular network of membrane organelles and cytoskeleton proteins. Among the latter are the intermediate filaments (IFs), a large family of proteins mutated in more than 30 human diseases. For example, mutations in the DES gene, which encodes the IF desmin, lead to desmin-related myopathy and cardiomyopathy. Here, we demonstrate that myotubularin (MTM1), which is mutated in individuals with X-linked centronuclear myopathy (XLCNM; also known as myotubular myopathy), is a desmin-binding protein and provide evidence for direct regulation of desmin by MTM1 in vitro and in vivo. XLCNM-causing mutations in MTM1 disrupted the MTM1-desmin complex, resulting in abnormal IF assembly and architecture in muscle cells and both mouse and human skeletal muscles. Adeno-associated virus-mediated ectopic expression of WT MTM1 in Mtm1-KO muscle reestablished normal desmin expression and localization. In addition, decreased MTM1 expression and XLCNM-causing mutations induced abnormal mitochondrial positioning, shape, dynamics, and function. We therefore conclude that MTM1 is a major regulator of both the desmin cytoskeleton and mitochondria homeostasis, specifically in skeletal muscle. Defects in IF stabilization and mitochondrial dynamics appear as common physiopathological features of centronuclear myopathies and desmin-related myopathies.
Collapse
Affiliation(s)
- Karim Hnia
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Acute Lung Injury: The Injured Lung Endothelium, Therapeutic Strategies for Barrier Protection, and Vascular Biomarkers. TEXTBOOK OF PULMONARY VASCULAR DISEASE 2010. [PMCID: PMC7120335 DOI: 10.1007/978-0-387-87429-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
91
|
Zhu J, Burakov A, Rodionov V, Mogilner A. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study. Mol Biol Cell 2010; 21:4418-27. [PMID: 20980619 PMCID: PMC3002394 DOI: 10.1091/mbc.e10-07-0627] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/05/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022] Open
Abstract
The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces-dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles-is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility.
Collapse
Affiliation(s)
- Jie Zhu
- *Department of Neurobiology, Physiology, and Behavior and Department of Mathematics, University of California–Davis, Davis, CA 95616
| | - Anton Burakov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia; and
| | - Vladimir Rodionov
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06032
| | - Alex Mogilner
- *Department of Neurobiology, Physiology, and Behavior and Department of Mathematics, University of California–Davis, Davis, CA 95616
| |
Collapse
|
92
|
Cho-Ngwa F, Zhu X, Metuge JA, Daggfeldt A, Grönvik KO, Orlando R, Atwood JA, Titanji VP. Identification of in vivo released products of Onchocerca with diagnostic potential, and characterization of a dominant member, the OV1CF intermediate filament. INFECTION GENETICS AND EVOLUTION 2010; 11:778-83. [PMID: 20713183 DOI: 10.1016/j.meegid.2010.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 11/24/2022]
Abstract
A sensitive and specific test for the routine diagnosis of active Onchocerca infection is currently lacking. A major drawback in the development of such a test has been the paucity of knowledge of suitable parasite antigens that can serve as targets in antigen-detection assays. In the present investigation, we employed mass spectrometry, bioinformatics and molecular techniques to identify and characterize several potentially diagnostic Onchocerca antigens in the in vivo nodular fluid, which is being investigated for the first time. The majority of the 27 identified antigens lacked a secretory signal. One of them, also identified and characterized in greater detail with the aid of previously developed monoclonal antibodies (Mabs), was a dominant circulating cytoplasmic intermediate filament protein, previously identified and named, OV1CF. Although OV1CF lacks a secretory signal in its amino acid sequence and is not detected in the pure 42 h in vitro released products, it is easily detected in the in vivo nodular fluid. We conclude that these in vivo released products offer promise as diagnostics markers in onchocerciasis.
Collapse
Affiliation(s)
- Fidelis Cho-Ngwa
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, SW Region, Cameroon.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Kölsch A, Windoffer R, Würflinger T, Aach T, Leube RE. The keratin-filament cycle of assembly and disassembly. J Cell Sci 2010; 123:2266-72. [DOI: 10.1242/jcs.068080] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Continuous and regulated remodelling of the cytoskeleton is crucial for many basic cell functions. In contrast to actin filaments and microtubules, it is not understood how this is accomplished for the third major cytoskeletal filament system, which consists of intermediate-filament polypeptides. Using time-lapse fluorescence microscopy of living interphase cells, in combination with photobleaching, photoactivation and quantitative fluorescence measurements, we observed that epithelial keratin intermediate filaments constantly release non-filamentous subunits, which are reused in the cell periphery for filament assembly. This cycle is independent of protein biosynthesis. The different stages of the cycle occur in defined cellular subdomains: assembly takes place in the cell periphery and newly formed filaments are constantly transported toward the perinuclear region while disassembly occurs, giving rise to diffusible subunits for another round of peripheral assembly. Remaining juxtanuclear filaments stabilize and encage the nucleus. Our data suggest that the keratin-filament cycle of assembly and disassembly is a major mechanism of intermediate-filament network plasticity, allowing rapid adaptation to specific requirements, notably in migrating cells.
Collapse
Affiliation(s)
- Anne Kölsch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Würflinger
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Til Aach
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
94
|
Placental growth factor (PlGF) enhances breast cancer cell motility by mobilising ERK1/2 phosphorylation and cytoskeletal rearrangement. Br J Cancer 2010; 103:82-9. [PMID: 20551949 PMCID: PMC2905300 DOI: 10.1038/sj.bjc.6605746] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: During metastasis, cancer cells migrate away from the primary tumour and invade the circulatory system and distal tissues. The stimulatory effect of growth factors has been implicated in the migration process. Placental growth factor (PlGF), expressed by 30–50% of primary breast cancers, stimulates measurable breast cancer cell motility in vitro within 3 h. This implies that PlGF activates intracellular signalling kinases and cytoskeletal remodelling necessary for cellular migration. The PlGF-mediated motility is prevented by an Flt-1-antagonising peptide, BP-1, and anti-PlGF antibody. The purpose of this study was to determine the intracellular effects of PlGF and the inhibiting peptide, BP-1. Methods: Anti-PlGF receptor (anti-Flt-1) antibody and inhibitors of intracellular kinases were used for analysis of PlGF-delivered intracellular signals that result in motility. The effects of PlGF and BP-1 on kinase activation, intermediate filament (IF) protein stability, and the actin cytoskeleton were determined by immunohistochemistry, cellular migration assays, and immunoblots. Results: Placental growth factor stimulated phosphorylation of extracellular-regulated kinase (ERK)1/2 (pERK) in breast cancer cell lines that also increased motility. In the presence of PlGF, BP-1 decreased cellular motility, reversed ERK1/2 phosphorylation, and decreased nuclear and peripheral pERK1/2. ERK1/2 kinases are associated with rearrangements of the actin and IF components of the cellular cytoskeleton. The PlGF caused rearrangements of the actin cytoskeleton, which were blocked by BP-1. The PlGF also stabilised cytokeratin 19 and vimentin expression in MDA-MB-231 human breast cancer cells in the absence of de novo transcription and translation. Conclusions: The PlGF activates ERK1/2 kinases, which are associated with cellular motility, in breast cancer cells. Several of these activating events are blocked by BP-1, which may explain its anti-tumour activity.
Collapse
|
95
|
Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 2010; 8:e1000350. [PMID: 20386726 PMCID: PMC2850381 DOI: 10.1371/journal.pbio.1000350] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 03/01/2010] [Indexed: 01/08/2023] Open
Abstract
Mammalian Bicaudal D2 is the missing molecular link between cytoplasmic motor proteins and the nucleus during nuclear positioning prior to the onset of mitosis. BICD2 is one of the two mammalian homologues of the Drosophila Bicaudal D, an evolutionarily conserved adaptor between microtubule motors and their cargo that was previously shown to link vesicles and mRNP complexes to the dynein motor. Here, we identified a G2-specific role for BICD2 in the relative positioning of the nucleus and centrosomes in dividing cells. By combining mass spectrometry, biochemical and cell biological approaches, we show that the nuclear pore complex (NPC) component RanBP2 directly binds to BICD2 and recruits it to NPCs specifically in G2 phase of the cell cycle. BICD2, in turn, recruits dynein-dynactin to NPCs and as such is needed to keep centrosomes closely tethered to the nucleus prior to mitotic entry. When dynein function is suppressed by RNA interference-mediated depletion or antibody microinjection, centrosomes and nuclei are actively pushed apart in late G2 and we show that this is due to the action of kinesin-1. Surprisingly, depletion of BICD2 inhibits both dynein and kinesin-1-dependent movements of the nucleus and cytoplasmic NPCs, demonstrating that BICD2 is needed not only for the dynein function at the nuclear pores but also for the antagonistic activity of kinesin-1. Our study demonstrates that the nucleus is subject to opposing activities of dynein and kinesin-1 motors and that BICD2 contributes to nuclear and centrosomal positioning prior to mitotic entry through regulation of both dynein and kinesin-1. Bidirectional microtubule-based transport is responsible for the positioning of a large variety of cellular organelles, but the molecular mechanisms underlying the recruitment of microtubule-based motors to their cargoes and their activation remain poorly understood. In particular, the molecular players involved in the important processes of nuclear and centrosomal positioning prior to the onset of cell division are not known. In this study we focus on the function of one of the mammalian homologues of Drosophila Bicaudal D, an adaptor for the microtubule minus-end-directed dynein-dynactin motor complex. Previously, Drosophila Bicaudal D and its mammalian homologues were shown to act as linkers between the dynein motor and mRNP complexes or secretory vesicles. Here, we identify a new cargo for mammalian Bicaudal D2 (BICD2)–the nucleus. We show that BICD2 specifically binds to nuclear pore complexes in cells in G2 phase of the cell division cycle. We also show that this interaction is required for G2-specific recruitment of dynein to the nuclear envelope and thus for proper positioning of the nucleus relative to centrosomes prior to the onset of mitosis. Further, our findings demonstrate that the motor protein kinesin-1 opposes dynein's activity during this process and requires BICD2 for its activity. Our study therefore reveals BICD2 as the critical molecular adaptor that allows molecular motors to regulate nuclear and centrosomal positioning before cell division.
Collapse
Affiliation(s)
- Daniël Splinter
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marvin E. Tanenbaum
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center, Utrecht, The Netherlands
| | - Arne Lindqvist
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center, Utrecht, The Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annette Flotho
- Center for Molecular Biology Heidelberg (ZMBH), Heidelberg, Germany
| | - Ka Lou Yu
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ilya Grigoriev
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dieuwke Engelsma
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elize D. Haasdijk
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nanda Keijzer
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Fornerod
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frauke Melchior
- Center for Molecular Biology Heidelberg (ZMBH), Heidelberg, Germany
| | | | - René H. Medema
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center, Utrecht, The Netherlands
- * E-mail: (RHM); (AA)
| | - Anna Akhmanova
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail: (RHM); (AA)
| |
Collapse
|
96
|
Löffek S, Wöll S, Höhfeld J, Leube RE, Has C, Bruckner-Tuderman L, Magin TM. The ubiquitin ligase CHIP/STUB1 targets mutant keratins for degradation. Hum Mutat 2010; 31:466-76. [DOI: 10.1002/humu.21222] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
97
|
Bargagna-Mohan P, Paranthan RR, Hamza A, Dimova N, Trucchi B, Srinivasan C, Elliott GI, Zhan CG, Lau DL, Zhu H, Kasahara K, Inagaki M, Cambi F, Mohan R. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. J Biol Chem 2010; 285:7657-69. [PMID: 20048155 DOI: 10.1074/jbc.m109.093765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G(0)/G(1) arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Departmentsof Ophthalmology & Visual Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Reid AJ, Welin D, Wiberg M, Terenghi G, Novikov LN. Peripherin and ATF3 genes are differentially regulated in regenerating and non-regenerating primary sensory neurons. Brain Res 2009; 1310:1-7. [PMID: 19913522 DOI: 10.1016/j.brainres.2009.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/24/2009] [Accepted: 11/05/2009] [Indexed: 01/10/2023]
Abstract
Peripheral nerve injury leads to deficient recovery of sensation and a causative factor may be that only 50-60% of primary sensory neurons succeed in regenerating axons after primary nerve repair. In this study, an in vivo rat sciatic nerve injury and regeneration model was combined with laser microdissection and quantitative real-time polymerase chain reaction with the aim of examining the gene expression of regenerative molecules in cutaneous and muscular sensory neurons. Recent studies have identified peripherin and ATF-3 molecules as crucial for neurite outgrowth propagation; our novel findings demonstrate a subpopulation of non-regenerating sensory neurons characterized by a failure to upregulate transcription of these molecules and that a greater peripherin mRNA expression in injured cutaneous neurons may potentiate this subpopulation to regenerate more axons than muscle afferent neurons following injury. The gene expression of the structural neurofilament NF-H is found to be significantly downregulated following injury in both sensory subpopulations.
Collapse
Affiliation(s)
- Adam J Reid
- Blond McIndoe Research Laboratories, Tissue Injury and Repair Group, University of Manchester, UK.
| | | | | | | | | |
Collapse
|
99
|
Mähönen AJ, Makkonen KE, Laakkonen JP, Ihalainen TO, Kukkonen SP, Kaikkonen MU, Vihinen-Ranta M, Ylä-Herttuala S, Airenne KJ. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J Biotechnol 2009; 145:111-9. [PMID: 19903502 DOI: 10.1016/j.jbiotec.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/16/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023]
Abstract
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Monastyrska I, Rieter E, Klionsky DJ, Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 2009; 84:431-48. [PMID: 19659885 DOI: 10.1111/j.1469-185x.2009.00082.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is involved in a wide range of physiological processes including cellular remodeling during development, immuno-protection against heterologous invaders and elimination of aberrant or obsolete cellular structures. This conserved degradation pathway also plays a key role in maintaining intracellular nutritional homeostasis and during starvation, for example, it is involved in the recycling of unnecessary cellular components to compensate for the limitation of nutrients. Autophagy is characterized by specific membrane rearrangements that culminate with the formation of large cytosolic double-membrane vesicles called autophagosomes. Autophagosomes sequester cytoplasmic material that is destined for degradation. Once completed, these vesicles dock and fuse with endosomes and/or lysosomes to deliver their contents into the hydrolytically active lumen of the latter organelle where, together with their cargoes, they are broken down into their basic components. Specific structures destined for degradation via autophagy are in many cases selectively targeted and sequestered into autophagosomes. A number of factors required for autophagy have been identified, but numerous questions about the molecular mechanism of this pathway remain unanswered. For instance, it is unclear how membranes are recruited and assembled into autophagosomes. In addition, once completed, these vesicles are transported to cellular locations where endosomes and lysosomes are concentrated. The mechanism employed for this directed movement is not well understood. The cellular cytoskeleton is a large, highly dynamic cellular scaffold that has a crucial role in multiple processes, several of which involve membrane rearrangements and vesicle-mediated events. Relatively little is known about the roles of the cytoskeleton network in autophagy. Nevertheless, some recent studies have revealed the importance of cytoskeletal elements such as actin microfilaments and microtubules in specific aspects of autophagy. In this review, we will highlight the results of this work and discuss their implications, providing possible working models. In particular, we will first describe the findings obtained with the yeast Saccharomyces cerevisiae, for long the leading organism for the study of autophagy, and, successively, those attained in mammalian cells, to emphasize possible differences between eukaryotic organisms.
Collapse
Affiliation(s)
- Iryna Monastyrska
- Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|