51
|
Lara PC, Pruschy M, Zimmermann M, Henríquez-Hernández LA. MVP and vaults: a role in the radiation response. Radiat Oncol 2011; 6:148. [PMID: 22040803 PMCID: PMC3216873 DOI: 10.1186/1748-717x-6-148] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/31/2011] [Indexed: 01/05/2023] Open
Abstract
Vaults are evolutionary highly conserved ribonucleoproteins particles with a hollow barrel-like structure. The main component of vaults represents the 110 kDa major vault protein (MVP), whereas two minor vaults proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (vPARP) and the 240 kDa telomerase-associated protein-1 (TEP-1). Additionally, at least one small and untranslated RNA is found as a constitutive component. MVP seems to play an important role in the development of multidrug resistance. This particle has also been implicated in the regulation of several cellular processes including transport mechanisms, signal transmission and immune responses. Vaults are considered a prognostic marker for different cancer types. The level of MVP expression predicts the clinical outcome after chemotherapy in different tumour types. Recently, new roles have been assigned to MVP and vaults including the association with the insulin-like growth factor-1, hypoxia-inducible factor-1alpha, and the two major DNA double-strand break repair machineries: non-homologous endjoining and homologous recombination. Furthermore, MVP has been proposed as a useful prognostic factor associated with radiotherapy resistance. Here, we review these novel actions of vaults and discuss a putative role of MVP and vaults in the response to radiotherapy.
Collapse
Affiliation(s)
- Pedro C Lara
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr Negrín, C/Barranco de La Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | | | | | | |
Collapse
|
52
|
Liang P, Wan Y, Yan Y, Wang Y, Luo N, Deng Y, Fan X, Zhou J, Li Y, Wang Z, Yuan W, Tang M, Mo X, Wu X. MVP interacts with YPEL4 and inhibits YPEL4-mediated activities of the ERK signal pathway. Biochem Cell Biol 2010; 88:445-50. [PMID: 20555386 DOI: 10.1139/o09-166] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human YPEL4 is a member of YPEL family. It contains a Yippee domain, which is a putative zinc-finger-like, metal-binding domain. The human YPEL4 gene maps to chromosome 11q12.1, is ubiquitously expressed in adult tissues, and encodes a nuclear protein of 127 amino acids, the function of which remains unknown. To gain insights into the cellular function of this protein, we searched for YPEL4-interacting proteins using a yeast two-hybrid screen. The major vault protein (MVP), a lung resistance associated protein, was identified as a binding partner of YPEL4. The interaction between YPEL4 and MVP in mammalian cells was further demonstrated by a series of biochemical assays including the mammalian two-hybrid assay, GST pull-down assay, co-immunoprecipitation assay, and immunocytochemistry. Using a reporter system, we found that MVP can inhibit YPEL4's ability to activate Elk-1 in the MAPK signaling pathway. This study provides new clues for understanding the molecular mechanism of YPEL4 in cell division and signal transduction pathways and should be helpful for understanding molecular functions of the YPEL family.
Collapse
Affiliation(s)
- Pei Liang
- The Center for Heart Development, Key Laboratory of MOE for Developmental Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
St. Laurent G, Faghihi MA, Wahlestedt C. Non-coding RNA transcripts: sensors of neuronal stress, modulators of synaptic plasticity, and agents of change in the onset of Alzheimer's disease. Neurosci Lett 2009; 466:81-8. [PMID: 19699259 PMCID: PMC2767472 DOI: 10.1016/j.neulet.2009.08.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 12/20/2022]
Abstract
Non-protein-coding RNAs (ncRNAs) play critical roles on many levels of cellular information processing and pervasive expression of ncRNAs in the nervous system could help explain brain complexity. NcRNAs are enriched in the central nervous system and are associated with specific neuroanatomical regions. Additionally, several recent publications have revealed an important role for deregulation of ncRNAs in various human neuropathologies, such as Alzheimer's disease, Parkinson's disease and Fragile X mental retardation. Herein, we summarize reports on functional ncRNA molecules involved in cellular stress response, particularly related to Alzheimer's disease. We conclude that ncRNAs have a prominent role in maintaining precise physiological levels of gene products directly implicated in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Georges St. Laurent
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 Eye Street N.W., Washington, DC 20037, USA
- Immunovirology-Biogenesis Group, University of Antioquia, 1226 Medellin, Colombia
| | - Mohammad Ali Faghihi
- Molecular and Integrative Neurosciences Department (MIND), The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Claes Wahlestedt
- Molecular and Integrative Neurosciences Department (MIND), The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
54
|
Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B, Nye HLD, Cameron JA, Stocum DL. Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 2009; 7:83. [PMID: 19948009 PMCID: PMC2794268 DOI: 10.1186/1741-7007-7-83] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/30/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. RESULTS We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. CONCLUSION Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and epidermal factors. Our findings indicate the general value of quantitative proteomic analysis in understanding the regeneration of complex structures.
Collapse
Affiliation(s)
- Nandini Rao
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Deepali Jhamb
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Derek J Milner
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Bingbing Li
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fengyu Song
- Department of Oral Biology, School of Dentistry and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mu Wang
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Center, University of Kentucky at Lexington, Lexington, KY, USA
| | - Mathew Palakal
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael W King
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Behnaz Saranjami
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Holly LD Nye
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Jo Ann Cameron
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - David L Stocum
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
55
|
Thiyagarajan S, Thirumalai K, Nirmala S, Biswas J, Krishnakumar S. Effect of Curcumin on Lung Resistance-Related Protein (LRP) in Retinoblastoma Cells. Curr Eye Res 2009; 34:845-51. [DOI: 10.3109/02713680903125329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
56
|
Cipriani V, Ranzato E, Balbo V, Mazzucco L, Cavaletto M, Patrone M. Long-term effect of platelet lysate on primary fibroblasts highlighted with a proteomic approach. J Tissue Eng Regen Med 2009; 3:531-8. [DOI: 10.1002/term.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
57
|
An HJ, Ryu SJ, Kim SY, Choi HR, Chung JH, Park SC. Age associated high level of major vault protein is p53 dependent. Cell Biochem Funct 2009; 27:289-95. [PMID: 19472297 DOI: 10.1002/cbf.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Major vault protein (MVP) represents the main component of vaults and has been linked to multi-drug resistance (MDR) in cancer cells. We previously reported that MVP plays an important role in the resistance of senescent human diploid fibroblasts (HDFs) to apoptosis and also that MVP expression is markedly reduced in young HDFs but not in senescent HDFs. In this study, designed to elucidate the regulation of MVP in young and senescent HDFs, we examined the levels of transcriptional factors for the MVP gene, which revealed that among the putative transcriptional factors, p53 decreased only in young HDFs, but not in senescent HDFs in response to H(2)O(2) treatment in the same mode as the expression of MVP. Moreover, the phosphorylation status of p53 increased only in senescent HDFs but not in young HDFs in response to H(2)O(2) treatment. Therefore, we tested the possibility of MVP regulation by p53 status. MVP is upregulated in p53 over-expressing young HDFs, while MVP is downregulated in p53-specific small interfering RNA (siRNA)-transfected senescent HDFs, which suggests that the expression of MVP would be p53 dependent. Furthermore, using chromatin immunoprecipitation (ChIP) assay, we observed that p53 binds directly to the MVP promoter. Taken together, these results suggest that p53 would be a major transcriptional factor for MVP gene expression.
Collapse
Affiliation(s)
- Hong-Joo An
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Korea
| | | | | | | | | | | |
Collapse
|
58
|
Efimova EV, Liang H, Pitroda SP, Labay E, Darga TE, Levina V, Lokshin A, Roizman B, Weichselbaum RR, Khodarev NN. Radioresistance of Stat1 over-expressing tumour cells is associated with suppressed apoptotic response to cytotoxic agents and increased IL6-IL8 signalling. Int J Radiat Biol 2009; 85:421-31. [PMID: 19437244 PMCID: PMC2690884 DOI: 10.1080/09553000902838566] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To determine the mechanisms of Signal Transducer and Activator of Transcription 1 (Stat1)-associated radioresistance developed by nu61 tumour selected in vivo by fractionated irradiation of the parental radiosensitive tumour SCC61. MATERIALS AND METHODS Radioresistence of nu61 and SCC61 in vitro was measured by clonogenic assay. Apoptotic response of nu61 and SCC61 cells to genotoxic stress was examined using caspase-based apoptotic assays. Co-cultivation of carboxyfluorescein diacetate, succinimidyl ester (CFDE-SE)-labeled nu61 with un-labeled SCC61 was performed at 1:1 ratio. Production of interleukin-6, interleukin-8 and soluble receptor of interleukin 6 (IL6, IL8 and sIL6R) was measured using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS Radioresistant nu61 was also resistant to interferon-gamma (IFNgamma) and the death ligands of tumour necrosis factor alpha receptor (TNFR) family when compared to SCC61. This combined resistance is due to an impaired apoptotic response in nu61. Relative to SCC61, nu61 produced more IL6, IL8 and sIL6R. Using Stat1 knock-downs we demonstrated that IL6 and IL8 production is Stat1-dependent. Treatment with neutralising antibodies to IL6 and IL8, but not to either cytokine alone sensitised nu61 to genotoxic stress induced apoptosis. CONCLUSION Nu61, which over-expresses Stat1 pathway, is deficient in apoptotic response to ionising radiation and cytotoxic ligands. This resistance to apoptosis is associated with Stat1-dependent production of IL6 and IL8 and suppression of caspases 8, 9 and 3.
Collapse
Affiliation(s)
- Elena V Efimova
- Department of Radiation and Cellular Oncology, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ryu SJ, Park SC. Targeting major vault protein in senescence-associated apoptosis resistance. Expert Opin Ther Targets 2009; 13:479-84. [PMID: 19335069 DOI: 10.1517/14728220902832705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Recent studies have shown that major vault protein (MVP) is involved in intracellular signaling, cell survival, differentiation and innate immunity and that it is not directly responsible for nucleo-cytoplasmic drug transport in multi-drug-resistant cancer cell lines. Recently, we reported that MVP increases with age both in vitro and in vivo, and that age-related upregulation of MVP facilitates apoptosis resistance of senescent human diploid fibroblasts (HDFs) based on the interaction with c-Jun-mediated downregulation of bcl-2. OBJECTIVES To discuss the role of MVP in cell survival and signaling in the development of resistance to apoptosis exhibited by senescent HDFs. CONCLUSIONS MVP represents a versatile platform for regulation of cellular signaling and survival and is a potential therapeutic target for modulation of resistance to apoptosis, implicated in aging modulation and cancer treatment.
Collapse
Affiliation(s)
- Sung Jin Ryu
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Aging and Apoptosis Research Center, Seoul, South Korea
| | | |
Collapse
|
60
|
Simultaneous blockade of the epidermal growth factor receptor/mammalian target of rapamycin pathway by epidermal growth factor receptor inhibitors and rapamycin results in reduced cell growth and survival in biliary tract cancer cells. Mol Cancer Ther 2009; 8:1547-56. [PMID: 19509244 DOI: 10.1158/1535-7163.mct-09-0003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
61
|
Khodarev NN, Roach P, Pitroda SP, Golden DW, Bhayani M, Shao MY, Darga TE, Beveridge MG, Sood RF, Sutton HG, Beckett MA, Mauceri HJ, Posner MC, Weichselbaum RR. STAT1 pathway mediates amplification of metastatic potential and resistance to therapy. PLoS One 2009; 4:e5821. [PMID: 19503789 PMCID: PMC2688034 DOI: 10.1371/journal.pone.0005821] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/08/2009] [Indexed: 11/20/2022] Open
Abstract
Background Traditionally IFN/STAT1 signaling is connected with an anti-viral response and pro-apoptotic tumor-suppressor functions. Emerging functions of a constitutively activated IFN/STAT1 pathway suggest an association with an aggressive tumor phenotype. We hypothesized that tumor clones that constitutively overexpress this pathway are preferentially selected by the host microenvironment due to a resistance to STAT1-dependent cytotoxicity and demonstrate increased metastatic ability combined with increased resistance to genotoxic stress. Methodology/Principal Findings Here we report that clones of B16F1 tumors grown in the lungs of syngeneic C57BL/6 mice demonstrate variable transcriptional levels of IFN/STAT1 pathway expression. Tumor cells that constitutively overexpress the IFN/STAT1 pathway (STAT1H genotype) are selected by the lung microenvironment. STAT1H tumor cells also demonstrate resistance to IFN-gamma (IFNγ), ionizing radiation (IR), and doxorubicin relative to parental B16F1 and low expressors of the IFN/STAT1 pathway (STAT1L genotype). Stable knockdown of STAT1 reversed the aggressive phenotype and decreased both lung colonization and resistance to genotoxic stress. Conclusions Our results identify a pathway activated by tumor-stromal interactions thereby selecting for pro-metastatic and therapy-resistant tumor clones. New therapies targeted against the IFN/STAT1 signaling pathway may provide an effective strategy to treat or sensitize aggressive tumor clones to conventional cancer therapies and potentially prevent distant organ colonization.
Collapse
Affiliation(s)
- Nikolai N. Khodarev
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Paul Roach
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Daniel W. Golden
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mihir Bhayani
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Michael Y. Shao
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Thomas E. Darga
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mara G. Beveridge
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Ravi F. Sood
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Harold G. Sutton
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Michael A. Beckett
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Helena J. Mauceri
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mitchell C. Posner
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
62
|
Tanaka H, Kato K, Yamashita E, Sumizawa T, Zhou Y, Yao M, Iwasaki K, Yoshimura M, Tsukihara T. The structure of rat liver vault at 3.5 angstrom resolution. Science 2009; 323:384-8. [PMID: 19150846 DOI: 10.1126/science.1164975] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vaults are among the largest cytoplasmic ribonucleoprotein particles and are found in numerous eukaryotic species. Roles in multidrug resistance and innate immunity have been suggested, but the cellular function remains unclear. We have determined the x-ray structure of rat liver vault at 3.5 angstrom resolution and show that the cage structure consists of a dimer of half-vaults, with each half-vault comprising 39 identical major vault protein (MVP) chains. Each MVP monomer folds into 12 domains: nine structural repeat domains, a shoulder domain, a cap-helix domain, and a cap-ring domain. Interactions between the 42-turn-long cap-helix domains are key to stabilizing the particle. The shoulder domain is structurally similar to a core domain of stomatin, a lipid-raft component in erythrocytes and epithelial cells.
Collapse
Affiliation(s)
- Hideaki Tanaka
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Fischer H, Taylor N, Allerstorfer S, Grusch M, Sonvilla G, Holzmann K, Setinek U, Elbling L, Cantonati H, Grasl-Kraupp B, Gauglhofer C, Marian B, Micksche M, Berger W. Fibroblast growth factor receptor-mediated signals contribute to the malignant phenotype of non-small cell lung cancer cells: therapeutic implications and synergism with epidermal growth factor receptor inhibition. Mol Cancer Ther 2008; 7:3408-19. [PMID: 18852144 PMCID: PMC2879863 DOI: 10.1158/1535-7163.mct-08-0444] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fibroblast growth factors (FGF) and their high-affinity receptors (FGFR) represent an extensive cellular growth and survival system. Aim of this study was to evaluate the contribution of FGF/FGFR-mediated signals to the malignant growth of non-small cell lung cancer (NSCLC) and to assess their potential as targets for therapeutic interventions. Multiple FGFR mRNA splice variants were coexpressed in NSCLC cells (n = 16) with predominance of FGFR1. Accordingly, both expression of a dominant-negative FGFR1 (dnFGFR1) IIIc-green fluorescent protein fusion protein and application of FGFR small-molecule inhibitors (SU5402 and PD166866) significantly reduced growth, survival, clonogenicity, and migratory potential of the majority of NSCLC cell lines. Moreover, dnFGFR1 expression completely blocked or at least significantly attenuated s.c. tumor formation of NSCLC cells in severe combined immunodeficient mice. Xenograft tumors expressing dnFGFR1 exhibited significantly reduced size and mitosis rate, enhanced cell death, and decreased tissue invasion. When FGFR inhibitors were combined with chemotherapy, antagonistic to synergistic in vitro anticancer activities were obtained depending on the application schedule. In contrast, simultaneous blockage of FGFR- and epidermal growth factor receptor-mediated signals exerted synergistic effects. In summary, FGFR-mediated signals in cooperation with those transmitted by epidermal growth factor receptor are involved in growth and survival of human NSCLC cells and should be considered as targets for combined therapeutic approaches.
Collapse
Affiliation(s)
- Hendrik Fischer
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Ninon Taylor
- Third Medical Department of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Sigrid Allerstorfer
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Gudrun Sonvilla
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Klaus Holzmann
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Ulrike Setinek
- Institute of Pathology and Bacteriology, Hospital Baumgartner Höhe, Vienna, Austria and
| | - Leonilla Elbling
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Heidelinde Cantonati
- Institute of Pathology and Bacteriology, Hospital Baumgartner Höhe, Vienna, Austria and
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Christine Gauglhofer
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Brigitte Marian
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Michael Micksche
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna
| |
Collapse
|
64
|
Allerstorfer S, Sonvilla G, Fischer H, Spiegl-Kreinecker S, Gauglhofer C, Setinek U, Czech T, Marosi C, Buchroithner J, Pichler J, Silye R, Mohr T, Holzmann K, Grasl-Kraupp B, Marian B, Grusch M, Fischer J, Micksche M, Berger W. FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. Oncogene 2008; 27:4180-90. [PMID: 18362893 PMCID: PMC2879862 DOI: 10.1038/onc.2008.61] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 12/20/2007] [Accepted: 02/15/2008] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 5 (FGF5) is widely expressed in embryonic but scarcely in adult tissues. Here we report simultaneous overexpression of FGF5 and its predominant high-affinity receptor (FGFR1 IIIc) in astrocytic brain tumour specimens (N=49) and cell cultures (N=49). The levels of both ligand and receptor increased with enhanced malignancy in vivo and in vitro. Furthermore, secreted FGF5 protein was generally present in the supernatants of glioblastoma (GBM) cells. siRNA-mediated FGF5 downmodulation reduced moderately but significantly GBM cell proliferation while recombinant FGF5 (rFGF5) increased this parameter preferentially in cell lines with low endogenous expression levels. Apoptosis induction by prolonged serum starvation was significantly prevented by rFGF5. Moreover, tumour cell migration was distinctly stimulated by rFGF5 but attenuated by FGF5 siRNA. Blockade of FGFR1-mediated signals by pharmacological FGFR inhibitors or a dominant-negative FGFR1 IIIc protein inhibited GBM cell proliferation and/or induced apoptotic cell death. Moreover, rFGF5 and supernatants of highly FGF5-positive GBM cell lines specifically stimulated proliferation, migration and tube formation of human umbilical vein endothelial cells. In summary, we demonstrate for the first time that FGF5 contributes to the malignant progression of human astrocytic brain tumours by both autocrine and paracrine effects.
Collapse
Affiliation(s)
- S Allerstorfer
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - G Sonvilla
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - H Fischer
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | | | - C Gauglhofer
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - U Setinek
- Institute for Pathology and Bacteriology, Otto Wagner Hospital Baumgartner Höhe, Vienna, Austria
| | - T Czech
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - C Marosi
- Department of Medicine I, Clinical Division of Oncology, Medical University Vienna, Vienna, Austria
| | - J Buchroithner
- Department of Neurosurgery, Wagner Jauregg Hospital, Linz, Austria
| | - J Pichler
- Department of Internal Medicine, Wagner Jauregg Hospital, Linz, Austria
| | - R Silye
- Institute of Pathology, Wagner Jauregg Hospital, Linz, Austria
| | - T Mohr
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - K Holzmann
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - B Grasl-Kraupp
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - B Marian
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - M Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - J Fischer
- Department of Neurosurgery, Wagner Jauregg Hospital, Linz, Austria
| | - M Micksche
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - W Berger
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
65
|
Ryu SJ, An HJ, Oh YS, Choi HR, Ha MK, Park SC. On the role of major vault protein in the resistance of senescent human diploid fibroblasts to apoptosis. Cell Death Differ 2008; 15:1673-80. [DOI: 10.1038/cdd.2008.96] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
66
|
Haan S, Margue C, Engrand A, Rolvering C, Schmitz-Van de Leur H, Heinrich PC, Behrmann I, Haan C. Dual role of the Jak1 FERM and kinase domains in cytokine receptor binding and in stimulation-dependent Jak activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:998-1007. [PMID: 18178840 DOI: 10.4049/jimmunol.180.2.998] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Jak1 is a tyrosine kinase that noncovalently forms tight complexes with a variety of cytokine receptors and is critically involved in signal transduction via cytokines. Jaks are predicted to have a 4.1, ezrin, radixin, moesin (FERM) domain at their N terminus. FERM domains are composed of three structurally unrelated subdomains (F1, F2, and F3) which are in close contact to one another and form the clover-shaped FERM domain. We generated a model structure of the Jak1 FERM domain, based on solved FERM structures and the alignments with other FERM domains. To destabilize different subdomains and to uncover their exact function, we mutated specific hydrophobic residues conserved in FERM domains and involved in hydrophobic core interactions. In this study, we show that the structural integrity of the F2 subdomain of the FERM domain of Jak1 is necessary to bind the IFN-gammaRalpha. By mutagenesis of hydrophobic residues in the hydrophobic core between the three FERM subdomains, we find that the structural context of the FERM domain is necessary for the inhibition of Jak1 phosphorylation. Thus, FERM domain mutations can have repercussions on Jak1 function. Interestingly, a mutation in the kinase domain (Jak1-K907E), known to abolish the catalytic activity, also leads to an impaired binding to the IFN-gammaRalpha when this mutant is expressed at endogenous levels in U4C cells. Our data show that the structural integrity of both the FERM domain and of the kinase domain is essential for both receptor binding and catalytic function/autoinhibition.
Collapse
Affiliation(s)
- Serge Haan
- Life Science Research Unit, Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Anderson DH, Kickhoefer VA, Sievers SA, Rome LH, Eisenberg D. Draft crystal structure of the vault shell at 9-A resolution. PLoS Biol 2007; 5:e318. [PMID: 18044992 PMCID: PMC2229873 DOI: 10.1371/journal.pbio.0050318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 10/03/2007] [Indexed: 11/20/2022] Open
Abstract
Vaults are the largest known cytoplasmic ribonucleoprotein structures and may function in innate immunity. The vault shell self-assembles from 96 copies of major vault protein and encapsulates two other proteins and a small RNA. We crystallized rat liver vaults and several recombinant vaults, all among the largest non-icosahedral particles to have been crystallized. The best crystals thus far were formed from empty vaults built from a cysteine-tag construct of major vault protein (termed cpMVP vaults), diffracting to about 9-Å resolution. The asymmetric unit contains a half vault of molecular mass 4.65 MDa. X-ray phasing was initiated by molecular replacement, using density from cryo-electron microscopy (cryo-EM). Phases were improved by density modification, including concentric 24- and 48-fold rotational symmetry averaging. From this, the continuous cryo-EM electron density separated into domain-like blocks. A draft atomic model of cpMVP was fit to this improved density from 15 domain models. Three domains were adapted from a nuclear magnetic resonance substructure. Nine domain models originated in ab initio tertiary structure prediction. Three C-terminal domains were built by fitting poly-alanine to the electron density. Locations of loops in this model provide sites to test vault functions and to exploit vaults as nanocapsules. Vaults are large barrel-shaped particles found in the cytoplasm in all mammalian cells, which may function in innate immunity. As naturally occurring nanoscale capsules, vaults may be useful objects to engineer as delivery vehicles. In this study, we propose an atomic structure for the thin outer shell of the vault. Using x-ray diffraction and computer modeling, we have inferred a draft atomic model for the major vault protein, which forms the shell-like enclosure of the vault. The shell is made up of 96 identical protein chains, each of 873 amino acid residues, folded into 14 domains. Each chain forms an elongated stave of half the vault, as well as the cap of the barrel-like shell. Our draft atomic model is essentially an atomic-level model for the entire 9.3-MDa vault shell, which offers a guide for protein engineering to test vault functions and to exploit vault particles as nanocapsules. A draft atomic structure has been determined for the 9.3-MDa protein shell of the vault cytoplasmic particle, revealing stave-like polypeptides forming the barrel-like structure of the vault.
Collapse
Affiliation(s)
- Daniel H Anderson
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie A Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stuart A Sievers
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Leonard H Rome
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - David Eisenberg
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
68
|
Yang F, Wang J, Li X, Ying T, Qiao S, Li D, Wu G. 2-DE and MS analysis of interactions betweenLactobacillus fermentum I5007 and intestinal epithelial cells. Electrophoresis 2007; 28:4330-9. [DOI: 10.1002/elps.200700166] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
69
|
Khodarev NN, Minn AJ, Efimova EV, Darga TE, Labay E, Beckett M, Mauceri HJ, Roizman B, Weichselbaum RR. Signal transducer and activator of transcription 1 regulates both cytotoxic and prosurvival functions in tumor cells. Cancer Res 2007; 67:9214-20. [PMID: 17909027 DOI: 10.1158/0008-5472.can-07-1019] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elsewhere, we reported that multiple serial in vivo passage of a squamous cell carcinoma cells (SCC61) concurrent with ionizing radiation (IR) treatment resulted in the selection of radioresistant tumor (nu61) that overexpresses the signal transducer and activator of transcription 1 (Stat1)/IFN-dependent pathway. Here, we report that (a) the Stat1 pathway is induced by IR, (b) constitutive overexpression of Stat1 is linked with failure to transmit a cytotoxic signal by radiation or IFNs, (c) selection of parental cell line SCC61 against IFN-alpha and IFN-gamma leads to the same IR- and IFN-resistant phenotype as was obtained by IR selection, and (d) suppression of Stat1 by short hairpin RNA renders the IR-resistant nu61 cells radiosensitive to IR. We propose a model that transient induction of Stat1 by IFN, IR, or other stress signals activates cytotoxic genes and cytotoxic response. Constitutive overexpression of Stat1 on the other hand leads to the suppression of the cytotoxic response and induces prosurvival genes that, at high levels of Stat1, render the cells resistant to IR or other inducers of cell death.
Collapse
Affiliation(s)
- Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kowalski MP, Dubouix-Bourandy A, Bajmoczi M, Golan DE, Zaidi T, Coutinho-Sledge YS, Gygi MP, Gygi SP, Wiemer EAC, Pier GB. Host resistance to lung infection mediated by major vault protein in epithelial cells. Science 2007; 317:130-2. [PMID: 17615361 PMCID: PMC3685177 DOI: 10.1126/science.1142311] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The airway epithelium plays an essential role in innate immunity to lung pathogens. Ribonucleoprotein particles primarily composed of major vault protein (MVP) are highly expressed in cells that encounter xenobiotics. However, a clear biologic function for MVP is not established. We report here that MVP is rapidly recruited to lipid rafts when human lung epithelial cells are infected with Pseudomonas aeruginosa, and maximal recruitment is dependent on bacterial binding to the cystic fibrosis transmembrane conductance regulator. MVP was also essential for optimal epithelial cell internalization and clearance of P. aeruginosa. These results suggest that MVP makes a substantial contribution to epithelial cell-mediated resistance to infection.
Collapse
Affiliation(s)
- Michael P. Kowalski
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Novartis Institute of Biomedical Research, Cambridge, MA 02139, USA
| | - Anne Dubouix-Bourandy
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Laboratoire de Bactériologie-Hygiène, Institut Fédératif de Biologie de Purpan, Toulouse, France
| | - Milan Bajmoczi
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David E. Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Hematology Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Tanweer Zaidi
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yamara S. Coutinho-Sledge
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik A. C. Wiemer
- Department of Medical Oncology, Josephine Nefkens Institute, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Gerald B. Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- To whom correspondence should be addressed.
| |
Collapse
|
71
|
Suprenant KA, Bloom N, Fang J, Lushington G. The major vault protein is related to the toxic anion resistance protein (TelA) family. ACTA ACUST UNITED AC 2007; 210:946-55. [PMID: 17337707 DOI: 10.1242/jeb.001800] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaults are barrel-shaped ribonucleoprotein particles that are abundant in certain tumors and multidrug resistant cancer cells. Prokaryotic relatives of the major vault protein, MVP, have not been identified. We used sequence analysis and molecular modeling to show that MVP and the toxic anion resistance protein, TelA of Rhodobacter sphaeroides strain 2.4.1, share a novel fold that consists of a three-stranded antiparallel beta-sheet. Because of this strong structural correspondence, we examined whether mammalian cell vaults respond to tellurite treatment. In the presence of the oxyanion tellurite, large vault aggregates, or vaultosomes, appear at the cell periphery in 15 min or less. Vaultosome formation is temperature-dependent, reversible, and occurs in normal human umbilical vein endothelial cells as well as transformed HeLa cervical cancer cells. Vaultosome formation is not restricted to tellurite and occurs in the presence of other toxic oxyanions (selenate, selinite, arsenate, arsenite, vanadate). In addition, vaultosomes form independently from other stress-induced ribonucleoprotein complexes, stress granules and aggresomes. Vaultosome formation is therefore a unique cellular response to an environmental toxin.
Collapse
Affiliation(s)
- Kathy A Suprenant
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
72
|
Nie Z, Nelson CS, Jacoby DB, Fryer AD. Expression and regulation of intercellular adhesion molecule-1 on airway parasympathetic nerves. J Allergy Clin Immunol 2007; 119:1415-22. [PMID: 17418379 DOI: 10.1016/j.jaci.2007.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/09/2007] [Accepted: 03/02/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND Eosinophils cluster along airway nerves in patients with asthma and release eosinophil major basic protein, an antagonist of inhibitory M2 muscarinic receptors on nerves. Blocking M2 function increases bronchoconstriction, leading to airway hyperreactivity. Intercellular adhesion molecule-1 (ICAM-1) mediates eosinophil adhesion to nerves. OBJECTIVE We investigated mechanisms of ICAM-1 expression by parasympathetic nerves. METHODS ICAM-1 expression was examined by immunocytochemistry of lung sections from ovalbumin-sensitized and challenged guinea pigs. ICAM-1 was measured in parasympathetic nerves isolated from subjects and guinea pigs and in human neuroblastoma cells by real-time RT-PCR, immunocytochemistry, and Western blot. RESULTS ICAM-1 was not detected in control airway parasympatheric nerves in vivo or in cultured cells. ICAM-1 was expressed throughout antigen-challenged guinea pig lung tissue and was selectively decreased by dexamethasone only in nerves. ICAM-1 was induced in human and guinea pig parasympathetic nerves by TNF-alpha and IFN-gamma and was inhibited by dexamethasone and by an inhibitor of nuclear factor-kappaB (NF-kappaB). In neuroblastoma cell lines TNF-alpha and IFN-gamma-induced ICAM-1 was blocked by an inhibitor of NF-kappaB but not by inhibitors of mitogen-activated protein kinases. Dexamethasone did not inhibit ICAM-1 expression in neuroblastoma cells. CONCLUSIONS ICAM-1 induced in nerves by antigen challenge and proinflammatory cytokines is sensitive to dexamethasone. ICAM-1 expression is also sensitive to inhibitors of NF-kappaB. Neuroblastoma cells mimic many, but not all, characteristics of ICAM-1 expression in parasympathetic nerves. CLINICAL IMPLICATIONS Dexamethasone and NF-kappaB inhibitors could prevent eosinophils from adhering to nerves by blocking ICAM-1 expression on parasympathetic nerves, thus protecting inhibitory M2 muscarinic receptors and making this pathway a potential target for asthma treatment.
Collapse
Affiliation(s)
- Zhenying Nie
- Division of Physiology and Pharmacology, Oregon Health & Science University, Portland, Ore., USA
| | | | | | | |
Collapse
|
73
|
Goldsmith LE, Yu M, Rome LH, Monbouquette HG. Vault nanocapsule dissociation into halves triggered at low pH. Biochemistry 2007; 46:2865-75. [PMID: 17302392 DOI: 10.1021/bi0606243] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaults are self-assembled ribonucleoprotein nanocapsules that consist of multiple copies of three proteins (major vault protein, VPARP, and TEP1) and an untranslated RNA. Although their function has not been determined, vaults are found in nearly all eukaryotic cells. This study describes the use of fluorescence spectroscopy, multiangle laser light scattering (MALLS), and the quartz crystal microbalance (QCM) as tools in investigating recombinant vault conformational change in response to a varied solution pH. Identification of conditions for reversible vault disassembly and reassembly could enable application of these nanocapsules in drug delivery and in nanomaterials synthesis. Initial monitoring of changes in the intrinsic fluorescence intensity of vaults showed a 60% increase at pH 3.4 compared to that at pH 6.5, suggesting vaults exhibit a more open conformation at low pH. Fluorescence quenching studies provided further evidence of a vault structural change at low pH. MALLS data suggested a decrease in molecular mass accompanied by a clear increase in the radius of gyration as the solution pH was shifted from 6.5 to 3.4. This result prompted the hypothesis that vaults dissociate at least partially at low pH. Using the QCM to study adsorption of the vault onto self-assembled monolayers, data that suggest vault dissociation at low pH, even when the vault is in an adsorbed state, were also obtained. Finally, transmission electron microscopy (TEM) of negatively stained vaults at pH 6.5 and 3.4 confirmed the fluorescence spectroscopy, MALLS, and QCM findings by providing visual evidence that vaults disassemble into halves as the solution pH is lowered from 6.5 to 3.4.
Collapse
Affiliation(s)
- Lisa E Goldsmith
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
74
|
Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiol Genomics 2007; 29:215-30. [PMID: 17213366 DOI: 10.1152/physiolgenomics.00255.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Peripheral nerve injury is often followed by the development of severe neuropathic pain. Nerve degeneration accompanied by inflammatory mediators is thought to play a role in generation of neuropathic pain. Neuronal cell death follows axonal degeneration, devastating a vast number of molecules in injured neurons and the neighboring cells. Because we have little understanding of the cellular and molecular mechanisms underlying neuronal cell death triggered by nerve injury, we conducted a proteomics study of rat 4th and 5th lumbar (L4 and L5) dorsal root ganglion (DRG) after L5 spinal nerve ligation. DRG proteins were displayed on two-dimensional gels and analyzed through quantitative densitometry, statistical validation of the quantitative data, and peptide mass fingerprinting for protein identification. Among approximately 1,300 protein spots detected on each gel, we discovered 67 proteins that were tightly regulated by nerve ligation. We find that the injury to primary sensory neurons turned on multiple cellular mechanisms critical for the structural and functional integrity of neurons and for the defense against oxidative damage. Our data indicate that the regulation of metabolic enzymes was carefully orchestrated to meet the altered energy requirement of the DRG cells. Our data also demonstrate that ligation of the L5 spinal nerve led to the upregulation in the L4 DRG of the proteins that are highly expressed in embryonic sensory neurons. To understand the molecular mechanisms underlying neuropathic pain, we need to comprehend such dynamic aspect of protein modulations that follow nerve injury.
Collapse
Affiliation(s)
- Naoka Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Poderycki MJ, Kickhoefer VA, Kaddis CS, Raval-Fernandes S, Johansson E, Zink JI, Loo JA, Rome LH. The vault exterior shell is a dynamic structure that allows incorporation of vault-associated proteins into its interior. Biochemistry 2006; 45:12184-93. [PMID: 17002318 PMCID: PMC2538551 DOI: 10.1021/bi0610552] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vaults are 13 million Da ribonucleoprotein particles with a highly conserved structure. Expression and assembly by multimerization of an estimated 96 copies of a single protein, termed the major vault protein (MVP), is sufficient to form the minimal structure and entire exterior shell of the barrel-shaped vault particle. Multiple copies of two additional proteins, VPARP and TEP1, and a small untranslated vault RNA are also associated with vaults. We used the Sf9 insect cell expression system to form MVP-only recombinant vaults and performed a series of protein-mixing experiments to test whether this particle shell is able to exclude exogenous proteins from interacting with the vault interior. Surprisingly, we found that VPARP and TEP1 are able to incorporate into vaults even after the formation of the MVP vault particle shell is complete. Electrospray molecular mobility analysis and spectroscopic studies of vault-interacting proteins were used to confirm this result. Our results demonstrate that the protein shell of the recombinant vault particle is a dynamic structure and suggest a possible mechanism for in vivo assembly of vault-interacting proteins into preformed vaults. Finally, this study suggests that the vault interior may functionally interact with the cellular milieu.
Collapse
Affiliation(s)
- Michael J. Poderycki
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
| | - Valerie A. Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
| | | | - Sujna Raval-Fernandes
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
| | - Erik Johansson
- California NanoSystems Institute, UCLA, Los Angeles, CA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA
| | - Jeffrey I. Zink
- California NanoSystems Institute, UCLA, Los Angeles, CA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA
| | - Joseph A. Loo
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA
| | - Leonard H. Rome
- Department of Biological Chemistry, David Geffen School of Medicine; UCLA, Los Angeles, CA
- California NanoSystems Institute, UCLA, Los Angeles, CA
| |
Collapse
|