51
|
Zhao Y, Graeff R, Lee HC. Roles of cADPR and NAADP in pancreatic cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:719-29. [PMID: 22677461 DOI: 10.1093/abbs/gms044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are Ca(2+)-mobilizing nucleotides that were discovered in the late 1980s. Two decades of investigations have built up a considerable understanding about these two molecules that are related because both are derived from pyridine nucleotides and known to be generated by CD38/ADP-ribosyl cyclases. cADPR has been shown to target the ryanodine receptors in the endoplasmic reticulum whereas NAADP stimulates the two-pore channels in the endo-lysosomes. Accumulating results indicate that cADPR and NAADP are second messenger molecules mediating Ca(2+) signaling activated by a wide range of agonists. This article reviews what is known about these two molecules, especially regarding their signaling roles in the pancreatic cells.
Collapse
Affiliation(s)
- Yongjuan Zhao
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
52
|
Kim SO, Ives KL, Wang X, Davey RA, Chao C, Hellmich MR. Raf-1 kinase inhibitory protein (RKIP) mediates ethanol-induced sensitization of secretagogue signaling in pancreatic acinar cells. J Biol Chem 2012; 287:33377-88. [PMID: 22859298 DOI: 10.1074/jbc.m112.367656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Excessive alcohol consumption is associated with most cases of chronic pancreatitis, a progressive necrotizing inflammatory disease that can result in pancreatic insufficiency due to acinar atrophy and fibrosis and an increased risk of pancreatic cancer. At a cellular level acute alcohol exposure can sensitize pancreatic acinar cells to secretagogue stimulation, resulting in dysregulation of intracellular Ca(2+) homeostasis and premature digestive enzyme activation; however, the molecular mechanisms by which ethanol exerts these toxic effects have remained undefined. In this study we identify Raf-1 kinase inhibitory protein as an essential mediator of ethanol-induced sensitization of cholecystokinin- and carbachol-regulated Ca(2+) signaling in pancreatic acinar cells. We show that exposure of rodent acinar cells to ethanol induces protein kinase C-dependent Raf-1 kinase inhibitory protein phosphorylation, sensitization of cholecystokinin-stimulated Ca(2+) signaling, and potentiation of both basal and cholecystokinin-stimulated extracellular signal-regulated kinase activation. Furthermore, we show that either suppression of Raf-1 kinase inhibitory protein expression using short hairpin RNA or gene ablation prevented the sensitizing effects of ethanol on cholecystokinin- and carbachol-stimulated Ca(2+) signaling and intracellular chymotrypsin activation in pancreatic acinar cells, suggesting that the modulation of Raf-1 inhibitory protein expression may have future therapeutic utility in the prevention or treatment of alcohol-associated pancreatitis.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555-0722, USA
| | | | | | | | | | | |
Collapse
|
53
|
Walseth TF, Lin-Moshier Y, Weber K, Marchant JS, Slama JT, Guse AH. Nicotinic Acid Adenine Dinucleotide 2'-Phosphate (NAADP) Binding Proteins in T-Lymphocytes. ACTA ACUST UNITED AC 2012; 1:86-94. [PMID: 24829846 DOI: 10.1166/msr.2012.1008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Although several channels, including two-pore channels (TPC), ryanodine receptor (RYR) and mucolipin (TRP-ML1) have been implicated in NAADP regulation of calcium signaling, the NAADP receptor has not been identified. In this study, the photoaffinity probe, [32P]-5-azido-NAADP ([32P]-5-N3-NAADP), was used to study NAADP binding proteins in extracts from NAADP responsive Jurkat T-lymphocytes. [32P]-5-N3-NAADP photolabeling of Jurkat S100 cytosolic fractions resulted in the labeling of at least ten distinct proteins. Several of these S100 proteins, including a doublet at 22/23 kDa and small protein at 15 kDa displayed selectivity for NAADP as the labeling was protected by inclusion of unlabeled NAADP, whereas the structurally similar NADP required much higher concentrations for protection. Interestingly, the labeling of several S100 proteins (60, 45, 33 and 28 kDa) was stimulated by low concentrations of unlabeled NAADP, but not by NADP. The effect of NAADP on the labeling of the 60 kDa protein was biphasic, peaking at 100 nM with a five-fold increase and displaying no change at 1 µM NAADP. Several proteins were also photolabeled when the P100 membrane fraction from Jurkat cells was examined. Similar to the results with S100, a 22/23 kDa doublet and a 15 kDa protein appeared to be selectively labeled. NAADP did not increase the labeling of any P100 proteins as it did in the S100 fraction. The photolabeled S100 and P100 proteins were successfully resolved by two-dimensional gel electrophoresis. [32P]-5-N3-NAADP photolabeling and two-dimensional electrophoresis should represent a suitable strategy in which to identify and characterize NAADP binding proteins.
Collapse
Affiliation(s)
- Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Karin Weber
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jonathan S Marchant
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - James T Slama
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43614, USA
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany ; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
54
|
Mitochondrial function and malfunction in the pathophysiology of pancreatitis. Pflugers Arch 2012; 464:89-99. [PMID: 22653502 DOI: 10.1007/s00424-012-1117-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 12/13/2022]
Abstract
As a primary energy producer, mitochondria play a fundamental role in pancreatic exocrine physiology and pathology. The most frequent aetiology of acute pancreatitis is either gallstones or heavy alcohol consumption. Repeated episodes of acute pancreatitis can result in the development of chronic pancreatitis and increase the lifetime risk of pancreatic cancer 100-fold. Pancreatic cancer is one of the most common causes of cancer mortality with only about 3-4 % of patients surviving beyond 5 years. It has been shown that acute pancreatitis involves Ca²⁺ overload and overproduction of reactive oxygen species in pancreatic acinar cells. Both factors significantly affect mitochondria and lead to cell death. The pathogenesis of inflammation in acute and chronic pancreatitis is tightly linked to the induction of necrosis and apoptosis. There is currently no specific therapy for pancreatitis, but recent findings of an endogenous protective mechanism against Ca²⁺ overload--and particularly the potential to boost this protection--bring hope of new therapeutic approaches.
Collapse
|
55
|
Chi CC, Chou CT, Kuo CC, Hsieh YD, Liang WZ, Tseng LL, Su HH, Chu ST, Ho CM, Jan CR. Effect of m-3m3FBS on Ca2+ handling and viability in OC2 human oral cancer cells. ACTA ACUST UNITED AC 2012; 99:74-86. [PMID: 22425810 DOI: 10.1556/aphysiol.99.2012.1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C activator, on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether m-3M3FBS changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. M-3M3FBS at concentrations between 10-60 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. M-3M3FBS-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca2+-free medium, 30 μM m-3M3FBS pretreatment inhibited the [Ca2+]i rise induced by the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin and 2,5-di-tert-butylhydroquinone (BHQ). Conversely, pretreatment with thapsigargin, BHQ or cyclopiazonic acid partly reduced m-3M3FBS-induced [Ca2+]i rise. Inhibition of inositol 1,4,5-trisphosphate formation with U73122 did not alter m-3M3FBS-induced [Ca2+]i rise. At concentrations between 5 and 100 μM m-3M3FBS killed cells in a concentration-dependent manner. The cytotoxic effect of m-3M3FBS was not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining data suggest that m-3M3FBS (20 or 50 μM) induced apoptosis in a Ca2+-independent manner. Collectively, in OC2 cells, m-3M3FBS induced [Ca2+]i rise by causing inositol 1,4,5-trisphosphate-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive store-operated Ca2+ channels. M-3M3FBS also induced Ca2+-independent cell death and apoptosis.
Collapse
Affiliation(s)
- Chao-Chuan Chi
- Kaohsiung Veterans General Hospital Department of Otolaryngology Kaohsiung Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
57
|
Gerasimenko OV, Petersen OH, Gerasimenko JV. Role of intracellular acid Ca(2+) stores in pathological pancreatic protease activation. Expert Rev Gastroenterol Hepatol 2012; 6:129-31. [PMID: 22375516 DOI: 10.1586/egh.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
58
|
Álvarez J. Calcium dynamics in the secretory granules of neuroendocrine cells. Cell Calcium 2012; 51:331-7. [DOI: 10.1016/j.ceca.2011.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/22/2011] [Accepted: 12/04/2011] [Indexed: 01/29/2023]
|
59
|
Yoo JO, Lee CH, Hwang BM, Kim WJ, Kim YM, Ha KS. Regulation of intracellular Ca2+ in the cytotoxic response to photodynamic therapy with a chlorin-based photosensitizer. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424609001066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated regulation of intracellular Ca2+ induced by photodynamic therapy (PDT) with a new chlorin-based photosensitizer, DH-II-24, in human gastric adenocarcinoma cells. DH-II-24-mediated PDT induced necrotic cell death according to post-irradiation time, and produced intracellular reactive oxygen species (ROS) in an irradiation time-dependent manner. PDT also increased intracellular Ca2+ , and this Ca2+ elevation was largely inhibited by BAPTA-AM but not by EGTA. BAPTA-AM inhibited the ROS production by PDT, whereas NAC and Trolox had no effect on the PDT-induced Ca2+ response. In the presence of EGTA, pre-incubation with thapsigargin, Gly-Phe-β-naphthylamide or brefeldin A had no significant effect on the PDT-induced elevation in intracellular Ca2+ . However, ruthenium red affected the initial and late Ca2+ responses to PDT. Thus, DH-II-24-mediated PDT produces intracellular ROS via elevation in intracellular Ca2+ , contributed, at least in part, by mitochondria, which results in necrotic death of the human gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Je-Ok Yoo
- Department of Molecular and Cellular Biochemistry and Institute for Molecular Science and Fusion Technology, School of Medicine, Kangwon National University, Kangwon-do 200-701, Korea
| | - Chang-Hee Lee
- Department of Chemistry, College of Natural Science, Kangwon National University, Kangwon-do 200-701, Korea
| | - Byeong-Moon Hwang
- Department of Anesthesiology, School of Medicine Kangwon National University, Kangwon-do 200-701, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwon-do 200-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry and Institute for Molecular Science and Fusion Technology, School of Medicine, Kangwon National University, Kangwon-do 200-701, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry and Institute for Molecular Science and Fusion Technology, School of Medicine, Kangwon National University, Kangwon-do 200-701, Korea
| |
Collapse
|
60
|
Yeung-Yam-Wah V, Lee AK, Tse A. Arachidonic acid mobilizes Ca2+ from the endoplasmic reticulum and an acidic store in rat pancreatic β cells. Cell Calcium 2011; 51:140-8. [PMID: 22197025 DOI: 10.1016/j.ceca.2011.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 11/17/2022]
Abstract
In rat pancreatic β cells, arachidonic acid (AA) triggered intracellular Ca(2+) release. This effect could be mimicked by eicosatetraynoic acid, indicating that AA metabolism is not required. The AA-mediated Ca(2+) signal was not affected by inhibition of ryanodine receptors or emptying of ryanodine-sensitive store but was reduced by ∼70% following the disruption of acidic stores (treatment with bafilomycin A1 or glycyl-phenylalanyl-β-naphthylamide (GPN)). The action of AA did not involve TRPM2 channels or NAADP receptors because intracellular dialysis of adenosine diphosphoribose (ADPR; an activator of TRPM2 channels) or NAADP did not affect the AA response. In contrast, stimulation of IP(3) receptors via intracellular dialysis of adenophostin A, or exogenous application of ATP largely abolished the AA-mediated Ca(2+) signal. Intracellular dialysis of heparin abolished the ATP-mediated Ca(2+) signal but not the AA response, suggesting that the action of AA did not involve the IP(3)-binding site. Treatment with the SERCA pump inhibitor, thapsigargin, reduced the amplitude of the AA-mediated Ca(2+) signal by ∼70%. Overall, our finding suggests that AA mobilizes Ca(2+) from the endoplasmic reticulum as well as an acidic store and both stores could be depleted by IP(3) receptor agonist. The possibility of secretory granules as targets of AA is discussed.
Collapse
|
61
|
Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 2011; 439:349-74. [PMID: 21992097 DOI: 10.1042/bj20110949] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.
Collapse
|
62
|
Petersen OH, Gerasimenko OV, Tepikin AV, Gerasimenko JV. Aberrant Ca(2+) signalling through acidic calcium stores in pancreatic acinar cells. Cell Calcium 2011; 50:193-9. [PMID: 21435718 DOI: 10.1016/j.ceca.2011.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 12/13/2022]
Abstract
Pancreatic acinar cells possess a very large Ca(2+) store in the endoplasmic reticulum, but also have extensive acidic Ca(2+) stores. Whereas the endoplasmic reticulum is principally located in the baso-lateral part of the cells, although with extensions into the granular area, the acidic stores are exclusively present in the apical part. The two types of stores can be differentiated pharmacologically because the endoplasmic reticulum accumulates Ca(2+) via SERCA pumps, whereas the acidic pools require functional vacuolar H(+) pumps in order to maintain a high intra-organellar Ca(2+) concentration. The human disease acute pancreatitis is initiated by trypsinogen activation in the apical pole and this is mostly due to either complications arising from gall bladder stones or excessive alcohol consumption. Attention has therefore been focussed on assessing the acute effects of bile acids as well as alcohol metabolites. The evidence accumulated so far indicates that bile acids and fatty acid ethyl esters - the non-oxidative products of alcohol and fatty acids - exert their pathological effects primarily by excessive Ca(2+) release from the acidic stores. This occurs by opening of the very same release channels that are also responsible for normal stimulus-secretion coupling, namely inositol trisphosphate and ryanodine receptors. The inositol trisphosphate receptors are of particular importance and the results of gene deletion experiments indicate that the fatty acid ethyl esters mainly utilize sub-types 2 and 3.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Group, Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| | | | | | | |
Collapse
|
63
|
Patel S, Muallem S. Acidic Ca(2+) stores come to the fore. Cell Calcium 2011; 50:109-12. [PMID: 21497395 DOI: 10.1016/j.ceca.2011.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/17/2011] [Indexed: 01/06/2023]
Abstract
Changes in the concentration of cytosolic Ca(2+) form the basis of a ubiquitous signal transduction pathway. Accumulating evidence implicates acidic organelles in the control of Ca(2+) dynamics in organisms across phyla. In this special issue, we discuss Ca(2+) signalling by these "acidic Ca(2+) stores" which include acidocalcisomes, vacuoles, the endo-lysosomal system, lysosome-related organelles, secretory vesicles and the Golgi complex. Ca(2+) release from these morphologically very different organelles is mediated by members of the TRP channel superfamily and two-pore channels. Inositol trisphosphate and ryanodine receptors which are traditionally viewed as endoplasmic reticulum Ca(2+) release channels can also mobilize acidic Ca(2+) stores. Ca(2+) uptake into acidic Ca(2+) stores is driven by Ca(2+) ATPases and Ca(2+)/H(+) exchangers. In animal cells, the Ca(2+)-mobilizing messenger NAADP plays a central role in mediating Ca(2+) signals from acidic Ca(2+) stores through activation of two-pore channels. These signals are important for several physiological processes including muscle contraction and differentiation. Dysfunctional acidic Ca(2+) stores have been implicated in diseases such as acute pancreatitis and lysosomal storage disorders. Acidic Ca(2+) stores are therefore emerging as essential components of the Ca(2+) signalling network and merit extensive further study.
Collapse
|
64
|
Abstract
Agonist-sensitive intracellular Ca2+ stores may be heterogeneous and exhibit distinct functional features. We have studied the properties of intracellular Ca2+ stores using targeted aequorins for selective measurements in different subcellular compartments. Both, HEK-293T [HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus 40)] and HeLa cells accumulated Ca2+ into the ER (endoplasmic reticulum) to near millimolar concentrations and the IP3-generating agonists, carbachol and ATP, mobilized this Ca2+ pool. We find in HEK-293T, but not in HeLa cells, a distinct agonist-releasable Ca2+ pool insensitive to the SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) inhibitor TBH [2,5-di-(t-butyl)-benzohydroquinone]. TG (thapsigargin) and CPA (cyclopiazonic acid) completely emptied this pool, whereas lysosomal disruption or manoeuvres collapsing endomembrane pH gradients did not. Our results indicate that SERCA3d is important for filling the TBH-resistant store as: (i) SERCA3d is more abundant in HEK-293T than in HeLa cells; (ii) the SERCA 3 ATPase activity of HEK-293T cells is not fully blocked by TBH; and (iii) the expression of SERCA3d in HeLa cells generated a TBH-resistant agonist-mobilizable compartment in the ER. Therefore the distribution of SERCA isoforms may originate the heterogeneity of the ER Ca2+ stores and this may be the basis for store specialization in diverse functions. This adds to recent evidence indicating that SERCA3 isoforms may subserve important physiological and pathophysiological mechanisms.
Collapse
|
65
|
Esposito B, Gambara G, Lewis AM, Palombi F, D'Alessio A, Taylor LX, Genazzani AA, Ziparo E, Galione A, Churchill GC, Filippini A. NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells. Blood 2011; 117:4968-77. [PMID: 21364192 DOI: 10.1182/blood-2010-02-266338] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A variety of endothelial agonist-induced responses are mediated by rises in intracellular Ca(2+), suggesting that different Ca(2+) signatures could fine-tune specific inflammatory and thrombotic activities. In search of new intracellular mechanisms modulating endothelial effector functions, we identified nicotinic acid adenine dinucleotide phosphate (NAADP) as a crucial second messenger in histamine-induced Ca(2+) release via H1 receptors (H1R). NAADP is a potent intracellular messenger mobilizing Ca(2+) from lysosome-like acidic compartments, functionally coupled to the endoplasmic reticulum. Using the human EA.hy926 endothelial cell line and primary human umbilical vein endothelial cells, we show that selective H1R activation increases intracellular NAADP levels and that H1R-induced calcium release involves both acidic organelles and the endoplasmic reticulum. To assess that NAADP links H1R to Ca(2+)-signaling we used both microinjection of self-inactivating concentrations of NAADP and the specific NAADP receptor antagonist, Ned-19, both of which completely abolished H1R-induced but not thrombin-induced Ca(2+) mobilization. Interestingly, H1R-mediated von Willebrand factor (VWF) secretion was completely inhibited by treatment with Ned-19 and by siRNA knockdown of 2-pore channel NAADP receptors, whereas thrombin-induced VWF secretion failed to be affected. These findings demonstrate a novel and specific Ca(2+)-signaling mechanism activated through H1R in human endothelial cells, which reveals an obligatory role of NAADP in the control of VWF secretion.
Collapse
Affiliation(s)
- Bianca Esposito
- Department of Anatomy, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Calmodulin protects against alcohol-induced pancreatic trypsinogen activation elicited via Ca2+ release through IP3 receptors. Proc Natl Acad Sci U S A 2011; 108:5873-8. [PMID: 21436055 DOI: 10.1073/pnas.1016534108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alcohol abuse is a major global health problem, but there is still much uncertainty about the mechanisms of action. So far, the effects of ethanol on ion channels in the plasma membrane have received the most attention. We have now investigated actions on intracellular calcium channels in pancreatic acinar cells. Our aim was to discover the mechanism by which alcohol influences calcium homeostasis and thereby understand how alcohol can trigger premature intracellular trypsinogen activation, which is the initiating step for alcohol-induced pancreatitis. We used intact or two-photon permeabilized acinar cells isolated from wild-type mice or mice in which inositol trisphosphate receptors of type 2 or types 2 and 3 were knocked out. In permeabilized pancreatic acinar cells even a relatively low ethanol concentration elicited calcium release from intracellular stores and intracellular trypsinogen activation. The calcium sensor calmodulin (at a normal intracellular concentration) markedly reduced ethanol-induced calcium release and trypsinogen activation in permeabilized cells, effects prevented by the calmodulin inhibitor peptide. A calmodulin activator virtually abolished the modest ethanol effects in intact cells. Both ethanol-elicited calcium liberation and trypsinogen activation were significantly reduced in cells from type 2 inositol trisphosphate receptor knockout mice. More profound reductions were seen in cells from double inositol trisphosphate receptor (types 2 and 3) knockout mice. The inositol trisphosphate receptors, required for normal pancreatic stimulus-secretion coupling, are also responsible for the toxic ethanol action. Calmodulin protects by reducing calcium release sensitivity.
Collapse
|
67
|
Abstract
A thin layer of airway surface liquid (ASL) lines the entire surface of the lung and is the first point of contact between the lung and the environment. Surfactants contained within this layer are secreted in the alveolar region and are required to maintain a low surface tension and to prevent alveolar collapse. Mucins are secreted into the ASL throughout the respiratory tract and serve to intercept inhaled pathogens, allergens and toxins. Their removal by mucociliary clearance (MCC) is facilitated by cilia beating and hydration of the ASL by active ion transport. Throughout the lung, secretion, ion transport and cilia beating are under purinergic control. Pulmonary epithelia release ATP into the ASL which acts in an autocrine fashion on P2Y(2) (ATP) receptors. The enzymatic network describes in Chap. 2 then mounts a secondary wave of signaling by surface conversion of ATP into adenosine (ADO), which induces A(2B) (ADO) receptor-mediated responses. This chapter offers a comprehensive description of MCC and the extensive ramifications of the purinergic signaling network on pulmonary surfaces.
Collapse
|
68
|
Yoo SH. Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling: from phytoplankton to mammals. Cell Calcium 2010; 50:175-83. [PMID: 21176957 DOI: 10.1016/j.ceca.2010.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 01/20/2023]
Abstract
The majority of secretory cell calcium is stored in secretory granules that serve as the major IP(3)-dependent intracellular Ca(2+) store. Even in unicellular phytoplankton secretory granules are responsible for the IP(3)-induced Ca(2+) release that triggers exocytosis. The number of secretory granules in the cell is directly related not only to the magnitude of IP(3)-induced Ca(2+) release, which accounts for the majority of the IP(3)-induced cytoplasmic Ca(2+) release in neuroendocrine cells, but also to the IP(3) sensitivity of the cytoplasmic IP(3) receptor (IP(3)R)/Ca(2+) channels. Moreover, secretory granules contain the highest IP(3)R concentrations and the largest amounts of IP(3)Rs in any subcellular organelles in neuroendocrine cells. Secretory granules from phytoplankton to mammals contain large amounts of polyanionic molecules, chromogranins being the major molecules in mammals, in addition to acidic intragranular pH and high Ca(2+) concentrations. The polyanionic molecules undergo pH- and Ca(2+)-dependent conformational changes that serve as a molecular basis for condensation-decondensation phase transitions of the intragranular matrix. Likewise, chromogranins undergo pH- and Ca(2+)-dependent conformational changes with increased exposure of the structure and increased interactions with Ca(2+) and other granule components at acidic pH. The unique physico-chemical properties of polyanionic molecules appear to be at the center of biogenesis, and physiological functions of secretory granules in living organisms from primitive to advanced species.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Republic of Korea.
| |
Collapse
|
69
|
SantoDomingo J, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J. Ca2+ dynamics in the secretory vesicles of neurosecretory PC12 and INS1 cells. Cell Mol Neurobiol 2010; 30:1267-74. [PMID: 21088885 PMCID: PMC11498849 DOI: 10.1007/s10571-010-9572-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
We have investigated the dynamics of the free [Ca(2+)] inside the secretory granules of neurosecretory PC12 and INS1 cells using a low-Ca(2+)-affinity aequorin chimera fused to synaptobrevin-2. The steady-state secretory granule [Ca(2+)] ([Ca(2+)](SG)] was around 20-40 μM in both cell types, about half the values previously found in chromaffin cells. Inhibition of SERCA-type Ca(2+) pumps with thapsigargin largely blocked Ca(2+) uptake by the granules in Ca(2+)-depleted permeabilized cells, and the same effect was obtained when the perfusion medium lacked ATP. Consistently, the SERCA-type Ca(2+) pump inhibitor benzohydroquinone induced a rapid release of Ca(2+) from the granules both in intact and permeabilized cells, suggesting that the continuous activity of SERCA-type Ca(2+) pumps is essential to maintain the steady-state [Ca(2+)](SG). Both inositol 1,4,5-trisphosphate (InsP(3)) and caffeine produced a rapid Ca(2+) release from the granules, suggesting the presence of InsP(3) and ryanodine receptors in the granules. The response to high-K(+) depolarization was different in both cell types, a decrease in [Ca(2+)](SG) in PC12 cells and an increase in [Ca(2+)](SG) in INS1 cells. The difference may rely on the heterogeneous response of different vesicle populations in each cell type. Finally, increasing the glucose concentration triggered a decrease in [Ca(2+)](SG) in INS1 cells. In conclusion, our data show that the secretory granules of PC12 and INS1 cells take up Ca(2+) through SERCA-type Ca(2+) pumps and can release it through InsP(3) and ryanodine receptors, supporting the hypothesis that secretory granule Ca(2+) may be released during cell stimulation and contribute to secretion.
Collapse
Affiliation(s)
- Jaime SantoDomingo
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, 47005 Valladolid, Spain
- Present Address: Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Rosalba I. Fonteriz
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Carmen D. Lobatón
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Mayte Montero
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Alfredo Moreno
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Javier Alvarez
- Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, 47005 Valladolid, Spain
| |
Collapse
|
70
|
Yoo SH, Huh YH, Hur YS. Inositol 1,4,5-trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol 2010; 30:1155-61. [PMID: 21046461 PMCID: PMC11498867 DOI: 10.1007/s10571-010-9564-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/02/2010] [Indexed: 09/29/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP(3))-mediated intracellular Ca(2+) releases in secretory cells play vital roles in controlling not only the intracellular Ca(2+) concentrations but also the Ca(2+)-dependent exocytotic processes. Of intracellular organelles that release Ca(2+) in response to IP(3), secretory granules stand out as the most prominent organelle and are responsible for the majority of IP(3)-dependent Ca(2+) releases in the cytoplasm of chromaffin cells. Bovine chromaffin granules were the first granules that demonstrated the IP(3)-mediated Ca(2+) release as well as the presence of the IP(3) receptor (IP(3)R) in granule membranes. Secretory granules contain all three (type 1, 2, and 3) IP(3)R isoforms, and 58-69% of total cellular IP(3)R isoforms are expressed in bovine chromaffin granules. Moreover, secretory granules contain large amounts (2-4 mM) of chromogranins and secretogranins; chromogranins A and B, and secretogranin II being the major species. Chromogranins A and B, and secretogranin II are high-capacity, low-affinity Ca(2+) binding proteins, binding 30-93 mol of Ca(2+)/mol of protein with dissociation constants of 1.5-4.0 mM. Due to this high Ca(2+) storage properties of chromogranins secretory granules contain ~40 mM Ca(2+). Furthermore, chromogranins A and B directly interact with the IP(3)Rs and modulate the IP(3)R/Ca(2+) channels, i.e., increasing the open probability and the mean open time of the channels 8- to 16-fold and 9- to 42-fold, respectively. Coupled chromogranins change the IP(3)R/Ca(2+) channels to a more ordered, release-ready state, whereby making the IP(3)R/Ca(2+) channels significantly more sensitive to IP(3).
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Korea.
| | | | | |
Collapse
|
71
|
Cosker F, Cheviron N, Yamasaki M, Menteyne A, Lund FE, Moutin MJ, Galione A, Cancela JM. The ecto-enzyme CD38 is a nicotinic acid adenine dinucleotide phosphate (NAADP) synthase that couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells. J Biol Chem 2010; 285:38251-9. [PMID: 20870729 DOI: 10.1074/jbc.m110.125864] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca(2+)-mobilizing intracellular messenger and is linked to a variety of stimuli and cell surface receptors. However, the enzyme responsible for endogenous NAADP synthesis in vivo is unknown, and it has been proposed that another enzyme differing from ADP-ribosyl cyclase family members may exist. The ecto-enzyme CD38, involved in many functions as diverse as cell proliferation and social behavior, represents an important alternative. In pancreatic acinar cells, the hormone cholecystokinin (CCK) stimulates NAADP production evoking Ca(2+) signals by discharging acidic Ca(2+) stores and leading to digestive enzyme secretion. From cells derived from CD38(-/-) mice, we provide the first physiological evidence that CD38 is required for endogenous NAADP generation in response to CCK stimulation. Furthermore, CD38 expression in CD38-deficient pancreatic AR42J cells remodels Ca(2+)-signaling pathways in these cells by restoring Ca(2+) mobilization from lysosomes during CCK-induced Ca(2+) signaling. In agreement with an intracellular site for messenger synthesis, we found that CD38 is expressed in endosomes. These CD38-containing vesicles, likely of endosomal origin, appear to be proximal to lysosomes but not co-localized with them. We propose that CD38 is an NAADP synthase required for coupling receptor activation to NAADP-mediated Ca(2+) release from lysosomal stores in pancreatic acinar cells.
Collapse
Affiliation(s)
- François Cosker
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire, UPR9040, F-91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Gerasimenko J, Ferdek P, Fischer L, Gukovskaya AS, Pandol SJ. Inhibitors of Bcl-2 protein family deplete ER Ca2+ stores in pancreatic acinar cells. Pflugers Arch 2010; 460:891-900. [PMID: 20617337 PMCID: PMC2937140 DOI: 10.1007/s00424-010-0859-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/11/2010] [Accepted: 06/17/2010] [Indexed: 11/30/2022]
Abstract
Physiological stimulation of pancreatic acinar cells by cholecystokinin and acetylcholine activate a spatial-temporal pattern of cytosolic [Ca+2] changes that are regulated by a coordinated response of inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs) and calcium-induced calcium release (CICR). For the present study, we designed experiments to determine the potential role of Bcl-2 proteins in these patterns of cytosolic [Ca+2] responses. We used small molecule inhibitors that disrupt the interactions between prosurvival Bcl-2 proteins (i.e. Bcl-2 and Bcl-xl) and proapoptotic Bcl-2 proteins (i.e. Bax) and fluorescence microfluorimetry techniques to measure both cytosolic [Ca+2] and endoplasmic reticulum [Ca+2]. We found that the inhibitors of Bcl-2 protein interactions caused a slow and complete release of intracellular agonist-sensitive stores of calcium. The release was attenuated by inhibitors of IP3Rs and RyRs and substantially reduced by strong [Ca2+] buffering. Inhibition of IP3Rs and RyRs also dramatically reduced activation of apoptosis by BH3I-2′. CICR induced by different doses of BH3I-2′ in Bcl-2 overexpressing cells was markedly decreased compared with control. The results suggest that Bcl-2 proteins regulate calcium release from the intracellular stores and suggest that the spatial-temporal patterns of agonist-stimulated cytosolic [Ca+2] changes are regulated by differential cellular distribution of interacting pairs of prosurvival and proapoptotic Bcl-2 proteins.
Collapse
Affiliation(s)
- Julia Gerasimenko
- The Physiological Laboratory, University of Liverpool, Liverpool, L69 3BX, UK
| | | | | | | | | |
Collapse
|
73
|
Patel S, Marchant JS, Brailoiu E. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium 2010; 47:480-90. [PMID: 20621760 PMCID: PMC2921607 DOI: 10.1016/j.ceca.2010.05.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/11/2023]
Abstract
NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two-pore channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores "trans-chatter" and possibly within the same store "cis-chatter". We also speculate that trafficking of two-pore channels through the endo-lysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, UK.
| | | | | |
Collapse
|
74
|
Rah SY, Mushtaq M, Nam TS, Kim SH, Kim UH. Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. J Biol Chem 2010; 285:21877-87. [PMID: 20442403 DOI: 10.1074/jbc.m109.066290] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that cyclic ADP-ribose (cADPR) is a calcium signaling messenger in interleukin 8 (IL-8)-induced lymphokine-activated killer (LAK) cells. In this study we examined the possibility that IL-8 activates CD38 to produce another messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), in LAK cells, and we showed that IL-8 induced NAADP formation after cADPR production. These calcium signaling messengers were not produced when LAK cells prepared from CD38 knock-out mice were treated with IL-8, indicating that the synthesis of both NAADP and cADPR is catalyzed by CD38 in LAK cells. Application of cADPR to LAK cells induced NAADP production, whereas NAADP failed to increase intracellular cADPR levels, confirming that the production of cADPR precedes that of NAADP in IL-8-treated LAK cells. Moreover, NAADP increased intracellular Ca(2+) signaling as well as cell migration, which was completely blocked by bafilomycin A1, suggesting that NAADP is generated in lysosome-related organelles after cADPR production. IL-8 or exogenous cADPR, but not NAADP, increased intracellular cAMP levels. cGMP analog, 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate, increased both cADPR and NAADP production, whereas the cAMP analog, 8-(4-chlorophenylthio)-cAMP, increased only NAADP production, suggesting that cAMP is essential for IL-8-induced NAADP formation. Furthermore, activation of Rap1, a downstream molecule of Epac, was required for IL-8-induced NAADP formation in LAK cells. Taken together, our data suggest that IL-8-induced NAADP production is mediated by CD38 activation through the actions of cAMP/Epac/protein kinase A/Rap1 in LAK cells and that NAADP plays a key role in Ca(2+) signaling of IL-8-induced LAK cell migration.
Collapse
Affiliation(s)
- So-Young Rah
- Departments of Biochemistry, Chonbuk National University Medical School, Jeonju 561-182, Republic of Korea
| | | | | | | | | |
Collapse
|
75
|
Voronina S, Barrow S, Simpson A, Gerasimenko O, da Silva Xavier G, Rutter G, Petersen O, Tepikin AV. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology 2010; 138:1976-87. [PMID: 20102715 PMCID: PMC6101211 DOI: 10.1053/j.gastro.2010.01.037] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 12/17/2009] [Accepted: 01/21/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Previous studies of pancreatic acinar cells characterized the effects of Ca(2+)-releasing secretagogues and substances, inducing acute pancreatitis on mitochondrial Ca(2+), transmembrane potential, and NAD(P)H, but dynamic measurements of the crucial intracellular adenosine triphosphate (ATP) levels have not been reported. Here we characterized the effects of these agents on ATP levels in the cytosol and mitochondria. METHODS ATP levels were monitored using cytosolic- or mitochondrial-targeted luciferases. RESULTS Inhibition of oxidative phosphorylation produced a substantial decrease in cytosolic ATP comparable to that induced by inhibition of glycolysis. Cholecystokinin-8 (CCK) increased cytosolic ATP in spite of accelerating ATP consumption. Acetylcholine, caerulein, and bombesin had similar effect. A bile acid, taurolithocholic acid 3-sulfate (TLC-S); a fatty acid, palmitoleic acid (POA); and palmitoleic acid ethyl ester (POAEE) reduced cytosolic ATP. The ATP decrease in response to these substances was observed in cells with intact or inhibited oxidative phosphorylation. TLC-S, POA, and POAEE reduced mitochondrial ATP, whereas physiological CCK increased mitochondrial ATP. Supramaximal CCK produced a biphasic response composed of a small initial decline followed by a stronger increase. CONCLUSIONS Both glycolysis and oxidative phosphorylation make substantial contributions to ATP production in acinar cells. Ca(2+)-releasing secretagogues increased ATP level in the cytosol and mitochondria of intact isolated cells. TLC-S, POA, and POAEE reduced cytosolic and mitochondrial ATP. When cells rely on nonoxidative ATP production, secretagogues as well as TLC-S, POA, and POAEE all diminish cytosolic ATP levels.
Collapse
Affiliation(s)
- Svetlana Voronina
- The Physiological Laboratory, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Stephanie Barrow
- The Physiological Laboratory, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Alec Simpson
- Department of Human Anatomy and Cell Biology, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Oleg Gerasimenko
- The Physiological Laboratory, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Gabriela da Silva Xavier
- Section of Cell Biology, Division of Medicine, Imperial College, London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Guy Rutter
- Section of Cell Biology, Division of Medicine, Imperial College, London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Ole Petersen
- The Physiological Laboratory, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Alexei V. Tepikin
- The Physiological Laboratory, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
76
|
The presence of bestrophin-1 modulates the Ca2+ recruitment from Ca2+ stores in the ER. Pflugers Arch 2010; 460:163-75. [PMID: 20411394 DOI: 10.1007/s00424-010-0840-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/23/2010] [Accepted: 04/03/2010] [Indexed: 10/19/2022]
Abstract
Bestrophin-1, mainly analyzed in overexpression experiments, functions as Ca(2+)-dependent Cl(-) channel. Analysis of endogenously expressed bestrophin-1 suggested an influence on intracellular Ca(2+). The aim of the study is to analyze the influence of endogenously expressed bestrophin-1 on Ca(2+) homeostasis. Primary cultures of retinal pigment epithelial (RPE) cells were established from wild-type and bestrophin-1-deficient mice. Intracellular free Ca(2+) ([Ca(2+)](i)) was recorded by Ca(2+) imaging; through immunocytochemistry and differential centrifugation, subcellular localization of bestrophin-1 was analyzed. RPE cells of bestrophin-1-deficient mice showed higher levels of resting [Ca(2+)](i) than cells from wild-type mice. In cells from knockout mice and wild-type mice, ATP led to increases in [Ca(2+)](i) subsequent to phospholipase C activation. ATP-induced Ca(2+) in bestrophin-1-deficient mice rose faster and decayed slower. In cells from wild-type mice, ATP led to [Ca(2+)](i) increase via depletion of Ca(2+) from thapsigargin-sensitive stores. In cells from bestrophin-1-deficient mice, ATP-dependent increase in [Ca(2+)](i) resulted in 40% of cells from depletion of bafilomycin-sensitive and in 60% from thapsigargin-sensitive Ca(2+) stores. After differential centrifugation, bestrophin-1 was found in fractions enriched of ClC-3 Cl channel and myosin-7A. Co-localization analysis of bestrophin-1, with beta-catenin or pan-cadherin, in fresh sections of porcine retina, revealed bestrophin-1 in the basolateral membrane. A portion of endogenously expressed bestrophin-1,localized in the endoplasmic reticulum, influenced uptake of Ca(2+) into Ca(2+) stores. Therefore, bestrophin-1 possibly conducts Cl(-) as counter ion for Ca(2+) uptake into cytosolic Ca(2+) stores.
Collapse
|
77
|
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2010; 17:212-33. [PMID: 20388721 DOI: 10.1177/1753425910361989] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Collapse
Affiliation(s)
- Andreas Grahnert
- Department of Immunobiology, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Brailoiu E, Hooper R, Cai X, Brailoiu GC, Keebler MV, Dun NJ, Marchant JS, Patel S. An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J Biol Chem 2010; 285:2897-901. [PMID: 19940116 PMCID: PMC2823445 DOI: 10.1074/jbc.c109.081943] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/24/2009] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent and widespread calcium-mobilizing messenger, the properties of which have been most extensively described in sea urchin eggs. The molecular basis for calcium release by NAADP, however, is not clear and subject to controversy. Recent studies have provided evidence that members of the two-pore channel (TPC) family in mammals are the long sought after target channels for NAADP. Here, we show that the TPC3 gene, which has yet to be functionally characterized, is present throughout the deuterostome lineage but is a pseudogene in humans and other primates. We report the molecular cloning of the complete ancestral TPC gene family from the sea urchin and demonstrate that all three isoforms localize to acidic organelles to mediate NAADP-dependent calcium release. Our data highlight the functional divergence of this novel gene family during deuterostome evolution and provide further evidence that NAADP mediates calcium release from acidic stores through activation of TPCs.
Collapse
Affiliation(s)
- Eugen Brailoiu
- From the Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Robert Hooper
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Xinjiang Cai
- the Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, and
| | - G. Cristina Brailoiu
- From the Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Michael V. Keebler
- the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Nae J. Dun
- From the Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Jonathan S. Marchant
- the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Sandip Patel
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
79
|
Kiselyov K, Yamaguchi S, Lyons CW, Muallem S. Aberrant Ca2+ handling in lysosomal storage disorders. Cell Calcium 2010; 47:103-11. [PMID: 20053447 DOI: 10.1016/j.ceca.2009.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 12/27/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by inability of cells to process the material captured during endocytosis. While they are essentially diseases of cellular "indigestion", LSDs affect large number of cellular activities and, as such, they teach us about the integrative function of the cell, as well as about the gaps in our knowledge of the endocytic pathway and membrane transport. The present review summarizes recent findings on Ca2+ handling in LSDs and attempts to identify the key questions on alterations in Ca2+ signaling and membrane transport in this group of diseases, answers to which may lie in delineating the cellular pathogeneses of LSDs.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
80
|
Gerasimenko O, Gerasimenko J. Two-photon permeabilization and calcium measurements in cellular organelles. Methods Mol Biol 2010; 591:201-10. [PMID: 19957132 DOI: 10.1007/978-1-60761-404-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositol trisphosphate and cyclic ADP-ribose, main intracellular Ca(2+) messengers, induce release from the intracellular Ca(2+) stores via inositol trisphosphate and ryanodine receptors, respectively. Recently, studies using novel messenger nicotinic acid adenine dinucleotide phosphate (NAADP) releasing Ca(2+) from calcium stores in organelles other than endoplasmic reticulum (ER) have been conducted. However, technical difficulties of Ca(2+) measurements in relatively small Ca(2+) stores prompted us to develop a new, more sensitive, and less damaging two-photon permeabilization technique. Applied to pancreatic acinar cells, this technique allowed us to show that all three messengers - IP(3), cADPR, and NAADP - release Ca(2+) from two intracellular stores: the endoplasmic reticulum and an acidic store in the granular region. This chapter describes a detailed procedure of using this technique with pancreatic acinar cells.
Collapse
Affiliation(s)
- Oleg Gerasimenko
- Department of Physiology, Biomedical School, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
81
|
Yoo SH. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 2009; 24:653-64. [PMID: 19837865 DOI: 10.1096/fj.09-132456] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of all the intracellular organelles, secretory granules contain by far the highest calcium concentration; secretory granules of typical neuroendocrine chromaffin cells contain approximately 40 mM Ca(2+) and occupy approximately 20% cell volume, accounting for >60% of total cellular calcium. They also contain the majority of cellular inositol 1,4,5-trisphosphate receptors (IP(3)Rs) in addition to the presence of >2 mM of chromogranins A and B that function as high-capacity, low-affinity Ca(2+) storage proteins. Chromogranins A and B also interact with the IP(3)Rs and activate the IP(3)R/Ca(2+) channels. In experiments with both neuroendocrine PC12 and nonneuroendocrine NIH3T3 cells, in which the number of secretory granules present was changed by either suppression or induction of secretory granule formation, secretory granules were demonstrated to account for >70% of the IP(3)-induced Ca(2+) releases in the cytoplasm. Moreover, the IP(3) sensitivity of secretory granule IP(3)R/Ca(2+) channels is at least approximately 6- to 7-fold more sensitive than those of the endoplasmic reticulum, thus enabling secretory granules to release Ca(2+) ahead of the endoplasmic reticulum. Further, there is a direct correlation between the number of secretory granules and the IP(3) sensitivity of cytoplasmic IP(3)R/Ca(2+) channels and the increased ratio of IP(3)-induced cytoplasmic Ca(2+) release, highlighting the importance of secretory granules in the IP(3)-dependent Ca(2+) signaling. Given that secretory granules are present in all secretory cells, these results presage critical roles of secretory granules in the control of cytoplasmic Ca(2+) concentrations in other secretory cells.-Yoo, S. H. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling in the cytoplasm of neuroendocrine cells.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Korea.
| |
Collapse
|
82
|
Diambra L, Marchant JS. Localization and socialization: experimental insights into the functional architecture of IP3 receptors. CHAOS (WOODBURY, N.Y.) 2009; 19:037103. [PMID: 19792028 PMCID: PMC2771704 DOI: 10.1063/1.3147425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/11/2009] [Indexed: 05/28/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP(3))-evoked Ca(2+) signals display great spatiotemporal malleability. This malleability depends on diversity in both the cellular organization and in situ functionality of IP(3) receptors (IP(3)Rs) that regulate Ca(2+) release from the endoplasmic reticulum (ER). Recent experimental data imply that these considerations are not independent, such that-as with other ion channels-the local organization of IP(3)Rs impacts their functionality, and reciprocally IP(3)R activity impacts their organization within native ER membranes. Here, we (i) review experimental data that lead to our understanding of the "functional architecture" of IP(3)Rs within the ER, (ii) propose an updated terminology to span the organizational hierarchy of IP(3)Rs observed in intact cells, and (iii) speculate on the physiological significance of IP(3)R socialization in Ca(2+) dynamics, and consequently the emerging need for modeling studies to move beyond gridded, planar, and static simulations of IP(3)R clustering even over short experimental timescales.
Collapse
Affiliation(s)
- Luis Diambra
- Laboratorio de Biología de Sistemas, CREG-UNLP, Buenos Aires, Argentina
| | | |
Collapse
|
83
|
Mann ZF, Duchen MR, Gale JE. Mitochondria modulate the spatio-temporal properties of intra- and intercellular Ca2+ signals in cochlear supporting cells. Cell Calcium 2009; 46:136-46. [PMID: 19631380 DOI: 10.1016/j.ceca.2009.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/12/2009] [Accepted: 06/28/2009] [Indexed: 10/20/2022]
Abstract
In the cochlea, cell damage triggers intercellular Ca2+ waves that propagate through the glial-like supporting cells that surround receptor hair cells. These Ca2+ waves are thought to convey information about sensory hair cell-damage to the surrounding supporting cells within the cochlear epithelium. Mitochondria are key regulators of cytoplasmic Ca2+ concentration ([Ca2+](cyt)), and yet little is known about their role during the propagation of such intercellular Ca2+ signalling. Using neonatal rat cochlear explants and fluorescence imaging techniques, we explore how mitochondria modulate supporting cell [Ca2+](cyt) signals that are triggered by ATP or by hair cell damage. ATP application (0.1-50 microM) caused a dose dependent increase in [Ca2+](cyt) which was accompanied by an increase in mitochondrial calcium. Blocking mitochondrial Ca2+ uptake by dissipating the mitochondrial membrane potential using CCCP and oligomycin or using Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, enhanced the peak amplitude and duration of ATP-induced [Ca2+](cyt) transients. In the presence of Ru360, the mean propagation velocity, amplitude and extent of spread of damage-induced intercellular Ca2+ waves was significantly increased. Thus, mitochondria function as spatial Ca2+ buffers during agonist-evoked [Ca2+](cyt) signalling in cochlear supporting cells and play a significant role in regulating the spatio-temporal properties of intercellular Ca2+ waves.
Collapse
Affiliation(s)
- Zoë F Mann
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
84
|
Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJM, Gerasimenko OV. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 2009; 284:20796-803. [PMID: 19515844 PMCID: PMC2742844 DOI: 10.1074/jbc.m109.025353] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Indexed: 01/16/2023] Open
Abstract
We have investigated in detail the role of intra-organelle Ca2+ content during induction of apoptosis by the oxidant menadione while changing and monitoring the Ca2+ load of endoplasmic reticulum (ER), mitochondria, and acidic organelles. Menadione causes production of reactive oxygen species, induction of oxidative stress, and subsequently apoptosis. In both pancreatic acinar and pancreatic tumor AR42J cells, menadione was found to induce repetitive cytosolic Ca2+ responses because of the release of Ca2+ from both ER and acidic stores. Ca2+ responses to menadione were accompanied by elevation of Ca2+ in mitochondria, mitochondrial depolarization, and mitochondrial permeability transition pore (mPTP) opening. Emptying of both the ER and acidic Ca2+ stores did not necessarily prevent menadione-induced apoptosis. High mitochondrial Ca2+ at the time of menadione application was the major factor determining cell fate. However, if mitochondria were prevented from loading with Ca2+ with 10 mum RU360, then caspase-9 activation did not occur irrespective of the content of other Ca2+ stores. These results were confirmed by ratiometric measurements of intramitochondrial Ca2+ with pericam. We conclude that elevated Ca2+ in mitochondria is the crucial factor in determining whether cells undergo oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Heidi K. Baumgartner
- From the Physiological Laboratory, School of Biomedical Sciences
- the Division of Gastroenterology, School of Clinical Sciences, and
| | | | | | - Pawel Ferdek
- From the Physiological Laboratory, School of Biomedical Sciences
| | - Tullio Pozzan
- the Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padua, Viale G Colombo 3, 35121 Padua, Italy
| | | | - Ole H. Petersen
- From the Physiological Laboratory, School of Biomedical Sciences
| | - Robert Sutton
- the Division of Surgery and Oncology, School of Cancer Studies, Liverpool University, Liverpool L69 3BX, United Kingdom and
| | | | | |
Collapse
|
85
|
Gerasimenko JV, Lur G, Sherwood MW, Ebisui E, Tepikin AV, Mikoshiba K, Gerasimenko OV, Petersen OH. Pancreatic protease activation by alcohol metabolite depends on Ca2+ release via acid store IP3 receptors. Proc Natl Acad Sci U S A 2009; 106:10758-63. [PMID: 19528657 PMCID: PMC2696551 DOI: 10.1073/pnas.0904818106] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Indexed: 12/13/2022] Open
Abstract
Toxic alcohol effects on pancreatic acinar cells, causing the often fatal human disease acute pancreatitis, are principally mediated by fatty acid ethyl esters (non-oxidative products of alcohol and fatty acids), emptying internal stores of Ca(2+). This excessive Ca(2+) liberation induces Ca(2+)-dependent necrosis due to intracellular trypsin activation. Our aim was to identify the specific source of the Ca(2+) release linked to the fatal intracellular protease activation. In 2-photon permeabilized mouse pancreatic acinar cells, we monitored changes in the Ca(2+) concentration in the thapsigargin-sensitive endoplasmic reticulum (ER) as well as in a bafilomycin-sensitive acid compartment, localized exclusively in the apical granular pole. We also assessed trypsin activity in the apical granular region. Palmitoleic acid ethyl ester (POAEE) elicited Ca(2+) release from both the ER as well as the acid pool, but trypsin activation depended predominantly on Ca(2+) release from the acid pool, that was mainly mediated by functional inositol 1,4,5- trisphosphate receptors (IP(3)Rs) of types 2 and 3. POAEE evoked very little Ca(2+) release and trypsin activation when IP(3)Rs of both types 2 and 3 were knocked out. Antibodies against IP(3)Rs of types 2 and 3, but not type 1, markedly inhibited POAEE-elicited Ca(2+) release and trypsin activation. We conclude that Ca(2+) release through IP(3)Rs of types 2 and 3 in the acid granular Ca(2+) store induces intracellular protease activation, and propose that this is a critical process in the initiation of alcohol-related acute pancreatitis.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Enzyme Activation/drug effects
- Ether/chemistry
- Ether/pharmacology
- Fatty Acids, Monounsaturated/chemistry
- Fatty Acids, Monounsaturated/pharmacology
- Female
- Genotype
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pancreas/cytology
- Pancreas/drug effects
- Pancreas/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Trypsin/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Julia V. Gerasimenko
- Medical Research Council Group, Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom; and
| | - György Lur
- Medical Research Council Group, Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom; and
| | - Mark W. Sherwood
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, 351-0198 Japan
| | - Etsuko Ebisui
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, 351-0198 Japan
| | - Alexei V. Tepikin
- Medical Research Council Group, Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom; and
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, 351-0198 Japan
| | - Oleg V. Gerasimenko
- Medical Research Council Group, Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom; and
| | - Ole H. Petersen
- Medical Research Council Group, Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom; and
| |
Collapse
|
86
|
NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist. Proc Natl Acad Sci U S A 2009; 106:10678-83. [PMID: 19541638 DOI: 10.1073/pnas.0809997106] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide NAADP was recently discovered as a second messenger involved in the initiation and propagation of Ca(2+) signaling in lymphoma T cells, but its impact on primary T cell function is still unknown. An optimized, synthetic, small molecule inhibitor of NAADP action, termed BZ194, was designed and synthesized. BZ194 neither interfered with Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate or cyclic ADP-ribose nor with capacitative Ca(2+) entry. BZ194 specifically and effectively blocked NAADP-stimulated [(3)H]ryanodine binding to the purified type 1 ryanodine receptor. Further, in intact T cells, Ca(2+) mobilization evoked by NAADP or by formation of the immunological synapse between primary effector T cells and astrocytes was inhibited by BZ194. Downstream events of Ca(2+) mobilization, such as nuclear translocation of "nuclear factor of activated T cells" (NFAT), T cell receptor-driven interleukin-2 production, and proliferation in antigen-experienced CD4(+) effector T cells, were attenuated by the NAADP antagonist. Taken together, specific inhibition of the NAADP signaling pathway constitutes a way to specifically and effectively modulate T-cell activation and has potential in the therapy of autoimmune diseases.
Collapse
|
87
|
Petersen OH, Tepikin AV, Gerasimenko JV, Gerasimenko OV, Sutton R, Criddle DN. Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis. Cell Calcium 2009; 45:634-42. [PMID: 19327825 DOI: 10.1016/j.ceca.2009.02.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 01/11/2023]
Abstract
Pancreatitis, a potentially fatal disease in which the pancreas digests itself as well as its surroundings, is a well recognized complication of hyperlipidemia. Fatty acids have toxic effects on pancreatic acinar cells and these are mediated by large sustained elevations of the cytosolic Ca(2+) concentration. An important component of the effect of fatty acids is due to inhibition of mitochondrial function and subsequent ATP depletion, which reduces the operation of Ca(2+)-activated ATPases in both the endoplasmic reticulum and the plasma membrane. One of the main causes of pancreatitis is alcohol abuse. Whereas the effects of even high alcohol concentrations on isolated pancreatic acinar cells are variable and often small, fatty acid ethyl esters--synthesized by combination of alcohol and fatty acids--consistently evoke major Ca(2+) release from intracellular stores, subsequently opening Ca(2+) entry channels in the plasma membrane. The crucial trigger for pancreatic autodigestion is intracellular trypsin activation. Although there is still uncertainty about the exact molecular mechanism by which this Ca(2+)-dependent process occurs, progress has been made in identifying a subcellular compartment--namely acid post-exocytotic endocytic vacuoles--in which this activation takes place.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Research Group, Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
88
|
Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2009; 2:ra23. [PMID: 19454650 PMCID: PMC2779714 DOI: 10.1126/scisignal.2000278] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
TRPM2 is a Ca2+-permeable cation channel that is specifically activated by adenosine diphosphoribose (ADPR). Channel activation in the plasma membrane leads to Ca2+ influx and has been linked to apoptotic mechanisms. The primary agonist, ADPR, is produced both extra- and intracellularly and causes increases in intracellular calcium concentration ([Ca2+]i), but the mechanisms involved are not understood. Using short interfering RNA and a knockout mouse, we report that TRPM2, in addition to its role as a plasma membrane channel, also functions as a Ca2+-release channel activated by intracellular ADPR in a lysosomal compartment. We show that both functions of TRPM2 are critically linked to hydrogen peroxide-induced beta cell death. Additionally, extracellular ADPR production by the ectoenzyme CD38 from its substrates NAD+ (nicotinamide adenine dinucleotide) or cADPR causes IP3-dependent Ca2+ release via P2Y and adenosine receptors. Thus, ADPR and TRPM2 represent multimodal signaling elements regulating Ca2+ mobilization in beta cells through membrane depolarization, Ca2+ influx, and release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- Ingo Lange
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
- John A. Burns School of Medicine at the University of Hawaii, Honolulu, HI 96813, USA
| | - Shinichiro Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Santiago Partida-Sanchez
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
- John A. Burns School of Medicine at the University of Hawaii, Honolulu, HI 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
- John A. Burns School of Medicine at the University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
89
|
Huang WC, Swietach P, Vaughan-Jones RD, Glitsch MD. Differentiation impairs low pH-induced Ca2+ signaling and ERK phosphorylation in granule precursor tumour cells. Cell Calcium 2009; 45:391-9. [PMID: 19249096 DOI: 10.1016/j.ceca.2009.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/18/2008] [Accepted: 01/15/2009] [Indexed: 12/19/2022]
Abstract
Extracellular acidification is a hallmark of a number of debilitating pathologies including cancer, ischemia and inflammation. We have recently shown that in human granule precursor tumour cells a fall in extracellular pH triggers increases in intracellular Ca(2+) concentration through activation of G-protein coupled proton-sensing receptors coupling to phospholipase C. This pH-dependent rise in cytosolic Ca(2+) led to activation of the extracellular signal-regulated kinase ERK, providing a mechanistic explanation of how extracellular acidification can promote tumour growth. We now find that differentiation of granule precursor tumour cells profoundly affects their ability to respond to extracellular acidification with gene transcription. Differentiating cells have a lower Ca(2+) release probability from intracellular Ca(2+) stores upon acidification and cells that respond have a significantly smaller and slower Ca(2+) signal than proliferating cells. Importantly, Ca(2+) release in differentiating cells fails to evoke ERK phosphorylation. This altered responsiveness of differentiating cells is not due to reduced proton-sensing receptor expression or diminished Ca(2+) store content. Rather, our results suggest that in differentiating cells, the proton-sensing receptor couples less effectively to phospholipase C activation and IP(3) formation. Hence, the ability of human granule cells to respond to extracellular acidification by generating Ca(2+) signals and ERK activation is state-dependent, being lost upon differentiation.
Collapse
Affiliation(s)
- Wan-Chen Huang
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Oxford University, Oxford, United Kingdom
| | | | | | | |
Collapse
|
90
|
Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC. Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 2009; 5:220-6. [PMID: 19234453 PMCID: PMC2659327 DOI: 10.1038/nchembio.150] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 01/29/2009] [Indexed: 11/17/2022]
Abstract
Research into the biological role of the Ca(2+)-releasing second messenger NAADP (nicotinic acid adenine dinucleotide phosphate) has been hampered by a lack of chemical probes. To find new chemical probes for exploring NAADP signaling, we turned to virtual screening, which can evaluate millions of molecules rapidly and inexpensively. We used NAADP as the query ligand to screen the chemical library ZINC for compounds with similar three-dimensional shape and electrostatic properties. We tested the top-ranking hits in a sea urchin egg bioassay and found that one hit, Ned-19, blocks NAADP signaling at nanomolar concentrations. In intact cells, Ned-19 blocked NAADP signaling and fluorescently labeled NAADP receptors. Moreover, we show the utility of Ned-19 as a chemical probe by using it to demonstrate that NAADP is a key causal link between glucose sensing and Ca(2+) increases in mouse pancreatic beta cells.
Collapse
Affiliation(s)
- Edmund Naylor
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Abdelilah Arredouani
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Sridhar R. Vasudevan
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Alexander M. Lewis
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Raman Parkesh
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Akiko Mizote
- Okayama University, Graduate School of Natural Science and Technology, 1-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Daniel Rosen
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Justyn M. Thomas
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Minoru Izumi
- Okayama University, Graduate School of Natural Science and Technology, 1-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - A. Ganesan
- University of Southampton, Department of Chemistry, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Antony Galione
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Grant C. Churchill
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
91
|
The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour? Nutr Res Rev 2009; 21:42-55. [PMID: 19079853 DOI: 10.1017/s0954422408945182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pyridine nucleotide NAD+ is derived from dietary niacin and serves as the substrate for the synthesis of cyclic ADP-ribose (cADPR), an intracellular Ca signalling molecule that plays an important role in synaptic plasticity in the hippocampus, a region of the brain involved in spatial learning. cADPR is formed in part via the activity of the ADP-ribosyl cyclase enzyme CD38, which is widespread throughout the brain. In the present review, current evidence of the relationship between dietary niacin and behaviour is presented following investigations of the effect of niacin deficiency, pharmacological nicotinamide supplementation and CD38 gene deletion on brain nucleotides and spatial learning ability in mice and rats. In young male rats, both niacin deficiency and nicotinamide supplementation significantly altered brain NAD+ and cADPR, both of which were inversely correlated with spatial learning ability. These results were consistent across three different models of niacin deficiency (pair feeding, partially restricted feeding and niacin recovery). Similar changes in spatial learning ability were observed in Cd38- / - mice, which also showed decreases in brain cADPR. These findings suggest an inverse relationship between spatial learning ability, dietary niacin intake and cADPR, although a direct link between cADPR and spatial learning ability is still missing. Dietary niacin may therefore play a role in the molecular events regulating learning performance, and further investigations of niacin intake, CD38 and cADPR may help identify potential molecular targets for clinical intervention to enhance learning and prevent or reverse cognitive decline.
Collapse
|
92
|
Santodomingo J, Vay L, Camacho M, Hernández-Sanmiguel E, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 2009; 28:1265-74. [PMID: 18973554 DOI: 10.1111/j.1460-9568.2008.06440.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to the granules to investigate [Ca2+]SG homeostasis in bovine adrenal chromaffin cells. We found that most of the intracellular aequorin chimera is present in a compartment with 50-100 microM Ca2+. Ca2+ accumulation into this compartment takes place mainly through an ATP-dependent mechanism, namely, a thapsigargin-sensitive Ca2+-ATPase. In addition, fast Ca2+ release was observed in permeabilized cells after addition of inositol 1,4,5-trisphosphate (InsP3) or caffeine, suggesting the presence of InsP3 and ryanodine receptors in the vesicular membrane. Stimulation of intact cells with the InsP3-producing agonist histamine or with caffeine also induced Ca2+ release from the vesicles, whereas acetylcholine or high-[K+] depolarization induced biphasic changes in vesicular[Ca2+], suggesting heterogeneous responses of different vesicle populations, some of them releasing and some taking up Ca2+during stimulation. In conclusion, our data show that chromaffin cell secretory granules have the machinery required for rapid uptake and release of Ca2+, and this strongly supports the hypothesis that granular Ca2+ may contribute to its own secretion.
Collapse
Affiliation(s)
- Jaime Santodomingo
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, E-47005 Valladolid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Petersen OH. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology. Braz J Med Biol Res 2009; 42:9-16. [PMID: 19219293 DOI: 10.1590/s0100-879x2009000100003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
Abstract
The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible--by direct measurements--to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.
Collapse
Affiliation(s)
- O H Petersen
- MRC Group, Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
94
|
Fedirko N, Gerasimenko JV, Tepikin AV, Gerasimenko OV. Regulation of early response genes in pancreatic acinar cells: external calcium and nuclear calcium signalling aspects. Acta Physiol (Oxf) 2009; 195:51-60. [PMID: 18983455 DOI: 10.1111/j.1748-1716.2008.01935.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nuclear calcium signalling has been an important topic of investigation for many years and some aspects have been the subject of debate. Our data from isolated nuclei suggest that the nuclear pore complexes (NPCs) are open even after depletion of the Ca(2+) store in the nuclear envelope (NE). The NE contains ryanodine receptors (RyRs) and Ins(1,4,5)P(3) receptors [Ins(1,4,5)P(3)Rs], most likely on both sides of the NE and these can be activated separately and independently: the RyRs by either NAADP or cADPR, and the Ins(1,4,5)P(3)Rs by Ins(1,4,5)P(3). We have also investigated the possible consequences of nuclear calcium signals: the role of Ca(2+) in the regulation of immediate early genes (IEG): c-fos, c-myc and c-jun in pancreatic acinar cells. Stimulation with Ca(2+)-mobilizing agonists induced significant increases in levels of expression. Cholecystokinin (CCK) (10 nm) evoked a substantial rise in the expression levels, highly dependent on external Ca(2+): the IEG expression level was lowest in Ca(2+)-free solution, increased at the physiological level of 1 mm [Ca(2+)](o) and was maximal at 10 mm [Ca(2+)](o), i.e.: 102 +/- 22% and 163 +/- 15% for c-fos; c-myc -73 +/- 13% and 106 +/- 24%; c-jun -49 +/- 8% and 59 +/- 9% at 1 and 10 mm of extracellular Ca(2+) respectively. A low CCK concentration (10 pm) induced a small increase in expression. We conclude that extracellular Ca(2+) together with nuclear Ca(2+) signals induced by CCK play important roles in the induction of IEG expression.
Collapse
Affiliation(s)
- N Fedirko
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | |
Collapse
|
95
|
|
96
|
Abstract
Cells possess multiple calcium ion (Ca2+) stores and multiple messenger molecules to mobilize them. These include d-myo-inositol 1,4,5-trisphosphate (IP(3)), cyclic adenosine diphosphoribose (cADPR), and the most recently identified Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), which acts on a wide spectrum of cells, from plant cells to mammalian cells. Accumulating evidence indicates that NAADP targets both acidic (lysosome-like) Ca2+ stores and endoplasmic reticular stores. Recent studies in invertebrate and mammalian cells suggest that NAADP provides an initiating Ca2+ signal, which is amplified by cADPR- or IP(3)-dependent mechanisms (or both) through Ca2+-induced Ca2+ release. Diverse stimuli activate a rapid rise of endogenous NAADP concentration, resulting in severalfold increases of NAADP over basal values within seconds. The enzyme CD38 can catalyze both the synthesis and hydrolysis of NAADP, making it ideal for effecting the rapid metabolism of NAADP. The crystal structure of CD38 and the structures of its various substrate complexes have now been determined, clarifying the mechanism of its multifunctional catalysis. We anticipate that these advances will lead to the unmasking of all the key components of the Ca2+ signaling pathway mediated by NAADP.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signaling Group, Institute of Biochemistry and Molecular Biology I, Cellular Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20146 Hamburg, Germany.
| | | |
Collapse
|
97
|
Morgan AJ, Galione A. Investigating cADPR and NAADP in intact and broken cell preparations. Methods 2008; 46:194-203. [PMID: 18852050 DOI: 10.1016/j.ymeth.2008.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 09/12/2008] [Indexed: 11/26/2022] Open
Abstract
The body of literature characterizing cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) as Ca2+-mobilizing second messengers is growing apace. However, their unique properties may, for the uninitiated, make them difficult to work with. This article reviews many of the available techniques (and associated pitfalls) for investigating these nucleotide messengers, predominantly focusing upon optical techniques using fluorescent reporters to measure Ca2+ in the cytosol as well as Ca2+ or pH within the lumen of intracellular organelles.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxon OX1 3QT, UK.
| | | |
Collapse
|
98
|
Abdeen SM, Olusi SO, Askar HA, Thalib L, Al-Azemi A, George S. The predictive value of CD38 positive hepatic stellate cell count for assessing disease activity and fibrosis in patients with chronic hepatitis. Acta Histochem 2008; 111:520-30. [PMID: 18829073 DOI: 10.1016/j.acthis.2008.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 01/19/2023]
Abstract
The activation of hepatic stellate cells (HSCs) is a critical event in hepatic fibrosis. The objectives of this study were to find out if cluster of differentiation 38 (CD38) can be demonstrated immunohistochemically on HSCs in liver biopsies from patients with chronic liver disease and if CD38 immunopositive HSC count is correlated with METAVIR inflammatory and fibrosis scores. Immunohistochemical labelling for CD38 was performed on 100 liver biopsies from patients with chronic liver disease. The CD38 immunopositive HSCs were identified and counted. The CD38 immunopositive HSC count was found to be associated with both the METAVIR score and the fibrosis scores. The CD38 immunopositive HSC count was able to discriminate between no fibrosis and stages 2, 3 or 4 fibrosis, but could not discriminate between no fibrosis and stage 1 fibrosis. Using receiver operating characteristic (ROC) curves, a cut-off point of 10 HSCs per 10 high power field (hpf), or 25 per 100 hepatocytes, is 80% sensitive and 70% specific for predicting fibrosis. The specificity rose to 100% in patients with hepatitis C viral (HCV) infection. We conclude that CD38 positive HSCs can be demonstrated immunohistochemically and that the count is highly predictive of moderate to severe hepatic fibrosis.
Collapse
|
99
|
Norez C, Vandebrouck C, Antigny F, Dannhoffer L, Blondel M, Becq F. Guanabenz, an α2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells. Eur J Pharmacol 2008; 592:33-40. [DOI: 10.1016/j.ejphar.2008.06.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 06/19/2008] [Accepted: 06/27/2008] [Indexed: 11/26/2022]
|
100
|
Bezin S, Charpentier G, Lee HC, Baux G, Fossier P, Cancela JM. Regulation of nuclear Ca2+ signaling by translocation of the Ca2+ messenger synthesizing enzyme ADP-ribosyl cyclase during neuronal depolarization. J Biol Chem 2008; 283:27859-27870. [PMID: 18632662 DOI: 10.1074/jbc.m804701200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons, voltage-gated Ca(2+) channels and nuclear Ca(2+) signaling play important roles, such as in the regulation of gene expression. However, the link between electrical activity and biochemical cascade activation involved in the generation of the nuclear Ca(2+) signaling is poorly understood. Here we show that depolarization of Aplysia neurons induces the translocation of ADP-ribosyl cyclase, a Ca(2+) messenger synthesizing enzyme, from the cytosol into the nucleus. The translocation is dependent on Ca(2+) influx mainly through the voltage-dependent L-type Ca(2+) channels. We report also that specific nucleoplasmic Ca(2+) signals can be induced by three different calcium messengers, cyclic ADP-ribose, nicotinic acid adenine dinucleotide phosphate (NAADP), both produced by the ADP-ribosyl cyclase, and inositol 1,4,5-trisphosphate (IP(3)). Moreover, our pharmacological data show that NAADP acts on its own receptor, which cooperates with the IP(3) and the ryanodine receptors to generate nucleoplasmic Ca(2+) oscillations. We propose a new model where voltage-dependent L-type Ca(2+) channel-induced nuclear translocation of the cytosolic cyclase is a crucial step in the fine tuning of nuclear Ca(2+) signals in neurons.
Collapse
Affiliation(s)
- Stéphanie Bezin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - Gilles Charpentier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France; Université Bordeaux 1 Laboratoire DMPFCS, IECB, 2, Rue Robert Escarpit, 33607 Pessac, France
| | - Hon Cheung Lee
- Department of Physiology, University of Hong Kong, 4/F Lab Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong
| | - Gérard Baux
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - Philippe Fossier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - José-Manuel Cancela
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France.
| |
Collapse
|